

Federal Ministry of Education and Research



**RNTHAACHEN** UNIVERSITY

**Alliance for Astroparticle Physics** 

### Recognizing patterns in the arrival directions of ultra-high energy cosmic rays using deep neural networks

galactic magnetic field

> **Marcus Wirtz**, Martin Erdmann, Jonas Glombitza, David Walz

RWTH Aachen, III. Physikalisches Institut A February 21st, 2017

### **Ultra-high energy cosmic rays** @ Pierre Auger Observatory





- X Steeply falling energy spectrum
- X Heavier composition
- X Anisotropy? Point Sources?





Marcus Wirtz – mwirtz@physik.rwth-aachen.de

#### Patterns caused by the galactic magnetic field



- Deflection in galactic magnetic field:
   characteristic patterns
- X Variety of shapes (energy, charge, sources)
- ✗ Challenge: find source position by those structures → image recognition



8

16

3

#### Patterns caused by the galactic magnetic field



- Deflection in galactic magnetic field:
   characteristic patterns
- X Variety of shapes (energy, charge, sources)
- ✗ Challenge: find source position by those structures → image recognition



3

#### Patterns caused by the galactic magnetic field



- Deflection in galactic magnetic field:
   characteristic patterns
- X Variety of shapes (energy, charge, sources)
- ✗ Challenge: find source position by those structures → image recognition



2

5

3

#### Image recognition on a sphere

- X Healpy scheme
- X Divide sphere into 12 patches (~planar) size: 100° x 100°





X Run one 2D-CNN on each patch

X Output: Classify as one of 768 possible source regions



```
model = Sequential()
```

model.add(Convolution3D(nfil, 1, nconv, nconv, border\_mode='valid', input\_shape=(npix\_patch, patch\_size, patch\_size, 1), activation='relu'))
model.add(MaxPooling3D(pool\_size=(1, npool, npool)))
model.add(Convolution3D(not\_size=(1, npool, npool)))

```
model.add(Convolution3D(nfil, 1, nconv, nconv, activation='relu'))
model.add(MaxPooling3D(pool_size=(1, npool, npool)))
model.add(Convolution3D(nfil, 1, nconv, nconv, activation='relu'))
model.add(MaxPooling3D(pool_size=(1, npool, npool)))
model.add(Convolution3D(nfil, 1, nconv, nconv, activation='relu'))
model.add(MaxPooling3D(pool_size=(1, npool, npool)))
```

```
model.add(Flatten())
model.add(Dropout(dropout))
model.add(Dense(nout, activation='relu'))
model.add(Dropout(dropout))
model.add(Dense(nout, init='normal', activation='softmax'))
```

| Network:                                             | Input data:                                       |
|------------------------------------------------------|---------------------------------------------------|
| nfil = 32<br>nconv = 3<br>npool = 2<br>dropout = 0.4 | npix_patch = 12<br>patch_size = 100<br>nout = 768 |

 $\sim$  5.3 million trainable parameters

model.compile(optimizer='adam', loss='categorical\_crossentropy', metrics=['accuracy'])



## Training

- X Training data is expensive: 1,000 skymaps ~ 1 GB
- ✗ Maximum of 20,000 at once





Marcus Wirtz – mwirtz@physik.rwth-aachen.de

#### **Performance: Two source positions at 1% signal**



Marcus Wirtz – mwirtz@physik.rwth-aachen.de

#### Full sky at 1% signal

X Averaged over 100 maps for each of the 768 source regions

1) exact accuracy: true classification / total 2) nearby accuracy: (exact + neighboring) / total 3) alpha:  $\alpha = \measuredangle(\vec{n}_{\text{source}}, \vec{n}_{\text{rec}})$  $\vec{n}_{\text{rec}} = \sum_{\text{pix}} p(\text{pix}) \cdot \vec{n}_{\text{pix}}$ 





#### **Smallest detectable signal fraction**

10

X Performance as a function of the signal fraction



### **Smallest detectable signal fraction**

X Performance as a function of the signal fraction

exact accuracy: true classification / total
 nearby accuracy: (exact + neighboring) / total





Good reconstruction of the faint structures in the arrival directions

### **Summary & Outlook**

- X Successfully trained a 3D convolutional neural network classifying arrival maps as one of 768 source regions including deflection in magnetic fields
- X Can cope with variations in energy spectrum, mass composition, extragalactic spread and signal fraction
- X At 0.5% signal fraction the exact source is identified in 44% of the cases; the reconstructed source is in a nearby pixel in 80% of the cases

