SCYNet Susy Calculating Yields Network

Philip Bechtle, Sebastian Belkner, Daniel Dercks, Matthias Hamer, Tim Keller, Michael Krämer, Björn Sarrazin, Jan Schütte-Engel, Jamie Tattersall

Investigating theories beyond the Standard Model

Theorists have been busy!

- Many new ideas in the last \sim 50 years
- Very hard (impossible) to fully cover this space

イロト イポト イヨト イヨト

э

Investigating theories beyond the Standard Model

H. Murayama

Theorists have been busy!

- Many new ideas in the last \sim 50 years
- Very hard (impossible) to fully cover this space

Experimentalists as well!

 EW precision, Higgs, LHC, Dark Matter, Dark energy, Inflation, Neutrinos, Proton decay....

Investigating theories beyond the Standard Model

H. Murayama

Theorists have been busy!

- Many new ideas in the last \sim 50 years
- Very hard (impossible) to fully cover this space

Experimentalists as well!

 EW precision, Higgs, LHC, Dark Matter, Dark energy, Inflation, Neutrinos, Proton decay....

Automatic tools are a must

• Let the computer do the hard work!

Automatic theory testing

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Automatic theory testing

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Matrix Element Calculation (E.g MadGraph)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Matrix Element Calculation (E.g MadGraph)

> Parton Showering (E.g. Pythia)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Why do we need a neural network?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Want to explore a high dimensional models

- E.g. Generalised SUSY \rightarrow pMSSM-11 (or 19)
- 11 (or 19) free parameters
- Each individual parameter point requires \sim hrs CPU

Why do we need a neural network?

Want to explore a high dimensional models

- \bullet E.g. Generalised SUSY \rightarrow pMSSM-11 (or 19)
- 11 (or 19) free parameters
- \bullet Each individual parameter point requires ${\sim} hrs \ CPU$

$\mathsf{Idea} \to \mathsf{Use}$ neural network to learn parameter space

• Sample as many points as feasible (200000 in this case)

• Use net for regression in many dimensions

Why do we need a neural network?

Want to explore a high dimensional models

- \bullet E.g. Generalised SUSY \rightarrow pMSSM-11 (or 19)
- 11 (or 19) free parameters
- Each individual parameter point requires \sim hrs CPU

$\mathsf{Idea} \to \mathsf{Use}$ neural network to learn parameter space

- Sample as many points as feasible (200000 in this case)
- Use net for regression in many dimensions

Two strategies

- Direct approach \rightarrow Model parameters are network input
- $\bullet~\mbox{Reparametrised} \to \mbox{First derive physical parameters}$

Profile minimum χ^2 at each point

• Each square is an individual model

Neural net reproduces general features well

- Individual models can be poorly predicted
- Variation in true result due to limited validation points

< ロ > < 同 > < 三 >

∃)

Performance of the net

Net is vast improvement over nearest neighbour interpolator • Error(χ^2_{SN}) = 1.5 vs Error(χ^2_{Int}) = 6.2

Net works well for small or high masses

- Essentially a classification problem
- Transition and especially compressed region are concerning

Rare Target Learning Problem

Most interesting area is transition region

• Unfortunately net performs worst here

Problem is lack of training data here

• Future work will use (more) intelligent sampling strategy

Image: A math a math

Reparameterisation

Reparameterisation Results

Aim is to test on previously unseen models

• Nets fail drastically in particular regions of parameter space

- These models are NOT a subset of pMSSM-11
- Can we understand physically why?

Improved Reparameterisation

Difference is a previously unseen SUSY mass spectra

- 100% $\tilde{g} \rightarrow \tilde{t}t$ decay in this model
- Net has never seen points that always produce 4 top quarks

Training with new points

• Significant improvement in performance

Conclusion

Automatic model testing is now a reality

• LHC comparison is the (computational) bottleneck

Used neural nets to interpolate high dimensional theory space

- Promising results already delivered
- Improvements in accuracy still required

Reparamerised net also tested

Possibility to use net in a model independent fashion

Rare training learning problem is the obvious place to improve

• Focus sampling on the LHC important region

Backup

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Neural Network parameters

Direct approach

- Developed with TensorFlow
- Four hidden layers
- 300 neurons per layer
- Adam minimiser
- Hyperbolic tangent activation function

Reparametrised approach

- Developed with TensorFlow
- Nine hidden layers
- 500 neurons for first layer, 200 thereafter
- nAdam minimiser
- Rectified linear unit activation function

pMSSM-11 parameters and scan ranges

Parameter	Scan range
M_1	[-4000,4000] GeV
<i>M</i> ₂	[100,4000] GeV
<i>M</i> ₃	[-4000,-400]∪[400,4000] GeV
$m_{\widetilde{q}_{12}}$	[300,5000] GeV
$m_{\widetilde{q}_3}$	[100,5000] GeV
$m_{\tilde{l}_{12}}$	[100,3000] GeV
$m_{\tilde{l}_3}$	[100,4000] GeV
m_{A^0}	[0,4000] GeV
A^0	[-5000,5000] GeV
μ	[-5000,-100]∪[100,5000] GeV GeV
aneta	[1,60]

Calculating χ^2 for one SR

Likelihood function

$$\mathcal{L}(N_E|\nu_S, \nu_{SM}, \lambda) = \frac{e^{-\lambda}\lambda^{N_E}}{N_E!} \times \frac{1}{\sqrt{2\pi}} e^{-\frac{\nu_S^2}{2}} \times \frac{1}{\sqrt{2\pi}} e^{-\frac{\nu_{SM}^2}{2}}$$

$$\lambda(\nu_S, \nu_{SM}, \mu, S) = S\mu e^{\frac{\Delta S}{S}\nu_S} + N_{SM} e^{\frac{\Delta N_{SM}}{N_{SM}}\nu_{SM}}$$
with $\Delta S = \sqrt{(\sigma_S^{stat})^2 + (\sigma_S^{sys})^2}$ and
$$\Delta N_{SM} = \sqrt{(\sigma_{N_{SM}}^{stat})^2 + (\sigma_{N_{SM}}^{sys})^2} .$$

$$H_0: \mu = 1, \quad H_1: \mu \neq 1$$

$$\mathcal{L}_C := \max_{\nu_S, \nu_{SM} \in \mathbb{R}} \mathcal{L}(\mu = 1, S = N_{SM}, \nu_{SM}, \nu_S)$$

$$\mathcal{L}_G := \max_{\mu, \nu_S, \nu_{SM} \in \mathbb{R}} \mathcal{L}(\mu, S = 1, \nu_{SM}, \nu_S)$$

$$PLR := \frac{\mathcal{L}_C}{\mathcal{L}_G}, \quad q_\mu := -2ln(PLR) \ \chi^2 \ \text{distributed}$$