
Deep Learning Tutorial

HAP Workshop – Big Data Science in Astroparticle Physics

David Walz

RWTH Aachen
20.02.2017

Tutorial Overview

Deep Learning Fundamentals
: Neural Networks
: Optimization
: Generalization

Image Classification
TensorFlow & Keras
Practice Session 1: Image Classification with Neural Networks

Coffee break

Convolutional Networks
Practice Session 2: Image Classification with Convolution Networks
Image Recognition on Air Shower Footprints
Practice Session 3: Air Showers Reconstruction

2 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Machine Learning

“Machine learning is the subfield of computer science that gives computers the ability to
learn without being explicitly programmed.” Arthur Samuel, 1959

Supervised learning: With data {x , y} learn to predict y(x)
: Regression task: y ∈ R, e.g. predicting house prices
: Classification task: y discrete, e.g. signal or background

Unsupervised learning: Find structures or patterns in dataset {x}
Example: Estimate distribution p(x)
Reinforcement learning: Interaction with dynamic environment
Example: Game playing and control problems

3 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

What is Deep Learning

AI

machine learning

representation
 learning

deep learning

infer statistical dependencies
to give ability to predict

finding data representations
that improve machine learning

represent data as hierarchy of features
where each new layer is a more
abstract representation based on
less abstract ones

Deep learning is the state-of-the-art approach for everything related to computer vision,
speech recognition, natural language processing and many AI tasks in general.

4 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Primer: Linear Regression
Let’s define the terminology based on simple linear regression (supervised learning).

Data set {xi , yi} i = 1 . . .N
and want to predict y = f (x)

Define model
ym(x ; θ) = Wx + b with parameters θ = (W , b)

Define objective function (also called loss or cost)
that quantifies distance between model and data
J(θ|x , y) = 1

N
∑N

i=1(ym(xi)− yi)2

Train the model by optimizing the parameters
θ̂ = argmin J(θ) e.g. through gradient descent

5 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Neural Networks

6 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Multidimensional Linear Model
General case: Predict multiple outputs y = (y1 . . . yn) from multiple inputs x = (x1 . . . xm)
using linear function y = Wx + b

Example: x ∈ R3, y ∈ R2

(
W1,1 W1,2 W1,3
W2,1 W2,2 W2,3

)
×

x1
x2
x3

+
(

b1
b2

)
=
(

y1
y2

)

input
output

7 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Nonlinear Models

input
hidden layer

output

Wx + b only describes linear transformation.
Idea: Create a network by applying several linear
transformations

h′ = W (1)x + b(1)

y = W (2)h′ + b(2)

Problem: the model is still linear ...

y = W (2)
(
W (1)x + b(1)

)
+ b(2)

= W (2)W (1)︸ ︷︷ ︸
W

x + W (2)b(1) + b(2)︸ ︷︷ ︸
b

Solution: Apply non-linear activation σ to each
element of h′ −→ h = σ(h′) = σ(Wx + b)

8 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Activation Function
Through the activation function the layer σ(Wx + b) becomes a non-linear mapping.
Basically any kind of non-linearity can be used.

Some choices are
σ(x) = max(0, x) rectified linear unit (ReLU)
σ(x) = 1

1+e−x sigmoid function
σ(x) = tanh(x)

9 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Neural Networks
Basic unit σ(Wx + b) called neuron in analogy with the brain

Non-linear activation according to a number of inputs
(= outputs of previous layer)
Strength of connection between neurons specified by W
Depth: number of weighted layers (don’t count input here)
Width: number of neurons per layer

input layer
hidden layer

output layer
hidden layer

10 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Feature Learning
Each new layer extracts more complex features about the data. Learning these features is
an automatic process when training the model.

data

objective

 simple
features

more complex
 features

final feature(s)

optimization

iterative
 update

−→ No need for hand-crafted features, network learns meaningful features from data itself.

11 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Optimization

12 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Gradient Descent
Minimize objective function J(θ) by iteratively updating θ in negative direction of gradient.
Update proportional to gradient dJ

dθ and learning rate α:

θ −→ θ − αdJ
dθ

Example: Linear regression with mean squared error J ∼
∑N

i=1(ym(xi)− yi)2

Gradient can be evaluated numerically (expensive) or analytically (cheap).

