
Deep Learning Train-the-Trainer workshop, Wuppertal, 9 - 10 June 2022 

● Graphs and graph basics
● Convolutions on non-Euclidean domains
● Graph Convolutional Neural Networks

 Spatial domain
 Spectral domain

Jonas Glombitza

Graph Convolutional Networks
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Time Schedule

Introduction: Graphs and Graph Convolutions
● Basics of graphs and graph theory

 

Graph Convolutional Networks
● Example 1: Semi-supervised node classification using GCNs

 

Convolutional in Spatial Domain
● EdgeConvolutions and Dynamic Graph Convolutional Neural Networks
● Example 2: Cosmic-ray classification using DGCNNs

Convolutions in Spectral Domain
● Spectral graph theory
● Chebychev Convolutions (ChebNets)
● Example 3: MNIST on graphs using ChebNets
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Structure
● Example lecture

 introduction to graph networks

● Milestone slides:
 pedagogical reasoning (and important points)

Feel free to ask questions 
during the seminar!
Just raise your hand...
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Deep Learning
● Outstanding results

 Speech recognition
 Image recognition → Convolutions
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Convolutions
● Translational invariance
● Scale separation (hierarchy learning)
● Deformation stability (filters are localized in space)
● Parameters are independent from input size

Paul-Louis Pröve, 
Towards Data Science

Adit Deshpande - https://adeshpande3.github.io/adeshpande3.github.io/
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Convolutions and Datasets

● Works in well defined 
euclidean space

● physics data often feature 
different geometries
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Generalization to Non-Euclidean Domains
● Defining convolutions, challenging on non-euclidean domains

 Deformation of filters, changing neighbor relations 
 Non-isometric connections on graphs

● Manifolds ● Graphs

How can we generalize convolutions?



Deep Learning on Graphs

I.  Introduction to graphs
II. Graph basics
III.Spectral graph theory

ICLR2020 submissions - growth
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Types of Graphs

heterogeneous graph

directed graphundirected graph

graphs with edge information

bipartite graph
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What is a Graph

● Graph is ordered pair
 of nodes
 and edges

➢ mainly defined by neighborhood

● Nodes have no order
➢ permutational invariance

● challenging to visualize!
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Example: Various Graphs
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Adjacency Matrix
● Matrix to represent structure of graph
● Elements indicate edges of graph
● Symmetric for undirected graphs
● In general sparse
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● Used to propagate signals on the graph

signal
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Degree Matrix
● Elements count number of times

edges terminate at each node
● Used used to normalize adjacency
●
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Laplacian Matrix
● Laplacian matrix     = normalized adjacency matrix



● Difference between    and its local average
● Core operator in spectral graph theory

● Symmetric normalized Laplacian:
 Eigenvalues do not depend on degree of nodes

● Discrete version of Laplace operator
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= function acting on    
the graph
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Milestones: Graph Networks

   Introduce general concept of graphs and graph networks
   Convolutions beyond euclidean domains (beyond image-like data)
   Needed for following chapters (particularly convolutions in spectral domain)
 

✔ Motivate Graph Convolutional Networks (prior: neighborhood relation)

✔ Connect to your research (data structure / graph-like?)

✔ Introduction to graphs:

✔ are collection of edges and nodes (plenty of representations)

➢ defined by neighborhood

✔ Introduce basics of spectral graph theory

✔ Adjacency, Degree, Laplacian



Graph Convolutional Networks

Thomas Kipf, Max Welling
arXiv:1609.02907

I.   Propagation rule for GCN
II.  Connection to CNNs
III. Semi-supervised classification



17 Deep learning for graphs
Glombitza | ECAP | 06/09/22 | Train-the-Trainer workshop, Wuppertal

Natural Images vs. Graphs

● Collection of pixels (node)
 Node (pixel) holds feature vector
 Dense (rarely sparse)
 Discrete, regular (symmetric)

● Images feature euclidean space

● Collection of nodes and edges
 Node + edge holds feature vector
 Can be dense or sparse
 Continuous non-symmetric positions

● Graphs can feature “arbitrary” domains
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Graph Convolutional Networks

● Propagation rule for GCN:

2D Convolution on regular grid

● Node-wise weight-sharing!● Channel-wise weight-sharing!

