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Reconstruction of Muon-Neutrino Events in IceCube
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Why use Deep Learning in Astroparticle-Physics?

MNIST
10 classes
70000 images

CIFAR10 / CIFAR100
32x32 images
10/100 classes
60000 images

ImageNet 2012
1000 classes
1.3 million images

Astroparticle-Physics
Only a handful classes
Millions of MC events

Source:Daniele Ciriello [1]
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MNIST
10 classes
70000 images

CIFAR10 / CIFAR100
32x32 images
10/100 classes
60000 images

ImageNet 2012
1000 classes
1.3 million images

Astroparticle-Physics
Only a handful classes
Millions of MC events

→ Datasets are a lot bigger

Mirco Hünnefeld | 21.02.2017 Deep Learning in Astroparticle-Physics 2



-+lehrstuhl
physik e5

Why use Deep Learning in Astroparticle-Physics?

Dataset Size
Labeled MC-data is comparatively inexpensive to obtain

Datasets are bigger

Reduces danger of overfitting

Generalization
Big Problem in traditional image recognition

Monte-Carlo-Simulation:

Goal: complete description of detector
Generalization is not really a problem

→ These bottlenecks do not exist in Astroparticle-Physics
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How can we use Deep Learning in
Astroparticle-Physics?

(Example: Reconstruction of Muon-Neutrino Events in IceCube)
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IceCube Neutrino Observatory

Source: IceCube Collaboration [3]

Particle detector at the South Pole

Detects Cherenkov radiation of secondary
particles

86 vertical Strings

Per String: 60 Digital Optical Modules (DOMs)

Per DOM: Pulse series

Amplitude and time for each pulse

→ 5160 Pulse series with variable length
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Why use Deep Learning?

Online Processing of
selected events

Limited Resources
available at the South
Pole

Restricted to basic and
fast algorithms

Raw/ low-level Data: hard
to handle

Module Mean Time σ 99% percentile

SPE 2-it. Fit 0.085 s 0.129 s 0.670 s
MPE Fit 0.054 s 0.102 s 0.485 s
Cramer Rao Fits 0.049ms 0.133ms 0.560ms
Bayesian Fit 1.022ms 5.825ms 0.024 s
Split Fits 0.066 s 0.236 s 1.291 s
MuEx 6.576ms 0.023 s 0.091 s
Truncated Energy 2.612ms 6.204ms 0.022 s
Paraboloid 0.014 s 0.107 s 0.311 s
SplineMPE 0.036 s 0.152 s 0.793 s

All modules (status quo) 0.237 s 0.473 s 2.523 s

Status quo + SplineMPE 0.273 s 0.605 s 3.297 s

Table 3 Mean computation time per Muon Filter event for the used modules. The standard deviation σ of
the processing time is also shown, as well as the 99% percentile (at least 99% of events have a processing
time below that value). ‘Status quo’ is the set of modules currently running at the Pole. This measurement
was done on machines with 2.5 GHz CPUs. Note that only SPE and MPE are run on the entire Muon
Filter stream, the other modules are run only on events passing the Online L2 Filter or only on upgoing
events passing the Online L2 filter (Bayesian Fit, Paraboloid). The average CPU time for events that these
modules are actually run on is higher.

at the Pole), mean plus one standard deviation: ∼ 28 CPUs. The 99% percentile time (at least
99% of events have a smaller processing time) is 2.5 s for status quo.
The proposed scenario of running SplineMPE reconstruction will result in an increase of the

CPU requirement, but should be feasible. The average CPU reqirement is increased to ∼ 11
CPUs, the mean plus one standard deviation is ∼ 35 CPUs. The 99% percentile becomes ≈ 3.3 s.
The entire distribution of processing times is shown in Figure 4.
If the CPU requirement for SplineMPE is too much, it would be possible to remove the 2-

iterations SPE fit instead. It is only used as a seed of the MPE reco, but its quality is not
significantly better than the single iteration SPE fit done by base processing (PoleMuonLlhFit),
and it needs roughly the same processing time as SplineMPE. See also Figure 3 for a plot of the
angular resolution of the different recos.

3.6. Bandwidth requirements

Because the Online L2 Filter will continue to be a strict subset of the Muon Filter stream,
no additional events are added to the satellite stream, only the results of reconstructions need
to be transmitted additionally. We request to send the results from the SPE 2-it., MPE and
SplineMPE fit, the Bayesian fits, the split fits, the energy reconstructions MuE, MuEx and
Truncated Energy, the angular error estimators CramerRao and Paraboloid, and cut values like
QTot, LDirC, NDirC, LEmpty and Separation to the North along with the Muon Filter stream.
This is important for carrying out analyses and for reproduction of the Online L2 Filter offline.
The additional required bandwidth will be minimal.

3.7. IceTray Modules used by the filter

It is proposed to include the SplineMPE fit into the OnlineL2 filter, carried out by the module
spline-reco [11]. A code reviewed version was produced by me and the code review process is
formally finished. I am still working on writing unit tests for the project. After that is finished,
spline-reco can be released as a part of icerec and used at Pole.