13 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Computation Graph
A network is a series of simple operations → computation graph
Each operation knows how to calculate
: its local output (forward pass)
: its local derivative (backward pass)

Use chain rule to evaluate derivative dJ(θ|x ,y)
dθ for each parameter

through multiplying the local derivatives
Allows to evaluate the analytic gradient in automated way (backprop)

forward pass
backward pass

14 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Stochastic Gradient Descent

For large datasets evaluating J(θ|x , y) and dJ
dθ is prohibitively expensive

Idea: Only use small subset of data in each iteration (mini-batch)
Smaller batches → more parameter updates per compute
Stochasticity in objective function helps escaping local minima
Batch size is typically small, say 16 - 256 samples (hyperparameter!)
Epoch ≡ full pass through the training data

Stochastic gradient descent (SGD): Loop
Sample random mini-batch of data
Calculate objective J and gradient dJ

dθ
Update parameters θ → θ − α dJ

dθ

15 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Improved Optimizers
Typical situation: dJ

dθ1 �
dJ
dθ2 leading to slow learning in θ1

Improve learning with modified parameter update
Momentum: build up momentum
Adagrad: scale down by 1/

√
sum of past gradients

RMSProp: similar to Adagrad but with decay of scale factor
Adam: combination of RMSProp and momentum

16 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Learning Rate

In gradient-based optimizers (θ → θ − α dJ
dθ) learning rate α determines speed of training

training steps

objective too high

too low

high

moderate

Best learning rate decreases over time (implicitly done in Adagrad, RMSProp and Adam)
Typically start with α = 10−3 (for standard objective functions)
Reduce learning rate α/10 when objective stops decreasing

17 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Parameter Initialization
Need to provide initial weights W and biases b at start of training.
Set weights to small random values to break symmetry W ∼ N (µ = 0, σ).
Scale of initial weights σ is critical for deeper nets.

Weights too large → exploding signals and gradients
Weights too small → vanishing signals and gradients

To keep the expected signal constant, scale initial weights with number of ingoing nin
and outgoing connections nout of neuron.

Xavier: σ2(W) = 2
nin+nout

(X. Glorot & Y. Bengio)
He: for ReLU use σ2(W) = 2

nin
(He et. al)

Batch Normalization: feature normalization operation inside the network
Reduces problem of vanishing / exploding signals and gradients
Reduces sensitivity to bad initialization

18 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Data Preprocessing
Highly beneficial if input features x1, x2 . . . xn of dataset are on same scale.
Preprocessing options:

Limit input features to range xi ∈ [−1, 1]
Standard normalize: mean(xi) = 0, std(xi) = 1
Whitening: Decorrelate and standard normalize

taken from http://cs231n.github.io/neural-networks-2/

19 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Generalization

20 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Universal Approximation Theorem

Many network design considerations: How many layers, how many nodes per layer, which
kind of connections, ... ?

Universal approximation theorem
A feed-forward network with a linear output and at least one hidden layer with a finite
number of nodes can approximate any function to arbitrary precision.

Caveats
It doesn’t specify how many nodes are needed
There’s no statement on how to train the network

21 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

1D Function Fitting
Try to fit some complicated function with neural network

22 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

1D Function Fitting 1
Train network with 3 hidden layers of 20 neurons and ReLU as activation
Fit after different number of training iterations:

23 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

1D Function Fitting 2
Train network with 3 hidden layers of 20 neurons and sigmoid as activation
Fit after different number of training iterations:

24 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Overfitting

If a complex enough network can learn any function, how do we know that it’s not
overfitting, i.e. fine-tuning to statistical fluctuations?

Regression Classification

25 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Validation

Unknown true distribution p(x , y) from which data {x , y} is drawn.
Trained model provides prediction ym(x) based on this limited dataset.

Generalization
How good is our estimator when faced with new data?

Validation
Since p(x , y) unknown, estimate generalization error on fraction of data not used during
training. −→ Typically split data into training, validation and test set.

Validation set: Evaluate performance for given set of hyper-parameters.
Test set: Estimate final performance. Use only once, or risk of “look elsewhere effect”

26 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Over-/Undertraining
During training, monitor the objective or another accuracy metric separately for the training
and validation sets. Typical observation:

training steps

training set

validation set

overtrainingundertraining

objective / accuracy

Training loss decreases continuously (→ 0 if model complex enough)

Validation loss has minimum → network starts to overtrain
Validation loss higher than training loss → generalization gap

−→ Early stopping: Stop training when validation error stops to decrease

27 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Regularization and Capacity
Regularization
Methods to reduce the validation error, possibly at the expense of higher training error.

