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structure to activity
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Neuronal interaction on microscopic scale

x

0 50 100 150 200 250
-90

-80

-70

-60

-50

0 50 100 150 200 250
0

0.1

0.2

t (ms)
V

(m
V
)

∆
V

pre

post

dynamics evolves in continuous time

interaction through short electrical pulses (“spikes”)

contact points: synapses
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Structure and dynamics on different spatial scales

scale I (microscopic) II (local circuit) III (multi-area)
connectivity cell-assemblies layer-specific long-range
observable pairwise correlations fast oscillations slow oscillations
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Statistics of neuronal activity

Bos et al. 2016 PloS CB

asynchronous-irregular spiking of neurons

different measures of statistics:
- firing rates
- inter-spike interval statistics
- correlations between pairs of neurons

Which measures are informative of computational performance?
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Computation at the edge of chaos

Fig: Malica et al. 2014

idea of reservoir computing (Maass 2002, Jaeger 2002):
- recurrently, randomly connected neurons
- activity produces rich set of basis functions
- training linear readout alone is sufficient

edge of chaos (Natschlaeger et al. 2004):
- binary networks, discrete parallel update
- optimal computation at transition from regular to chaotic
dynamics
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Questions

Is there a transition to chaos in time-continuous
externally driven networks?
Does performance peak at the transition?
Is the activity statistics compatible with neuronal
recordings?
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Is there a transition to chaos in time-continuous
externally driven networks?
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Model definition

definition of the model

dxi
dt

= −xi +
N∑
j=1

Jijϕ(xj)

ϕ(x) = tanh(x), i = 1, . . . , N � 1

Sompolinsky, Crisanti, Sommer PRL 1988

simple connectivity structure
single parameter g:
Gaussian distributed weights

Jij ∼ N (0, g2/N)

original model:
- no input signal
- transition from silence to chaos at
g = 1
↔ silent fixed point looses stability

x1

x2

(a) g = 0.5

150 190t

x1

x2

g = 1.7
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Model definition

definition of the model

dxi
dt

= −xi +
N∑
j=1

Jijϕ(xj) + ξi(t)

ϕ(x) = tanh(x), i = 1, . . . , N � 1

Goedeke, Schuecker, Helias arXiv 2016

simple connectivity structure
single parameter g:
Gaussian distributed weights

Jij ∼ N (0, g2/N)

unstructured input:
additive white noise

〈ξi(t)ξi(s)〉 = 2σ2δ(t− s)

no obvious transition

x1

x2

(a) g = 0.5

150 190t

x1

x2

g = 1.7

x1

x2

(b) g = 0.5

150 190t

x1

x2

g = 1.7
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Generating functional

definition of the model

dxi
dt

= −xi +
N∑
j=1

Jijϕ(xj) + ξi(t)

generating functional (Martin et al. 1973, Janssen 1976, DeDominicis 1978)

Z[l](J) =

∫
D{x, x̃} exp

(
S0[x, x̃]− x̃TJϕ (x) + lTx

)
with S0[x, x̃] = x̃T (∂t + 1)x + σ2x̃Tx̃
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Disorder average

assume self-averaging network properties:
- quenched randomness in couplings Jij
- large N limit: expect small variability between realizations

→ average Z(J) over J〈
exp

(
. . .− x̃TJϕ (x) + . . .

)〉
J∼N (0,N−1g2)

Z̄[l] := 〈Z[l](J)〉J =

∫
D{x, x̃} exp

(
S0[x, x̃] + lTx

)
× 1

2

∑
i

∫ ∫
x̃i(t)x̃i(t

′)

(
g2

N

∑
j

ϕ(xj(t))ϕ(xj(t
′))

)
︸ ︷︷ ︸

≡Q1

dt dt′
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Saddle-point approximation

average generating functional

Z̄[l] := 〈Z[l](J)〉J =

∫
D{x, x̃} exp

(
S0[x, x̃] + lTx

)
× 1

2

∑
i

∫ ∫
x̃i(t)x̃i(s)

(
g2

N

∑
j

ϕ(xj(t))ϕ(xj(s))