Convolution on Graph

Average over neighbors

Deep Learning for Physics Research, World Scientific

https://www.worldscientific.com/worldscibooks/10.1142/12294
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Graph Convolutional Networks

● In general more easy 
● Self coupling: same weight as neighbors

 Very simple → works surprisingly good

● Node-wise weight-sharing!

Deep Learning for Physics Research, World Scientific

https://www.worldscientific.com/worldscibooks/10.1142/12294
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Mathematical Formulation
● Input                   , input data (signal) 

                                   

● Weight signal with neighborhood using adjacency matrix 
  

● Apply transformation using weight matrix


● As      do not include self loops, we have to add them:


Deep Learning for Physics Research, World Scientific

number of nodes
dimension of input feature 
(per node)

number of kernels
(new features)

https://www.worldscientific.com/worldscibooks/10.1142/12294
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Normalization
● Normalization needed in deep learning

 Input / output normalization + batch / feature normalization
 Weight normalization

●                     is not normalized
 Each multiplication would change feature scale!

● Normalize new adjacency matrix using degree matrix       of
(average over neighbor nodes)
  

● Final propagation rule:
 Can be repeated for each layer, by sharing graph structure
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Recap: Convolutional Operation
● Fully connected layers are special case of convolutional layers

➢ Strong prior on local correlation and translational invariance
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Deep Learning for Physics Research, World Scientific

https://www.worldscientific.com/worldscibooks/10.1142/12294
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3-dim. feature vector 
at each node
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Deep Learning for Physics Research, World Scientific

Graph Convolution

Similar to CNN 
weight matrix!

https://www.worldscientific.com/worldscibooks/10.1142/12294
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Graph Convolution
● Convolutional layers are special case of graph convolutional layers  

● Output: 5 nodes
 structure (fixed) shared over model

● Graph convolution
 6 adaptive weights

● Cartesian convolution
● 3x2x3=18 adaptive weights, neglecting bias,

translational invariance + filtersize = 3
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Deep Learning for Physics Research, World Scientific

https://www.worldscientific.com/worldscibooks/10.1142/12294
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Graph Convolutional Network - GCN

● Share graph structure over 
model

➢ Calculate once

during pre-processing
● Aggregate neighborhood 

information in every node

➢arXiv:1609.02907
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Node Classification – social network
● Node Classification of single graph

 Social network
● Clustering / classification of nodes

 Voting behavior of individual persons

● Semi-supervised
 use few labels || rest of nodes masked

● Unsupervised
 without label information
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Example: Zachary's Karate Club
● “Historical” data set
● Social network of university karate club

 Edges represent social relationships outside the club
● Conflict between administrator “John. A” and trainer “Mr. Hi”

➢ Karate Club splits in 4 groups

Task
● Given a single graph and

4 labels (1 of each group)
● Identify membership (1 of 4 groups) for 

every person
● Semi-supervised node classification
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Milestones: Graph Convolutional Networks

   Investigate graph structure (“social networks analysis”)
   Soft introduction to GNNs (connect to graph theory and CNNs)

✔ Discuss Graph Convolutional Networks

✔ basic structure & working principle of many GNN architectures

✔ analyze graph-like data

✔ adjacency matrix similar to weight matrix in CNNs

✔ Each node uses the same adaptive parameter
➢ identical to 1x1 convolution



Convolutions in the Spatial Domain
I.  Edge-Convolutions
II. Dynamic Graph Convolutional Neural Networks
III.Physics example

Y. Wang et al., ArXiv:1801.07829
M. Simonovsky, N. Komodakis, ArXiv:1704.02901
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Convolution in Spatial Domain
● Graphs feature permutational invariance of nodes
● Orientation of nodes meaningless

● Whats with networks embedded in a (spatial) domain?
 Node position is important!
 Not only neighborhood relationship!

https://arxiv.org/abs/1801.07829

https://arxiv.org/abs/1801.07829
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Convolution in Spatial Domain
● Images with discrete and continuous pixel coordinates

● Learned filter 

regular grid: equidistant positions continuous grid positions

……?