#### Outlook

- X Convolution on sphere
- X Regression (multiple sources, discriminate from isotropy)
- 🗡 Cosmic rays energy



### Backup

# Galactic magnetic field - parametrizations

X Models tuned to measurements (e.g. rotation measurements, synchrotron radiation)







# GMF arrival distributions



### **Galactic magnetic field lenses**

Matrices for each rigidity R = E / Z mapping extragalactic directions to observed arrival directions

- X Based on Healpy framework (divide sphere into 49,152 cells)
- CRPropa simulation: Backtrack 5 million particles (inverting charge) per rigidity-bin to the edge of the galaxy
- $\checkmark$  175 rigidity bins in the range from  $10^{17}$ eV to  $10^{20.5}$ eV
- X Matrices are normalized to the highest arrival probability
  - → rigidity and direction dependent transparency



https://web.physik.rwth-aachen.de/Auger\_MagneticFields/PARSEC/downloads.php

## Model.summary()

| Layer (type) O                                                                  | utput Shape Param #         | ¢ Connec  | cted to                     |  |
|---------------------------------------------------------------------------------|-----------------------------|-----------|-----------------------------|--|
| convolution3d_1 (Convolu                                                        | ution3D) (None, 12, 98, 98  | , 32 320  | convolution3d_input_1[0][0] |  |
|                                                                                 | ling3D) (None, 12, 49, 49   | ), 32 0   | convolution3d_1[0][0]       |  |
| convolution3d_2 (Convolu                                                        | ution3D) (None, 12, 47, 47  | , 32 9248 | maxpooling3d_1[0][0]        |  |
| maxpooling3d_2 (MaxPoo                                                          | ling3D) (None, 12, 23, 23   | 8, 32 0   | convolution3d_2[0][0]       |  |
| convolution3d_3 (Convolu                                                        | ution3D) (None, 12, 21, 21  | , 32 9248 | maxpooling3d_2[0][0]        |  |
| maxpooling3d_3 (MaxPoo                                                          | ling3D) (None, 12, 10, 10   | ), 32 0   | convolution3d_3[0][0]       |  |
| convolution3d_4 (Convolu                                                        | ution3D) (None, 12, 8, 8, 3 | 2) 9248   | maxpooling3d_3[0][0]        |  |
| maxpooling3d_4 (MaxPoo                                                          | ling3D) (None, 12, 4, 4, 3  | 32) 0     | convolution3d_4[0][0]       |  |
| flatten_1 (Flatten)                                                             | (None, 6144)                | 0 r       | maxpooling3d_4[0][0]        |  |
| dropout_1 (Dropout)                                                             | (None, 6144)                | 0 f       | flatten_1[0][0]             |  |
| dense_1 (Dense)                                                                 | (None, 768)                 | 4719360   | ) dropout_1[0][0]           |  |
| dropout_2 (Dropout)                                                             | (None, 768)                 | 0 d       | dense_1[0][0]               |  |
| dense_2 (Dense)                                                                 | (None, 768)                 | 590592    | dropout_2[0][0]             |  |
| Total params: 5,338,016<br>Trainable params: 5,338,0<br>Non-trainable params: 0 | 16                          |           |                             |  |



Marcus Wirtz - mwirtz@physik.rwth-aachen.de

### **Performance: Examples**

- X Testing for 12 different source locations on the sphere
- X Signal fractions: 3% X



Marcus Wirtz – mwirtz@physik.rwth-aachen.de



### **Performance: Examples**

- X Testing for 12 different source locations on the sphere
- X Signal fractions: 3% X





#### **Multiple sources**



#### Marcus Wirtz - mwirtz@physik.rwth-aachen.de

# **Pierre Auger Observatory**

- X Worlds largest detector for ultra high energy cosmic rays
- X Situated in Argentina in Pampa Amarilla on an area of 3,000 km<sup>2</sup>
- X Hybrid detector system:
  - → Surface detector: 1660 water-Cherenkov stations
  - → Fluorescence detector: 4 eyes with
     6 fluorescence telescopes each
- 🗡 Radio antenna array (AERA)
- 🗡 In progress: Auger Prime