)
︸ ︷︷ ︸

≡Q1

dt ds
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Saddle-point approximation

average generating functional

Z̄[l] := 〈Z[l](J)〉J =

∫
D{x, x̃} exp

(
S0[x, x̃] + lTx

)
× 1

2

∑
i

∫ ∫
x̃i(t)x̃i(s)

〈
g2

N

∑
j

ϕ(xj(t))ϕ(xj(s))

〉
︸ ︷︷ ︸

≡Q∗1

dt ds

decouple 4-point coupling by Hubbard Stratonovich transform

saddle point approximation in the auxiliary field Q1

reduction to single-neuron problem in fluctuating background field
(“Hartree-Fock”)

self-consistent statistics

dx

dt
= −x+ η(t) + ξ(t).

〈η(t)η(s)〉 = g2〈ϕϕ〉(t, s)
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Self-consistent solution for autocorrelation

effective equation

dx

dt
= −x+ η(t) + ξ(t).

〈η(t)η(s)〉 = g2〈ϕϕ〉(t, s)

autocorrelation c(τ) = 〈x(t+ τ)x(t)〉

c̈(τ) = c− g2〈ϕϕ〉(t+ τ, t)− 2σ2δ(τ)

= −V ′(c; c0)− 2σ2δ(τ)

→ “Newtonian” equation of motion

initial “velocity” ċ(0+) = −σ2

c0 from "energy conservation"

1

2
σ4 + V (c0; c0) = V (0; c0) = 0

without noise (σ = 0) model explains
self-generated fluctuating activity

(a) g = 0.5

150 190t

g = 1.7
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Transition to chaos

replica calculation:
pair of systems with common noise and slightly different initial conditions

measure distance at function of time (Derrida & Pommeau 1987)

d(t, t) =
∑
i

〈[x1i (t)− x2i (t)]2〉

= c11(t, t) + c22(t, t)− 2c12(t, t)

idea: maximum Lyapunov exponent λmax related to decay rate of
cross-correlation c12 between pair of systems

average of generating functional over coupling matrix and saddle-point
approximation (analogous to single system)

(∂t + 1)xα(t) = ξ(t) + ηα(t) , α ∈ {1, 2} ,

〈ηα(s) ηβ(t)〉 = g2 〈ϕ(xα(s))ϕ(xβ(t))〉.

two copies coupled by common noise ξ and identical realization of J
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Transition to chaos

consider deviations from fully synchronized state

expand the cross-correlation around its stationary solution

c12(t, s) = c(t− s) + ε k(1)(t, s)

from effective equations derive equation for first order deflection k(1)(t, s)

can be reformulated as Schroedinger equation[
−∂2

τ +W (τ)
]
ψ(τ) = E ψ(τ),

“ground state energy” E0 determines the asymptotic growth rate of k(1)(t, t)

Lyapunov exponent

λmax = −1 +
√

1− E0

transition to chaos given by ground state with vanishing energy E0 = 0
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Transition to chaos

construct solution from ċ(τ)

exact condition for transition to chaos

g2c 〈ϕ(x)2〉 − c0 = 0

transition not given by local instability

g2 〈ϕ′(x)2〉 > 1

emergence of new regime with

locally expanding dynamics
asymptotically stable dynamics

decay time of a.c.f does not diverge at
transition

Is new regime good for
computation?

0 1σ
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2

g

(a)

chaos

0 1 2 3
g

0

10

τ ∞

(b)
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Does performance peak at the transition?
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Memory capacity

common stimulus z(t)
dxi
dt

= −xi +
N∑
j=1

Jijϕ(xj) + ξ(t)+z(t)

reconstruct z(t) by sparse linear readout ẑ(t) = wTx(t+ τ)
at later time point t+ τ

memory capacity M(τ) = supw 1− (z(t)−ẑ(t))2

ẑ2(t) ∈ [0, 1]
(Dembre et al. 2012)

M(τ) =
1

c0〈z2(t)〉

N∑
i=1

〈xi(t) z(t− τ)〉2 slide 17



Memory capacity

closed form solution by replica
calculation

M(τ) =
1

c0
e−2τI0(2g〈ϕ′〉τ) .