Early stopping
Parameter norm penalties: add term to objective to penalize large weights
: L2 norm: J + λ

∑
W 2

: L1 norm: J + λ
∑
|W |

: Need careful tuning of λ
Data augmentation: generate artificial data samples
Ensemble methods: combination of multiple networks (special case: Dropout)

Model capacity
Complexity of functions that the network can represent. Effective capacity determined by

Network architecture
Training & regularization

28 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Dropout
Randomly turn off a fraction (say p = 0.5) of neurons in each training step

Forces network to learn redundant representations, more robust predictions
At test time use all neurons: large ensemble of models that share parameters
Very effective regularization method. Easy to tune (hyperparameter p)

29 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Dropout
Randomly turn off a fraction (say p = 0.5) of neurons in each training step

Forces network to learn redundant representations, more robust predictions
At test time use all neurons: large ensemble of models that share parameters
Very effective regularization method. Easy to tune (hyperparameter p)

29 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Bias and Variance Dilemma

Model Bias: Error when approximating f ∗ with given model
Model Variance: Error when training model using limited dataset

set of all possible functions

considered
function family F

best possible function

best function in F

function learned
 on train set

bias

variance

Effective capacity trades off bias against variance
Choose more complex F: bias↓ variance↑
Choose simpler F: bias↑ variance↓
Optimal choice depends on size of dataset

Ensemble methods
Ensemble averaging: Train multiple
networks and combine their predictions
⇒ variance↓, free boost in test performance

30 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Summary

Neural networks: layers of connected neurons σ(Wx + b)
: Linear transformation Wx + b
: Non-linear activation σ
: Universal approximation theorem: can fit any function

Optimization
: Stochastic gradient descent on mini-batches of data
: Optimizers: Adam, learn rate, data preprocessing, parameter initialization

Generalization
: Split data into training, validation and test set

» Validation set for monitoring training and tuning hyperparameters
» Estimate generalization error with test set

: Regularization to control overfitting
» early stopping, dropout, data augmentation

: Bias / variance, ensemble averaging

31 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Image Classification

32 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Image Classification
What do these images show?

Very easy for humans, very hard for classical machine learning methods. Challenges are
High dimensional input x ∈ R103−107

Many possible classes depending on task
Need to deal with multiple variations
: viewing angle, occlusion, deformation, light conditions, object variations ...

33 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

MNIST
Hand-written digit dataset, 28 x 28 pixels (grayscale)

34 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

CIFAR-10
Tiny natural image dataset, 32 x 32 pixels (8-bit RGB), 10 categories

35 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

CIFAR-10 Classification Task

Input x = (x1, . . . x3072) for 32× 32× 3 = 3072 features
Output y = (y1, . . . y10), one variable for each category (one-hot encoding)
Categories: airplane, car, bird, cat, deer, dog, frog, horse, ship, truck
Image xi showing a car has yi = (0, 1, 0 . . . 0).

Model predicts probability for each class
→ ymodel(xi |θ) = (pairplane, pcar . . .)

Take highest pj as predicted category
Value of max(pj) gives measure of
certainty

36 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Classification Layer

input
outputhidden layers

airplane

car

truck

Softmax as activation, ymodel,j = σ(zj) = ezj/
∑

ezj , thus
Pre-activation outputs are unnormalized log-probabilities zj ∼ log(pj)
Softmax takes out the log and normalizes

∑
j pj = 1

Categorial cross-entropy as objective function J(θ) = − 1
n
∑

i
∑

j yi log
(
ymodel(xi |θ)

)
Since yj = 0 for all but the true class, only the predicted probability for the correct
classification contributes
Corresponds to maximum likelihood

37 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Classification Layer

input
outputhidden layers

airplane

car

truck

Softmax as activation, ymodel,j = σ(zj) = ezj/
∑

ezj , thus
Pre-activation outputs are unnormalized log-probabilities zj ∼ log(pj)
Softmax takes out the log and normalizes

∑
j pj = 1

Categorial cross-entropy as objective function J(θ) = − 1
n
∑

i
∑

j yi log
(
ymodel(xi |θ)

)
Since yj = 0 for all but the true class, only the predicted probability for the correct
classification contributes
Corresponds to maximum likelihood