6

Source:2014 TFT Proposal [5]

Mirco Hünnefeld | 21.02.2017 Reconstruction of Muon-Neutrino Events in IceCube 6



-+lehrstuhl
physik e5

Image Recognition with Convolutional Networks

Source:Honglak Lee u. a./ cuDNN [4]
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Deep Learning in IceCube

Source: IceCube/Kurt Woschnagg [6]

 

44
Martin Rongen | III. Physikalisches Institut RWTH Aachen |  Aachen IceCube Bootcamp Spring 2016Source: J. van Santen
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Basic Model

Proof of concept

Divide IceCube into coarse bins

Summary information per bin:
Number of pulses
Total charge
Charge of highest pulse
Time of first Pulse
Time of last Pulse
Average time of Pulses
Standard deviation of pulse
times
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Basic Model

Time needed for prediction: 0.4 ms/Event
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Basic Model - Deposited Energy
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Basic Model - Primary Energy
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More ComplexModel

Basic model
Proof of concept: Deep Learning seems
applicable and promising
→ Ready for more appropriate Model

Every DOM as a bin/pixel

Hexagonally shaped Input

Hexagonally shaped convolution kernels

Mirco Hünnefeld | 21.02.2017 More Complex Model 13
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More ComplexModel

Basic model
Proof of concept: Deep Learning seems
applicable and promising
→ Ready for more appropriate Model

More complexmodel
Every DOM as a bin/pixel

Hexagonally shaped Input

Hexagonally shaped convolution kernels

→ How to deal with hexagonal shape?
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How to deal with hexagonal shape?

Add coordinate system

Pad with zeros

Align rows
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More ComplexModel

Hexagonally shaped Input

Hexagonally shaped convolution kernels

Every DOM is now a bin/pixel

17 values per DOM:
number of pulses, total charge, mean time, ...

Architecture:
5 convolutional layers over IC79 strings
(green dots)
4 convolutional layers over Deepcore
strings (red dots)
Flattened layer combining convolutions
over IC79 and Deepcore strings
6 Fully connected layers

Time needed for prediction:
20 ms/Event
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More ComplexModel - Deposited Energy
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More ComplexModel - Primary Energy
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Deep Learning - Runtime

Current online filter:
mean time: 273ms/Event
std. deviation: 605ms/Event

Reconstruction is fast
basic model: 0.4ms/Event
complex model: 20ms/Event

Reconstruction is a set number of
mathematical operations:
runtime is the same for all events

Module Mean Time σ 99% percentile

SPE 2-it. Fit 0.085 s 0.129 s 0.670 s
MPE Fit 0.054 s 0.102 s 0.485 s
Cramer Rao Fits 0.049ms 0.133ms 0.560ms
Bayesian Fit 1.022ms 5.825ms 0.024 s
Split Fits 0.066 s 0.236 s 1.291 s
MuEx 6.576ms 0.023 s 0.091 s
Truncated Energy 2.612ms 6.204ms 0.022 s
Paraboloid 0.014 s 0.107 s 0.311 s
SplineMPE 0.036 s 0.152 s 0.793 s

All modules (status quo) 0.237 s 0.473 s 2.523 s

Status quo + SplineMPE 0.273 s 0.605 s 3.297 s

Table 3 Mean computation time per Muon Filter event for the used modules. The standard deviation σ of
the processing time is also shown, as well as the 99% percentile (at least 99% of events have a processing
time below that value). ‘Status quo’ is the set of modules currently running at the Pole. This measurement
was done on machines with 2.5 GHz CPUs. Note that only SPE and MPE are run on the entire Muon
Filter stream, the other modules are run only on events passing the Online L2 Filter or only on upgoing
events passing the Online L2 filter (Bayesian Fit, Paraboloid). The average CPU time for events that these
modules are actually run on is higher.

at the Pole), mean plus one standard deviation: ∼ 28 CPUs. The 99% percentile time (at least
99% of events have a smaller processing time) is 2.5 s for status quo.

The proposed scenario of running SplineMPE reconstruction will result in an increase of the
CPU requirement, but should be feasible. The average CPU reqirement is increased to ∼ 11
CPUs, the mean plus one standard deviation is ∼ 35 CPUs. The 99% percentile becomes ≈ 3.3 s.
The entire distribution of processing times is shown in Figure 4.

If the CPU requirement for SplineMPE is too much, it would be possible to remove the 2-
iterations SPE fit instead. It is only used as a seed of the MPE reco, but its quality is not
significantly better than the single iteration SPE fit done by base processing (PoleMuonLlhFit),
and it needs roughly the same processing time as SplineMPE. See also Figure 3 for a plot of the
angular resolution of the different recos.

3.6. Bandwidth requirements

Because the Online L2 Filter will continue to be a strict subset of the Muon Filter stream,
no additional events are added to the satellite stream, only the results of reconstructions need
to be transmitted additionally. We request to send the results from the SPE 2-it., MPE and
SplineMPE fit, the Bayesian fits, the split fits, the energy reconstructions MuE, MuEx and
Truncated Energy, the angular error estimators CramerRao and Paraboloid, and cut values like
QTot, LDirC, NDirC, LEmpty and Separation to the North along with the Muon Filter stream.
This is important for carrying out analyses and for reproduction of the Online L2 Filter offline.
The additional required bandwidth will be minimal.

3.7. IceTray Modules used by the filter

It is proposed to include the SplineMPE fit into the OnlineL2 filter, carried out by the module
spline-reco [11]. A code reviewed version was produced by me and the code review process is
formally finished. I am still working on writing unit tests for the project. After that is finished,
spline-reco can be released as a part of icerec and used at Pole.

6

Source:2014 TFT Proposal [5]
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Summary
Typical bottlenecks in image classifcation do not apply to physics
→ This includes the lack of labeled data and the difficulty of generalization

Deep Learning can handle low-level data

Runtime: fast and very stable
→Well suited for applications with limited resources

Reconstruction of Muon-Neutrino Events in IceCube:
Improvements in energy reconstruction compared to current
online reconstructions while reducing runtime

Outlook
Fully include time dimension and perform 4D convolution

Focus on track reconstruction: azimuth and zenith

Optimize hyperparameters

Mirco Hünnefeld | 21.02.2017 Conclusions 19
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Convolutional Filter

Source:developer.apple.com [2]
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Truncated Energy without Calibration
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