memory for larger τ due to
synaptic coupling

decomposition into single
neuron and network contribution

total memory capacity optimal in
new dynamical regime
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Intermediate summary

activity statistics of large random recurrent driven network
accurately predicted by mean-field theory

transition to chaos exists:
- at point where autocorrelation has inflection point at τ = 0

additive input shifts transition to chaos to larger couplings

emergence of new dynamic regime with:
- local amplification
- globally regular dynamics
- optimal signal memory
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Is the activity statistics compatible with neuronal
recordings?
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 in which regime are cortical networks operating?
 cannot measure Lyapunov exponent as state of cortical networks cannot be set
 candidate: spectral radius of the connectivity      of the linearized effective 

dynamics

 linear dynamics explains correlation structure in spiking neural networks for 
asynchronous irregular activity (Grytskyy et al. 2014)

 aim: infer connectivity structure (i.e. the spectral radius) from experimentally 
observed correlation structure

Operational regime of cortical networks

𝑊𝑊𝑖𝑖𝑖𝑖

𝑊𝑊

linearization
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 time-lag integrated covariances are given by expectation values of zero-
frequency Fourier modes (Risken 1996):

 in linear systems, the generating functional in Fourier domain factorizes into 
generating functions for each frequency

 with action

 time-lag integrated covariances given as propagators 

Linear network dynamics
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 relation between covariances between all 
neurons in the network and all connections

 with present-day recording techniques, there is 
still a massive undersampling of neural activity

Undersampling problem

 at the local scale: connections are sparse and look 
apparently random 

 each realization of the random connectivity matrix 
changes the covariances between individual neurons

 However, the statistics of covariances can be 
assumed to be self-averaging
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Distribution of covariances

…

𝑤𝑤

• rescaled: not distinguishable by shape for intermediate to strong couplings  
• distributions always centred around ≈ 0
 distinguish by width of distribution

 sparse random networks: spectral radius determined by variance of entries in W 
 variance in W determined by synaptic weight 𝑤𝑤
 the larger the synaptic weight, the larger the spectral radius
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Hypothesis

• effective connection strength/spectral radius close to critical value 
• activity propagates over several synapses
• activity effectively distributed through the network via various parallel paths

…

𝑤𝑤
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Quantitative test
 need relation between statistics of correlations and statistics of connections
 calculate disorder-averaged generating function

 Hubbard-Stratonovich transformation: auxiliary field formulation
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Mean-field theory beyond self-averaging
 moments of the distribution of covariances can be obtained from two-

and four-point correlators of the disorder-averaged generating function

 extract distribution of covariances from auxiliary field fluctuations

 relation between the (normalized) width of the distribution of 
covariance and the spectral radius
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Cortex operates close to regime of optimal performance

 data from macaque motor cortex suggests operation close to breakdown of linear 
stability

 functional relevance: individual connections are strong enough to propagate 
information over multiple synaptic steps to allow complex processing, mixing and 
integration of information of various sources

 complex activity patterns are strengthened
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Summary

mean-field theory of large random recurrent driven network

emergence of new dynamic regime with:
- local amplification
- globally regular dynamics
- optimal signal memory
- wide distribution of correlations

cortical data support operation close to critical point of optmial
memory
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Supplementary slides
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Decoupling of 4-point interaction

average generating functional

Z̄[l] := 〈Z[l](J)〉J =

∫
D{x, x̃} exp

(
S0[x, x̃] + lTx

)
× 1

2

∑
i

∫ ∫
x̃i(t)x̃i(t

′)

(
g2

N

∑
j

ϕ(xj(t))ϕ(xj(t
′))

)
︸ ︷︷ ︸

≡Q1

dt dt′

decouple 4-point coupling by Hubbard Stratonovich transform

field theory in the auxiliary fields Q1 and conjugate field Q2

Z̄[j, j̃] =

∫
D{Q1, Q2} exp

(
−N
g2
QT

1Q2 +N ln Z[Q1, Q2] + jTQ1 + j̃TQ2

)
Z[Q1, Q2] =

∫
D{x, x̃} exp

(
S0[x, x̃] +

1

2
x̃TQ1x̃+ ϕ(x)TQ2ϕ(x)

)
single-neuron problem in fluctuating background field
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Saddle-point approximation for auxiliary fields

saddle-point approximation for auxiliary fields 0 = δS[Q1,Q2]
δQ{1,2}

Q∗1(s, t) = g2 〈ϕ(x(s))ϕ(x(t))〉Q∗ =: g2〈ϕϕ〉(t, s) Q∗2(s, t) = 0

Generating functional at saddle node solution

Z̄∗ ∝
∫
Dx
∫
Dx̃ exp

(
S0[x, x̃] +

g2

2
x̃T〈ϕϕ〉x̃

)
.