37 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Classification Layer

input
outputhidden layers

airplane

car

truck

Softmax as activation, ymodel,j = σ(zj) = ezj/
∑

ezj , thus
Pre-activation outputs are unnormalized log-probabilities zj ∼ log(pj)
Softmax takes out the log and normalizes

∑
j pj = 1

Categorial cross-entropy as objective function J(θ) = − 1
n
∑

i
∑

j yi log
(
ymodel(xi |θ)

)
Since yj = 0 for all but the true class, only the predicted probability for the correct
classification contributes
Corresponds to maximum likelihood

37 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

First Ansatz: Fully Connected Network
Input layer: Flatten image to 32× 32× 3 = 3072 vector
Some hidden layers: Fully connected with ReLU, dropout for regularization
Classification layer: Fully connected with softmax

38 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

TensorFlow & Keras

39 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

What is TensorFlow
Open source software library for numerical
computation using data flow graphs. Nodes in the
graph represent mathematical operations, while edges
represent tensors communicated between them.
Deploy computation to one or more CPUs or GPUs in
a desktop, server, or mobile device with a single API.
Originally developed at Google Brain, but general
enough for application in variety of domains.
Most popular deep learning framework
Stable API since last week (version 1.0)

40 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

TensorFlow Example

import tensorflow as tf

x = tf. placeholder (tf.float32 , [None , 3072])
y = tf. placeholder (tf.float32 , [None , 10])

hidden layer: h1 = ReLU(W1*x + b1)
W1 = tf. Variable (tf. random_normal ([256 , 3072]))
b1 = tf. Variable (tf. random_normal ([256]))
h1 = tf.nn.relu(tf. matmul (x, W1) + b1)

output layer: y = softmax (W2*h1 + b2)
W2 = tf. Variable (tf. random_normal ([256 , 10]))
b2 = tf. Variable (tf. random_normal ([10]))
ym = tf.nn. softmax (tf. matmul (h1 , W2) + b2)

TensorFlow is low-level framework: very verbose, focus on maximum flexibility

41 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Keras Example
Keras as high-level library on top of TensorFlow.

More readable
Default settings follow best practices
Quicker prototyping

from keras. models import Sequential
from keras. layers import Dense

model = Sequential ([
Dense (256 , activation =’relu ’, input_shape =(3072)),
Dense (10, activation =’softmax ’)
])

“Keras is gaining official Google support . . . If you want a high-level object-oriented TF API
to use for the long term, Keras is the way to go.” F. Chollet, a few days ago

42 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Practice Session 1: Image Classification with Neural Networks

43 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

VISPA

Open vispa.rwth-aachen.de

Register a new or login with your
existing account
Note: Guest accounts work as well,
but data is lost when logging out

44 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

vispa.rwth-aachen.de

Deep Learning Examples

Open the CIFAR-10 example

Note: File browser, code editor and terminal
tabs can be opened under “VISPA Cluster”

45 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Code Example: train-NN.py

define 3 layer network
model = Sequential ([

Flatten (input_shape =(32 , 32, 3)),
Dense (256 , activation =’relu ’),
Dropout (0.3) ,
Dense (256 , activatio n=’relu ’),
Dropout (0.3) ,
Dense (10, activation =’softmax ’)])

set objective and optimizer , set up computation graph
model. compile (loss=’categorical_crossentropy ’,

optimizer =keras. optimizers .Adam(lr=1E -3) ,
metrics =[’accuracy ’])

training
results = model.fit(X_train , Y_train ,

batch_size =32, nb_epoch =25,
validation_data =(X_valid , Y_valid))

46 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Practice Time: train-NN.py

pygpu %file executes your script on the VISPA GPU cluster
: 20 × GeForce GTX 1080
: 2 jobs per GPU → 40 jobs in parallel
: Type condor_q in terminal to query job status

Familiarize yourself with data preprocessing etc.
Run and inspect the training results
: condor/ → log, error and standard output files
: train-NN-XYZ/ → plots, training history, trained model

Experiment with your model
: Modify the network layout: Add more layers, neurons
: Tune hyperparameters: dropout, learning rate, batch size

Note: We’ll get to train-CNN.py and train-DCNN.py after the coffee break!