Transition of discrete 
filter to continuous filter

https://arxiv.org/abs/1901.00596
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Edge Convolution
✗ For continuous pixelization →matrix becomes gigantic and sparse
➔ Approximate discrete f-dimensional kernel continuously using neural network
● Network applied at each pixel using:

 central pixel
 relation to neighbor pixels eg.      or

● Outputs f-dimensional feature vector

Calculate        for each 

adjacent node

https://arxiv.org/abs/1801.07829

f = 6

https://arxiv.org/abs/1801.07829
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● Convolution acts on neighborhood       yielding for each node:
 k new features      (one for each neighbor)
 feature dimension depends on features of
➢ Parameters shared over edges

● Aggregate neighborhood information
● Aggregation operation flexible:

● e.g.

Edge Convolution

f = 6

k new feature 
vectors

https://arxiv.org/abs/1801.07829

https://arxiv.org/abs/1801.07829
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Convolution vs Edge Convolution
discrete grid positions continuous grid positions

1.1 2.3 4.53.1 2.2

e.g.:
discretized kernel: continuous kernel:

Deep Learning for Physics Research, World Scientific

https://www.worldscientific.com/worldscibooks/10.1142/12294
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Summary: Edge Convolution

Deep Learning for Physics Research, World Scientific

construction
of directed graph

 → search k nearest 
neighbors

estimation of
edge features

aggregation over 
 neighborhood

e.g.

point cloud continuous kernel:

https://www.worldscientific.com/worldscibooks/10.1142/12294
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Dynamic Edge Convolution
● Before applying EdgeConv

 Define underlying graph
● Find neighbors using kNN clustering

 Smallest euclidean distance in feature space 
➢ Directed graph

● Edges can be updated in each layer
➢ neighbors change in feature space 
➢ Dynamical update of graph 

https://arxiv.org/abs/1801.07829

https://arxiv.org/abs/1801.07829
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Dynamical Graph Update
● In each layer neighbors of nodes 

change
● Update of graph using kNN
● DNN can not directly learn 

neighbor relations
 kNN has no gradient

● Implicit clustering of nodes
 Nodes with same features are 

embedded similar
➢ Become neighbors

Layer 1

Layer 2

Layer 3

Erdmann et al.: Identification of Patterns in Cosmic-Ray Arrival 
Directions using Dynamic Graph Convolutional Neural Networks
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Convolution vs. Dynamical Convolution

Similarities:
● Localized convolution
● Operation exploits data structure 

(translation, rotation, permutation)
 depends on your chosen 
➔ Weight sharing over pixel positions

Differences:

Image: conv. at positions over features
● Neighbor points stay neighbors

 

Graph: conv. at features over features
● Neighbors can change!

Layer 1

Layer 2

Layer 3

Erdmann et al.: Identification of Patterns in Cosmic-Ray Arrival 
Directions using Dynamic Graph Convolutional Neural Networks

32
height

3
depth

32 
width

feature maps

filtersinput
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Example: Jet Tagging via Particle Clouds
● Challenge in high-energy physics
● Input: Particle cloud

 Permutational invariance!
● Classify jets into: 1. top quarks 2. background

● ParticleNet won championship
 Using 3 EdgeConv Layer

https://arxiv.org/abs/1902.09914

https://arxiv.org/abs/1902.09914
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Example: Classification of Cosmic Rays 
● Ultra-high energy cosmic rays deflected by

galactic magnetic field
● Cosmic rays induce characteristic pattern

when arriving at the earth

Task
● Given skymap of 500 cosmic rays
● Using EdgeConvs classify if skymap contains

I. Signal from single significant source

II.Only isotropic background

Elongated
pattern

Visualize formed 
graph in each 
EdgeConv layer 
in physics space
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Milestones: Edge Convolutions
   Analyze embedded graphs and/or point clouds (non-Euclidean domains)
   Discussion of Edge Convolutions. Extend CNNs to continuously-distributed data
   (on non-Euclidean domains), then introduce dynamic graph update.
   To simplify: figuratively connect to CNNs.