Gaussian noise with correlation function 〈ϕϕ〉(t, s)
corresponds to off effective equation

dx

dt
= −x+ η(t) + ξ(t).

〈η(t)η(s)〉 = g2〈ϕϕ〉(t, s)
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Saddle-point approximation for auxiliary fields

vertex function

Γ(q1, q2) := sup
j,j̃

jTq1 + j̃Tq2 − ln Z̄[j, j̃]

equation of state for lowest order mean-field Γ[q1, q2] ' −S[q1, q2],

0 =
δS[Q1, Q2]

δQ{1,2}

saddle-point solution for auxiliary fields

Q∗1(s, t) = g2 〈ϕ(x(s))ϕ(x(t))〉Q∗ =: g2Cϕ(x)ϕ(x)(s, t)

Q∗2(s, t) = 0

Generating functional at saddle node solution

Z̄∗ ∝
∫
Dx
∫
Dx̃ exp

(
S0[x, x̃] +

g2

2
x̃TCϕ(x)ϕ(x)x̃

)
.
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Effective dynamical mean-field equation

generating functional with saddle node solutions

Z̄∗ ∝
∫
Dx
∫
Dx̃ exp

(
S0[x, x̃] +

g2

2
x̃TCϕ(x)ϕ(x)x̃

)
.

Gaussian noise with correlation function Cϕ(x)ϕ(x)(s, t)

read off effective equation

dx

dt
= −x+ η(t) + ξ(t).

〈η(t)η(s)〉 = g2Cϕ(x)ϕ(x)(t, s)
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Memory capacity

capacity to reconstruct past input from the current network state

M(τ) =
1

c0〈z2(t)〉

N∑
i=1

〈xi(t) z(t− τ)〉2

consider pair of system with independent noise and common input

Z[{lα}α∈{1,2}](J) = Π2
α=1

{∫
Dxα

∫
Dx̃α exp

(
S0[xα, x̃α]− x̃αTJϕ (xα) + lαTxα

)}
× exp

∑
k,l

∫
ε(t) x̃1k(t) x̃2l (t) dt


idea: 〈xi(t) z(t− τ)〉2 related to cross-correlation c12 between pair of
systems, which obeys

(∂t + 1) (∂s + 1) c12(t, s)− g2〈ϕ′(x)〉2 c12(t, s) = δ(t) δ(s),

explicit solution for memory curve

M(τ) =
1

c0
e−2τI0(2g〈ϕ′〉τ) . slide 28



Two step reduction of recurrent (LIF) networks

Grytskyy D, Tetzlaff T, Diesmann M and Helias M (2013)
A unified view on weakly correlated recurrent networks.
Front. Comput. Neurosci. 7:131.

step 1: mean firing rates
〈s〉 = ν = ϕ(ν)

step 2: fluctuations
yi(t) = si(t)− νi

yi(t) =
∑
k

[hik ∗ yk](t) + ξi(t) 〈ξi(t)ξj(s)〉 = δijδ(t− s)νi

equivalent covariances
for:

linear approx. of
influence
Dirac-δ autocorrelation

holds for several model
classes

differ in location of noise
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Criticality in neuroscience

Beggs and Plenz (2003)

 criticality has been observed in 
experimental data with different 
dynamics:
 “neural avalanches”

 this type of dynamics arises in 
excitation-dominated networks

 however, motor cortex data suggest 
balanced between excitation and 
inhibition
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Two types of criticality

 so far studied criticality: visible on population level, because population mode unstable
 large, global fluctuations

 criticality found in the data: 
 complex combination of activations of neurons


