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Jamie Tattersall



Investigating theories beyond the Standard Model

H. Murayama

Theorists have been busy!

Many new ideas in the last
∼50 years

Very hard (impossible) to fully
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Automatic tools are a must

Let the computer do the hard
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Simulation Program Flow

  

Matrix Element Calculation
(E.g MadGraph)

Parton Showering
(E.g. Pythia)

Analysis Reproduction
(E.g CheckMATE)

Detector Simulation
(E.g Delphes)

Statistical Evaluation
(E.g CheckMATE)



Why do we need a neural network?

Want to explore a high dimensional models

E.g. Generalised SUSY → pMSSM-11 (or 19)

11 (or 19) free parameters

Each individual parameter point requires ∼hrs CPU

Idea → Use neural network to learn parameter space

Sample as many points as feasible (200000 in this case)

Use net for regression in many dimensions

Two strategies

Direct approach → Model parameters are network input

Reparametrised → First derive physical parameters
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Direct Approach
‘Truth’

C
M

,8
T

eV
2 χ

30

40

50

60

70

80

90

100

) [GeV]g~m(
0 500 1000 1500 2000

) 
[G

eV
]

0 1χ∼
m

(

0

200

400

600

800

1000

Neural Network
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Profile minimum χ2 at each point

Each square is an individual model

Neural net reproduces general features well

Individual models can be poorly predicted

Variation in true result due to limited validation points



Performance of the net
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Net is vast improvement over nearest neighbour interpolator

Error(χ2
SN) = 1.5 vs Error(χ2

Int) = 6.2

Net works well for small or high masses

Essentially a classification problem

Transition and especially compressed region are concerning



Rare Target Learning Problem
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Most interesting area is transition region

Unfortunately net performs worst here

Problem is lack of training data here

Future work will use (more) intelligent sampling strategy



Reparameterisation

Can reparametrising model help?

Try physically motivated
parameters

New parameters

Average particle multiplicity
(+ standard deviation)

Average maximum energy for
each particle type
(+ standard deviation)

56 inputs in total

Accuracy very similar

Can be applied to arbitrary
models



Reparameterisation Results

CMSSM (4 parameters)
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AMSB (3 parameters)
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Aim is to test on previously unseen models

Nets fail drastically in particular regions of parameter space

These models are NOT a subset of pMSSM-11

Can we understand physically why?



Improved Reparameterisation
CMSSM (4 parameters)
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Difference is a previously unseen SUSY mass spectra

100% g̃ → t̃t decay in this model

Net has never seen points that always produce 4 top quarks

Training with new points

Significant improvement in performance



Conclusion

Automatic model testing is now a reality

LHC comparison is the (computational) bottleneck

Used neural nets to interpolate high dimensional theory space

Promising results already delivered

Improvements in accuracy still required

Reparamerised net also tested

Possibility to use net in a model independent fashion

Rare training learning problem is the obvious place to improve

Focus sampling on the LHC important region



Backup



Neural Network parameters

Direct approach

Developed with TensorFlow

Four hidden layers

300 neurons per layer

Adam minimiser

Hyperbolic tangent activation function

Reparametrised approach

Developed with TensorFlow

Nine hidden layers

500 neurons for first layer, 200 thereafter

nAdam minimiser

Rectified linear unit activation function



pMSSM-11 parameters and scan ranges

Parameter Scan range

M1 [-4000,4000] GeV

M2 [100,4000] GeV

M3 [-4000,-400]∪[400,4000] GeV

mq̃12 [300,5000] GeV

mq̃3 [100,5000] GeV

ml̃12
[100,3000] GeV

ml̃3
[100,4000] GeV

mA0 [0,4000] GeV

A0 [-5000,5000] GeV

µ [-5000,-100]∪[100,5000] GeV GeV

tanβ [1,60]



Calculating χ2 for one SR
Likelihood function

L(NE |νS , νSM , λ) =
e−λλNE

NE !
× 1√

2π
e−

ν2
S
2 × 1√

2π
e−

ν2
SM
2

λ(νS , νSM , µ,S) = Sµe
∆S
S
νS + NSMe

∆NSM
NSM

νSM

with ∆S =
√

(σstatS )2 + (σsysS )2 and

∆NSM =
√

(σstatNSM
)2 + (σsysNSM

)2 .

H0 : µ = 1, H1 : µ 6= 1

LC := max
νS ,νSM∈R

L(µ = 1, S = NSM , νSM , νS)

LG := max
µ,νS ,νSM∈R

L(µ, S = 1, νSM , νS)

PLR :=
LC
LG

, qµ := −2ln(PLR) χ2 distributed