✔ Edge Convolutions similar to CNNs (natural extension to non)

✔ steps: (graph construction, feature estimation, aggregation) (last 2: CNN-like)

✔ discrete kernels (CNNs)→ continuous kernel (EdgeConv)

✔ application in parallel not recursively

✔ very flexible (success depends on engineering of kernel & operation)

✔ Dynamic graphs: data with less prior on local correlations (act more globally)
 no backpropagation through kNN



Convolutions in the Spectral 
Domain

I.  Spectral graph theory
II. Stable and localized filtering
III.Chebychev Convolutions

M. Defferrard, X. Bresson, P. Vandergheynst, arXiv:1606.09375
J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, arXiv:1312.6203



43 Deep learning for graphs
Glombitza | ECAP | 06/09/22 | Train-the-Trainer workshop, Wuppertal

Convolution on non-Euclidean Manifolds

●

● Convolution has to include curvature of manifold
 Filters get distorted

● How to convolve?

https://stephenbaek.github.io/projects/zernet/

● How to make it fast?

Paul-Louis Pröve, 
Towards Data Science

https://stephenbaek.github.io/projects/zernet/
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Convolutional Theorem

● Convolution acts pointwise in Fourier domain


➢ in Fourier domain matrices are diagonal!

● Accelerate computation


● But need to do Fourier transformation!
➢ need eigenvectors of Fourier domain
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Graph Laplacian
● Laplace matrix      is discrete version of Laplace operator
● Laplace operator encodes smoothness/”curvature” of manifold (2nd derivative)

● Eigenfunctions of Laplacian form orthonormal basis
              ,  for graphs

● Solution directly connected to Fourier space
● Fourier basis = Laplacian eigenvectors/eigenfunctions

●

= matrix of eigenvalues

= matrix of eigenvectors

https://stephenbaek.github.io/projects/zernet/

https://stephenbaek.github.io/projects/zernet/
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Eigenvectors of Graph Laplacian
● 20 first eigenvectors of      → remember: eigenvectors are also Fourier basis!      

● MNIST sample
Graph k=20

representation of Laplacian eigenvectors in spatial domain
  → Fourier modes of graph (modes are not localized!)
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Spectral Convolutions
● We can perform the convolution in the spectral domain

 Signal
 Weight matrix

●

●

Problems:
● Weights scale with number of graph nodes

 act global! No prior on local features!
●           strongly depends on      (         )

 strong domain dependency → bad generalization performance!

NIPS2017: M. Bronstein, J. Bruna, A. Szlam, X. Bresson, Y. LeCun

Adaptive parameters 
in Fourier domain



48 Deep learning for graphs
Glombitza | ECAP | 06/09/22 | Train-the-Trainer workshop, Wuppertal

Smoothing in Spectral domain
● Approximate         in spectral domain 

●

● Learn only     parameters → parameter reduction
● For     <<    ,        gets smooth in spectral domain

 Spectral theory: filter become local!
proposed by Bruna et al. https://arxiv.org/abs/1312.6203

adaptive parameters

some function

Boris Knyazev, Towards data science

https://arxiv.org/abs/1312.6203
https://towardsdatascience.com/spectral-graph-convolution-explained-and-implemented-step-by-step-2e495b57f801
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Stable and Localized Filters

● Non-smooth spectral filter
 Not stable and delocalized

● Smooth spectral filter
 stable and localized

NIPS2017: M. Bronstein, J. Bruna, A. Szlam, X. Bresson, Y. LeCun

Underlying manifold (graph) is changing → change of graph Laplacian
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Chebychev Convolution
● Use “Chebychev polynomials” for approximation in spectral domain

● Chebychev polynomials are recursively defined
  

● As
 Calculate approximation recursive
➢ No need for expensive decomposition!
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● Convolution on sphere
 Use pixelization of HEAPix
➢ Defines adjacency matrix

● Convolution via Chebychev expansion
 Framework allows to process

spherical data
 Several properties can be changed

● but not very modular

Example: DeepSphere

https://arxiv.org/abs/1810.12186

Crosscheck: eigenvectors of Laplacian

Learned filters

https://github.com/SwissDataScienceCenter/DeepSphere

https://arxiv.org/abs/1810.12186
https://github.com/SwissDataScienceCenter/DeepSphere
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First Order Approximation of ChebNet
● Approximation of Chebychev:

