

Deep Learning in Astroparticle Physics exemplified by the Reconstruction of Muon-Neutrino Events in IceCube

Mirco Hünnefeld

21.02.2017

MNIST

- 10 classes
- 70000 images

CIFAR10 / CIFAR100

- 32x32 images
- 10/100 classes
- 60000 images

ImageNet 2012

- 1000 classes
- 1.3 million images

Source: Daniele Ciriello [1]

MNIST

- 10 classes
- 70000 images

CIFAR10 / CIFAR100

- 32x32 images
- 10/100 classes
- 60000 images

ImageNet 2012

- 1000 classes
- 1.3 million images

Astroparticle-Physics

- Only a handful classes
- Millions of MC events

MNIST

- 10 classes
- 70000 images

CIFAR10 / CIFAR100

- 32x32 images
- 10/100 classes
- 60000 images

ImageNet 2012

- 1000 classes
- 1.3 million images

Astroparticle-Physics

- Only a handful classes
- Millions of MC events

\rightarrow Datasets are a lot bigger

Dataset Size

- Labeled MC-data is comparatively inexpensive to obtain
- Datasets are bigger
- Reduces danger of overfitting

Generalization

- Big Problem in traditional image recognition
- Monte-Carlo-Simulation:
 - Goal: complete description of detector
 - Generalization is not really a problem

ightarrow These bottlenecks do not exist in Astroparticle-Physics

How can we use Deep Learning in Astroparticle-Physics?

(Example: Reconstruction of Muon-Neutrino Events in IceCube)

IceCube Neutrino Observatory

Particle detector at the South Pole

- Detects Cherenkov radiation of secondary particles
- 86 vertical Strings
- Per String: 60 Digital Optical Modules (DOMs)
- Per DOM: Pulse series
- Amplitude and time for each pulse

ightarrow 5160 Pulse series with variable length

Source: IceCube Collaboration [3]

Why use Deep Learning?

Online Processing of	Module	Mean Time	σ	99% percentile
selected events	SPE 2-it. Fit	$0.085\mathrm{s}$	$0.129\mathrm{s}$	$0.670\mathrm{s}$
Limited Resources available at the South Pole	MPE Fit	$0.054\mathrm{s}$	$0.102\mathrm{s}$	$0.485\mathrm{s}$
	Cramer Rao Fits	$0.049\mathrm{ms}$	$0.133\mathrm{ms}$	$0.560\mathrm{ms}$
	Bayesian Fit	$1.022\mathrm{ms}$	$5.825\mathrm{ms}$	$0.024\mathrm{s}$
	Split Fits	$0.066\mathrm{s}$	s $0.236\mathrm{s}$	$1.291\mathrm{s}$
Restricted to basic and	MuEx	$6.576\mathrm{ms}$	$0.023\mathrm{s}$	$0.091\mathrm{s}$
rast algorithms	Truncated Energy 2.612 ms 6.204	$6.204\mathrm{ms}$	$0.022\mathrm{s}$	
Raw/low-level Data: hard to handle	Paraboloid	$0.014\mathrm{s}$	$0.107\mathrm{s}$	$0.311\mathrm{s}$
	SplineMPE	$0.036\mathrm{s}$	$0.152\mathrm{s}$	$0.793\mathrm{s}$
	All modules (status quo)	$0.237\mathrm{s}$	$0.473\mathrm{s}$	$2.523\mathrm{s}$
	Status quo $+$ SplineMPE	$0.273\mathrm{s}$	$0.605\mathrm{s}$	$3.297\mathrm{s}$

Source: 2014 TFT Proposal [5]

Image Recognition with Convolutional Networks

Source: Honglak Lee u. a./ cuDNN [4]

Deep Learning in IceCube

Source: IceCube/Kurt Woschnagg [6]

- Proof of concept
- Divide IceCube into coarse bins
- Summary information per bin:
 - Number of pulses
 - Total charge
 - Charge of highest pulse
 - Time of first Pulse
 - Time of last Pulse
 - Average time of Pulses
 - Standard deviation of pulse times

Basic Model

Time needed for prediction: 0.4 ms/Event

Basic Model - Deposited Energy

Basic Model - Primary Energy

More Complex Model

- Proof of concept: Deep Learning seems applicable and promising
 - \rightarrow Ready for more appropriate Model

More Complex Model

Basic model

- Proof of concept: Deep Learning seems applicable and promising
 - \rightarrow Ready for more appropriate Model

More complex model

- Every DOM as a bin/pixel
- Hexagonally shaped Input
- Hexagonally shaped convolution kernels

\rightarrow How to deal with hexagonal shape?