47 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Coffee Break

48 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Results: CIFAR-10 with Dense Neural
Network

Objective Accuracy

49 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Results: CIFAR-10 with Dense Neural
Network

50 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Results: CIFAR-10 with Dense Neural
Network

Layer Output Shape Param
===
Flatten (None , 3072) 0
Dense (None , 256) 786688
Activation (None , 256) 0
Dropout (None , 256) 0
Dense (None , 256) 65792
Activation (None , 256) 0
Dropout (None , 256) 0
Dense (None , 10) 2570
Activation (None , 10) 0
===
Trainable params : 855 ,050

High dimensional input −→ many parameters in fully connected layers

51 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Convolutional Networks

52 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

2D Convolution Operation
Consider input volume, e.g. color image
Use convolution filter with much smaller width and height, but same depth as input
Slide filter w spatially over input volume and calculate wT x + b to get one output
value at each position

input

filter

output

53 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

2D Convolution: Filters
Each filter scans the input for the presence of one feature

edge horizontal edge diagonal edge

Use multiple filters and stack the output feature maps depth-wise
input output

feature maps

54 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Convolution Stack
Stack multiple layers of convolution + activation

Each convolution acts on the feature map of the previous layer
Receptive field increases
Complexity of features increases

55 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Hierarchical Feature Extraction

slide from Yann Le Cun

56 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Spatial Output Size

Standard convolution reduces the output size.
−→ Sets an upper bound to the number of convolution layers.

Example: Convolution with 3x3 filter

57 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Padding

Padding the input with zeros prevents the spatial extent from shrinking too fast
−→ Necessary for deep stacks of many convolution layers

Example: Convolution with 3x3 filter and padding of one

58 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Striding

Using a larger stride when sliding over the input reduces the output size

Example: Convolution with 3 × 3 filter and stride of 2

59 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Pooling
Sub-sample the input to reduce the output size

AveragePooling: Take the mean of each patch
MaxPooling: Take the maximum of each patch (better)
Pooling is more precise than striding but also a little more expensive

Example: MaxPooling on 2× 2 patches

60 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Convolution vs Dense Layers
Convolutions are a special case of dense (fully connected) weight layers.

input output

Number of parameters greatly reduced due to sparsity and weight sharing.
Convolution: Strong prior for local correlation and translational invariance.

61 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Summary: 2D Convolution
Acts on a 3D input volume: W × H × D (width, height, depth)
Slides small filter over input volume and compute dot product and bias add
Hyperparameters:
: Size of filters F , typically 3 or 5
: Number of filters K
: Zero padding to maintain spatial extent
: Stride or MaxPooling to reduce spatial extent

Small number of parameters: F 2 · D · K (weights) and K (biases)

input

filter

output

62 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Convolutions in Keras

Input example : CIFAR -10
X = ... # X.shape = (60000 ,32 ,32 ,3) , feature axis last

Convolution layer example
keras. layers . Convolution2D (

16, 3, 3, # applies 16 (3x3) filters
subsample =(1, 1) , # no striding , use (2 ,2) for stride 2
border_mode =’valid ’, # no padding , use ’same ’ for padding
activation =None)

MaxPooling layer example
keras. layers . MaxPooling2D (

pool_size =(2, 2) , # (2x2) pooling
strides =None , # no striding
border_mode =’valid ’) # no padding , use ’same ’ for padding

63 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Practice Session 2: Image Classification with ConvNets

64 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

CIFAR-10 with Convolutional Networks

Inspect, run and evaluate
train-CNN.py simple convolutional net
train-DCNN.py deep convolutional net, ∼ 10-20 min runtime

Extras
Visualize trained convolutional filters and activation in first layer
test-ensemble.py form ensemble average over multiple models

65 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Results: CIFAR-10 with Simple
Convolutional Network
Layer Output Shape Param
==
Convolution2D (None , 14, 14, 32) 2432
Activation (None , 14, 14, 32) 0
Dropout (None , 14, 14, 32) 0
Convolution2D (None , 5, 5, 64) 51264
Activation (None , 5, 5, 64) 0
Dropout (None , 5, 5, 64) 0
Convolution2D (None , 1, 1, 128) 204928
Activation (None , 1, 1, 128) 0
Dropout (None , 1, 1, 128) 0
Flatten (None , 128) 0
Dense (None , 128) 16512
Activation (None , 128) 0
Dropout (None , 128) 0
Dense (None , 10) 1290
Activation (None , 10) 0
==
Trainable params : 276 ,426
Test accuracy : ~ 75%