● Evaluate for k=1
                                            , setting 

● Setting                   and remembering 
    

➢ Propagation rule of GCN (Part I.)
➢  GCN is first order approximation of ChebNet!

add self connection
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Milestones: Spectral Graph Convolutions

   Process graph-like structure (e.g., Non-Euclidean domains)
   Introduce concept of convolutions on manifolds and think of graphs as an
   approximation of the manifold. Perform convolution in spectral domain instead
   spatial domain. Helpful illustration: show Fourier modes of graph in spatial domain

✔ Perform convolution in spectral domain (acts point-wise in spectral domain)

✔ eigenvectors (total = number of nodes) of Laplacian are Fourier basis

 “kernels / modes” are not localized and domain dependent

✔ solution I: smooth filters in spectral domain

✔ solution II: perform Chebychev expansion of graph Laplacian

✔ elegant way to define convolutions on Non-Euclidean domains
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Graph networks and graph convolutional networks
CNNs:

● define convolution on regular and 
Euclidean grid (matrix multiplication)

● convolution on special form of graph
● CNNs are very fast
● simple & straight-forward implementation 

of translational invariance
● straight-forward pooling
● can usually not deal well with sparsity

GCNNs:
● define convolution on graphs
● very flexible→exploit many symmetries
● can be applied to continuously distributed 

data → no pixelization (sparse data)
● powerful on non-regular domains
● powerful on non-Euclidean domains
● complex pooling operations
● many versions and implementations
● can be slow (for non-sparse data)

regular grid
x

k(x)

kernel

x

k(x)

kernel

Continuous grid positions
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Take-Home Message

After starting with standard methods (FCN, CNN, RNN)
● Is your model able to exploit all symmetries in data?

 are important features missing?
 is architecture supporting the underlying data structure (e.g. various sensors)

➢ Choose architecture which best fits for your symmetry!
 

➢ Graph Convolutional Networks are very flexible
➢ powerful option for complex data structures
➢ BUT: expect no improvements for simple/regular, e.g., image-like data!

“In AI, ‘system’ should be understood as including the human engineers. Most of the
‘data → generalization’ conversion happens during model design.” - F. Chollet
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Milestones: Graph Networks
   How to exploit structured, graph-like, non-regular, non-Euclidean data?
   1. Introduce graphs: nodes, edges, and adjacency matrix (Laplacian)
   2. Perform convolution on simple bidirectional graph (social network) → GCN
   3. Extend convolutions to embedded graphs (discrete → continuous kernel)
   4. Perform convolutions in Fourier domain (spectral convolutions)
       Complex mathematical framework, interesting: GCN is 1st order of ChebNet
 

 For illustration: try to add many figurative examples
 

✔  Idea: Complicated data → construct graphs to define meaningful convolutions
→ reduce parameters by setting prior on local correlations / underlying symmetry

✔  perform graph convolution in spatial domain (filters localized in space)

✔  perform graph convolution in spectral domain (filter learned in Fourier domain)

✔  Exploit underlying symmetry of given data, expert knowledge needed!
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Links & Resources
[1] M. Erdmann, J. Glombitza, G. Kasieczka, U. Klemradt, Deep Learning for Physics Research, World 
Scientific, 2021

[2] Francois Chollet: Deep Learning with Python, MANNING PUBLICATIONS 

[3] Deep Learning (Goodfellow, Bengio, Courville), MIT Press, ISBN: 0262035618

[4] An Introduction to different Types of Convolutions in Deep Learning, Paul-Louis Pröve

https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
[5] Michael M. Bronstein et al. : Geometric deep learning: going beyond Euclidean data: ArXiv:1611.08097

[6] Thomas Kipf, Max Welling: ArXiv:1609.02907

[7] M. Defferrard, X. Bresson, P. Vandergheynst: ArXiv:1606.09375

[8] J. Bruna, W. Zaremba, A. Szlam, Y. LeCun: ArXiv:1312.6203

[9] Y. Wang et al.: ArXiv:1801.07829
[10] M. Simonovsky, N. Komodakis: ArXiv:1704.02901

[11] E. Hoogeboom, J. Peters, T. Cohen, M. Welling: ArXiv/1803.02108

[12] Boris Knyazev, Towards data science, Tutorial on Graph Neural Networks for Computer Vision and Beyond