Add coordinate system

- Add coordinate system
- Pad with zeros

- Add coordinate system
- Pad with zeros
- Align rows

More Complex Model

- Hexagonally shaped Input
- Hexagonally shaped convolution kernels
- Every DOM is now a bin/pixel
- 17 values per DOM: number of pulses, total charge, mean time, ...
- Architecture:
 - 5 convolutional layers over IC79 strings (green dots)
 - 4 convolutional layers over Deepcore strings (red dots)
 - Flattened layer combining convolutions over IC79 and Deepcore strings
 - 6 Fully connected layers
- Time needed for prediction: 20 ms/Event

More Complex Model - Deposited Energy

More Complex Model

More Complex Model - Primary Energy

More Complex Model

Deep Learning - Runtime

- Current online filter: mean time: 273 ms/Event std. deviation: 605 ms/Event
- Reconstruction is fast basic model: 0.4 ms/Event complex model: 20 ms/Event
- Reconstruction is a set number of mathematical operations: runtime is the same for all events

Module	Mean Time	σ	99% percentile
SPE 2-it. Fit	$0.085\mathrm{s}$	$0.129\mathrm{s}$	$0.670\mathrm{s}$
MPE Fit	$0.054\mathrm{s}$	$0.102\mathrm{s}$	$0.485\mathrm{s}$
Cramer Rao Fits	$0.049\mathrm{ms}$	$0.133\mathrm{ms}$	$0.560\mathrm{ms}$
Bayesian Fit	$1.022\mathrm{ms}$	$5.825\mathrm{ms}$	$0.024\mathrm{s}$
Split Fits	$0.066\mathrm{s}$	$0.236\mathrm{s}$	$1.291\mathrm{s}$
MuEx	$6.576\mathrm{ms}$	$0.023\mathrm{s}$	$0.091\mathrm{s}$
Truncated Energy	$2.612\mathrm{ms}$	$6.204\mathrm{ms}$	$0.022\mathrm{s}$
Paraboloid	$0.014\mathrm{s}$	$0.107\mathrm{s}$	$0.311\mathrm{s}$
SplineMPE	$0.036\mathrm{s}$	$0.152\mathrm{s}$	$0.793\mathrm{s}$
All modules (status quo)	$0.237\mathrm{s}$	$0.473\mathrm{s}$	$2.523\mathrm{s}$
Status quo + SplineMPE	$0.273\mathrm{s}$	$0.605\mathrm{s}$	$3.297\mathrm{s}$

Source: 2014 TFT Proposal [5]

Summary

- Typical bottlenecks in image classification do not apply to physics → This includes the lack of labeled data and the difficulty of generalization
- Deep Learning can handle low-level data
- Runtime: fast and very stable → Well suited for applications with limited resources
- Reconstruction of Muon-Neutrino Events in IceCube: Improvements in energy reconstruction compared to current online reconstructions while reducing runtime

Outlook

- Fully include time dimension and perform 4D convolution
- Focus on track reconstruction: azimuth and zenith
- Optimize hyperparameters

technische universität dortmund

Bibliography I

[1] Daniele Ciriello. *CIFAR10*. Feb. 2017. URL:

https://dnlcrl.github.io/projects/2016/06/22/Deep-Residual-Networks-for-Image-Classification-with-Python+NumPy.html.

- [2] developer.apple.com. Kernel Convolution. Sep. 2016. URL: https://developer.apple.com/library/content/documentation/Performance/Conceptual/ vImage/ConvolutionOperations/ConvolutionOperations.html.
- [3] IceCube/NSF. The IceCube Neutrino Observatory. Juni 2014. URL: http://gallery.icecube.wisc.edu/web/var/albums/Press-Root-Album/Detector/ArrayWSeasonsLabelsAmanda.jpg?m=1371067618.

 Honglak Lee u. a. "Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations". In: Proceedings of the 26th Annual International Conference on Machine Learning. ICML '09. Montreal, Quebec, Canada: ACM, 2009, S. 609–616. ISBN: 978-1-60558-516-1. DOI: 10.1145/1553374.1553453. URL: http://doi.acm.org/10.1145/1553374.1553453.

Bibliography II

- [5] Markus Voge. 2014 TFT Proposal Request for a Level2 Online Muon Filter. Nov. 2013. URL: https://docushare.icecube.wisc.edu/dsweb/Get/Document-67821/online12proposal2014.pdf.
- [6] IceCube/Kurt Woschnagg. IceCube Surface Map. Sep. 2016. URL: https://wiki.icecube.wisc.edu/index.php/File:Distances.i86.jpg.

Convolutional Filter

Truncated Energy without Calibration