66 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Results: CIFAR-10 with Deep
Convolutional Network
Layer Output Shape Param
==
Convolution2D (None , 32, 32, 32) 896
BatchNormalization (None , 32, 32, 32) 128
... 8 more convolution blocks ...
Convolution2D (None , 4, 4, 256) 590080
BatchNormalization (None , 4, 4, 256) 1024
Activation (None , 4, 4, 256) 0
MaxPooling2D (None , 2, 2, 256) 0
Flatten (None , 1024) 0
Dropout (None , 1024) 0
Dense (None , 256) 262400
BatchNormalization (None , 256) 1024
Activation (None , 256) 0
Dropout (None , 256) 0
Dense (None , 10) 2570
Activation (None , 10) 0
==
Trainable params : 2 ,178 ,090
Test accuracy : ~ 88%

67 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Results: CIFAR-10 with Deep
Convolutional Network

Human level accuracy ∼ 95%, need data augmentation to reach this level
68 Deep Learning Tutorial

Walz | RWTH Aachen | 20.02.2017

Image Recognition on Air Shower Footprints

69 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Deep Learning Applications in
Astroparticle Physics

Applications in astroparticle experiments: Cherenkov telescopes, gamma & cosmic ray
satellites, neutrino & cosmic ray observatories, dark matter & gravitational wave detectors

Event reconstruction
Signal classification & background rejection
Pattern recognition on signal distributions, e.g. gamma or cosmic ray skies

70 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Air Shower Detection at the Pierre
Auger Observatory

https://physics.aps.org/articles/v9/125

Fluorescence detector
: Fluorescence light traces longitudinal

shower development
: 2D image

Surface detector
: Water Cherenkov tanks detect passage

of charged particles
: 2D image sequence

Radio detector
: Radio footprint with time information
: Pulse measured in 2 or 3 polarizations
: 2D image sequence / time traces

71 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

https://physics.aps.org/articles/v9/125

Air Shower Footprint – Toy Data
Generator

Simulation of spatial and time distribution of air shower muons on ground

Procedure
Random number muon ∝ E

E0
A0.15

Random production depth
∝ N (µ, σ(Xmax,A))
Random direction ∝ Normal distribution
with opening angle
Calculate arrival on ground (x, y, t)
Add random offset to (x, y, t) per event

Shower footprint

72 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Toy Data
40.000 vertical showers, same energy, 25% protons, helium, nitrogen, iron

Protons (A = 1)

distance [km]

Iron (A = 56)

distance [km]

73 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Toy Data

40.000 vertical showers, same energy, 25% protons, helium, nitrogen, iron

−→ No clear separation possible on either Xmaxor number of filled pixels

74 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Practice Session 3: Air Showers Reconstruction

75 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Toy Air Shower Reconstruction

Toy data generator: generate_data.py

Regression Task: train-Xmax.py – reconstruct Xmax

Classification Task: train-A.py – separate the four different species A = 1, 4, 14, 56

76 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

Links & Resources

TensorFlow Tutorial
https://www.tensorflow.org/get_started/get_started

Deep Learning (Goodfellow, Bengio and Courville)
MIT Press, ISBN: 0262035618
http://www.deeplearningbook.org/

Neural Networks and Deep Learning (Nielson)
http://neuralnetworksanddeeplearning.com/

CS231n - Convolutional Neural Networks for Visual Recognition (Kaparthy)
http://cs231n.stanford.edu/syllabus.html

Deep Learning by Google (Vanhoucke), Udacity
https://www.udacity.com/course/deep-learning--ud730

77 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

https://www.tensorflow.org/get_started/get_started
http://www.deeplearningbook.org/
http://neuralnetworksanddeeplearning.com/
http://cs231n.stanford.edu/syllabus.html
https://www.udacity.com/course/deep-learning--ud730

The Physicist’s Toolbox
data

objective

 simple
features

more complex
 features

final feature(s)

optimization

iterative
 update

With deep learning we have a powerful new tool at our disposal!
Availability of deep learning frameworks and GPUs make this previously very
challenging method accessible to anyone with scripting abilities and a gaming PC

78 Deep Learning Tutorial
Walz | RWTH Aachen | 20.02.2017

	Title page
	Neural Networks
	Optimization
	Generalization
	Image Classification
	TensorFlow & Keras
	Practice Session 1: Image Classification with Neural Networks
	Convolutional Networks
	Practice Session 2: Image Classification with ConvNets
	Image Recognition on Air Shower Footprints
	Practice Session 3: Air Showers Reconstruction