[13] M. Bronstein, J. Bruna, A .Szlam, X. Bresson, Y. LeCun: Tutorial Geometric Deep Learning on Graphs and 
Manifolds, https://www.youtube.com/watch?v=LvmjbXZyoP0&t=3813s, NIPS2017

https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://www.youtube.com/watch?v=LvmjbXZyoP0&t=3813s


Graph Neural Networks

Jonas Glombitza

HANDS-ON

 http://www.deeplearningphysics.org/

http://www.deeplearningphysics.org/
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TensorFlow

“Open source software library for numerical computation 
using data flowing graphs”

● Nodes represent mathematical operations
● Graph edges represent multi dimensional data 

arrays (tensors) which flow through the graph

● Supports:
 CPUs and GPUs
 Desktops and mobile devices

● Released 2015, stable since Feb. 2017
● Developer: Google Brain
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Keras
● Will use Keras in this tutorial (TensorFlow backend) - https://keras.io

 High-level neural networks API, written in Python
● Concise syntax with many reasonable default settings
● Useful callbacks for monitoring the training procedure
● Nice Documentation & many examples and tutorials + useful extensions
● Ships with TensorFlow

 

● We use tf.keras 2.2.4-tf // TensorFlow 2.1

https://keras.io/
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Additional Software
● We use Spektral in this tutorial, version 0.2.0
● Python library for deep learning on graphs
● Based on Keras and TensorFlow

https://github.com/danielegrattarola/spektral

https://github.com/rusty1s/
pytorch_geometric

● Alternative for PyTorch users:

● For visualization of graphs we use NetworkX

https://github.com/danielegrattarola/spektral
https://github.com/rusty1s/pytorch_geometric
https://github.com/rusty1s/pytorch_geometric
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Tryout 
      Deep Learning
                       Yourself!

Find many physics examples at:

http://www.deeplearningphysics.org/
 

For example:
● CNNs, RNNs, GCNs
● GANs and WGANs
● Anomaly detection, Denosing AEs
● Visualization & introspection and more

http://www.deeplearningphysics.org/
http://www.deeplearningphysics.org/
https://www.worldscientific.com/worldscibooks/10.1142/12294
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Tutorial
● Open exercise page

https://github.com/DeepLearningForPhysicsResearchBook/deep-learning-physics/
● open Colab link and login with your Google Account

● Exercise 10.1:
Semi-supervised node-classifcation

 

● Exercise 16.1:
Classification of cosmic rays

https://github.com/DeepLearningForPhysicsResearchBook/deep-learning-physics/
https://colab.research.google.com/github/DeepLearningForPhysicsResearchBook/deep-learning-physics/blob/master
https://colab.research.google.com/github/DeepLearningForPhysicsResearchBook/deep-learning-physics/blob/master
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Practice 1 – Karate Club Network
● Tune learning rate
● Increase iterations
● Well connected labels
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Example Classification of Cosmic Rays 
● Ultra-high energy cosmic rays deflected by

galactic magnetic field
● Cosmic rays induce characteristic pattern

when arriving at the earth

Task
● Given skymap of 500 cosmic rays
● Using EdgeConvs classify if skymap contains

I. Signal from single significant source

II.Only isotropic background

Elongated
pattern

Visualize formed 
graph in each 
EdgeConv layer 
in physics space
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● Modify kernel network → change          of EdgeConv

Dynamic + fixed graph updates
● Used fixed graph by passing in each layer the very first points_input 

● Use dynamic graph update by passing only produced feature dimension x

Helpful Comments on the Code

x = EdgeConv(lambda a: kernel_nn(a, nodes=8), next_neighbors=5)([points_input, feats_input])

x = EdgeConv(lambda a: kernel_nn(a, nodes=16), next_neighbors=8)(x)

def  kernel_nn(data, nodes=16):
    d1, d2 = data  # get xi ("central" pixel) and xj ("neighborhood" pixels)
    dif = layers.Subtract()([d1, d2])
    x = layers.Concatenate(axis=-1)([d1, dif])
    x = layers.Dense(nodes, use_bias=False, activation="relu")(x)
    x = layers.BatchNormalization()(x)
    return  x



Deep Learning Train-the-Trainer workshop, Wuppertal, 9 - 10 June 2022 

Graph Neural Networks

Jonas Glombitza, Martin Erdmann

Backup
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Opens the example 
page

● Developed in Aachen (group of Martin Erdmann)
● GPU extension

 20x NVIDIA GTX 1080
 3x RTX 6000, 6x RTX 5000

● Accessible via https://vispa.physik.rwth-aachen.de/

https://vispa.physik.rwth-aachen.de/
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Practice I

● Reach accuracy > 90%
● Change hyperparameters:

 Number of features, Learning rate, 
epochs, layers ...
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Practice II

● Try to reach acc. > 95%
● Change graph structure

 Fixed vs. dynamic
● Modify kernel function
● Tune hyperparameters
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Practice III

● Try to reach accuracy > 97%
● Change:

  graph structure (change k)
 Learning rate, epochs, layers, 

feature dimensions, ...
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Example MNIST
● Projection of MNIST on graph

 Each nodes has 8 neighbors (kNN clustering)
 Fixed domain (adjacency matrix fixed)

● Use ChebNet  to classify handwritten digits

● MNIST
 10 classes
 Training 50k samples
 Testing 10 samples
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Batch Normalization
● Calculate batch-wise for each channel:

 Mean: 
 Variance:
 Add free parameters          to change scale and mean

➢

● Makes DNN robust against poor initializations
● Helps with vanishing gradient / less sensitive to high learning rates
● Has regularizing effect (no large weights, noise because of batch dependency)
● Reduce internal covariate shift
➢ Very successful for convolutional architectures
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Embedding
● To visualize machine learning models
● Project vectors of high dimensional space on

low dimensional manifold

● Good classifier need high separation capability
 especially at latest layers

● Most simple embedding
 Neural network layer with 2 dimensional uttput

3D embedding of MNIST 

https://projector.tensorflow.org/

x = GraphConv(2, activation='tanh', name="embedding")([x, fltr_in])

https://projector.tensorflow.org/
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Code Example

import tensorflow as tf
from tensorflow import keras
from groupy.gconv.gconv_tensorflow.keras.layers import P6ConvZ2Axial, P6ConvP6Axial
layers = keras.layers

input1 = layers.Input(shape=(9, 9, 2))
kwargs = dict(activation='relu', kernel_initializer='he_normal')
# initial convolution
z = P6ConvZ2Axial(3, 3, padding='same', activation='relu')(input1)
z = P6ConvP6Axial(6, 3, padding='same', **kwargs)(z)
z = layers.Flatten()(z)

● Filter-size 3: → 7 adaptive parameter
● Filter-size 5: → 19 adaptive parameters
● Need data in axial coordinates
● Beta implementation of keras / tf layers by Lukas Geiger

Check GitHub: https://github.com/ehoogeboom/hexaconv
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Graph Convolution
● Convolutional layers are special case of Graph convolutional layers  
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Summary: Dynamical Graph Convolution

Discrete
grid positions

Continuous
grid positions

Use DNN

Input: size x (features)

1. Search k next neighbors

2. Convolve signals
 → size x (k, channels)

3. Aggregate signals
→ size x (channels)

→ Repeat if you want
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Example: Spherical Harmonics

● e.g. Schrödinger’s equation for hydrogen atom
 angular component breaks down to 

● Eigenfunctions of Laplacian in spherical coordinates


➢ Spherical harmonics
 complete and orthonormal set of

eigenfunctions of angular component 

https://rodluger.github.io/

https://rodluger.github.io/
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Illustrative Chebychev expansion
● Using the Chebychev expansion can be seen as

                    , weighting the neighborhood with the adjacency matrix

● Precise      : element     = number of walks of length     from node     to node 

Boris Knyazev, Towards Data Science

https://towardsdatascience.com/@BorisAKnyazev?source=post_page-----be6d71d70f49----------------------
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First Order Approximation
● Approximation of Chebychev:

● Evaluate for k=1
                                            , setting 

● Setting                   and remembering 
    

➢ Propagation rule of GCN (Part I.)
➢  GCN is first order approximation of ChebNet!

add self connection
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