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Biological neuronal networks - from

structure to activity
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Neuronal interaction on microscopic scale
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NN
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t (ms)

dynamics evolves in continuous time

interaction through short electrical pulses (“spikes”)
contact points: synapses
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Structure and dynamics on different spatial scales
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Statistics of neuronal activity
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Bos et al. 2016 PloS CB
asynchronous-irregular spiking of neurons
different measures of statistics:
- firing rates
- inter-spike interval statistics
- correlations between pairs of neurons

Which measures are informative of computational performance?
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Computation at the edge of chaos

Reservoir Ouput Lager s

Input Layer -

Wi

Random, fixed input
weights Random, fixed

connections Fig: Malica et al. 2014

= idea of reservoir computing (Maass 2002, Jaeger 2002):
- recurrently, randomly connected neurons
- activity produces rich set of basis functions
- training linear readout alone is sufficient

u edge of chaos (Natschlaeger et al. 2004)
- binary networks, discrete parallel update
- optimal computation at transition from regular to chaotic
dynamics
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Questions

= s there a transition to chaos in time-continuous
externally driven networks?

= Does performance peak at the transition?

= [s the activity statistics compatible with neuronal
recordings?
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Is there a transition to chaos in time-continuous
externally driven networks?
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Model definition

= definition of the model (a) 905
dz; al *
T ; Jiep(;) %

(p(l’):tal’lh(ﬂf), ’LZI,,N>>1

X2 W
Sompolinsky, Crisanti, Sommer PRL 1988
. . X1 ,-\/_\/\//\/—
u S|mple connect|V|ty structure

single parameter g: 150 . 190
Gaussian distributed weights

Jij NN(0792/N)

= original model:
- no input signal
- transition from silence to chaos at
g=1
+» silent fixed point looses stability
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Model definition

definition of the model (a)
dx; al
ar ot ; Jijo(xs) + &i(t)

(p(l‘):tal’lh(ﬂf), ’LZI,,N>>1

Goedeke, Schuecker, Helias arXiv 2016

simple connectivity structure

single parameter g:

Gaussian distributed weights o)
Jij ~ N(0792/N)

unstructured input:
additive white noise

{&(D)Ei(s)) = 20°8(t — s)

no obvious transition

X2

X

X2

X

X2

X1

X2

X

150 190
slide 8



Generating functional

= definition of the model

N
dx i

o= + Z Jijo(xj) + &i(t)

j=1

= generating functional (Martin et al. 1973, Janssen 1976, DeDominicis 1978)

Z[(J) = / D{x,%} exp (So[x, %) — % T (x) + 1Tx)

with So[x, %] = %" (3 + 1) x + o°% "%
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Disorder average

assume self-averaging network properties:

- quenched randomness in couplings J;;
- large N limit: expect small variability between realizations

— average Z(J) over J

(o0 (83060 00},

Z[1] == (Z[)(3))s = / D{x,%} exp (So[x, %) +1Tx)
53 [ [awmno (ﬁ’v > st <t>)¢(xj<t'>>> d i

=Q1
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Saddle-point approximation
= average generating functional

201 == (Z[](3))s = / D{x, %} exp (So[x, %] + 1Tx)

2 [ [a0me (i’v >l (t))so(l'j(S))> dtds

=Q1
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Saddle-point approximation
= average generating functional

Z[1] == (Z[1)(3))s = / D{x,%} exp (So[x, %] +1Tx)
X%Z//@ <NZ<,0,L] ))>dtds

=Q7

= decouple 4-point coupling by Hubbard Stratonovich transform
= saddle point approximation in the auxiliary field Q1

= reduction to single-neuron problem in fluctuating background field
(“Hartree-Fock”)

= self-consistent statistics

o—o
"E / .ee
R (UR O S, /
(n(n(s)) = o*(pe) (1, 9) o o
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Self-consistent solution for autocorrelation

= effective equation @ o7
I
dCL‘ A ANAAN o p A
— = —x+n(t)+ ().
= n(t) + (1) ~
(n(t)n(s)) = g° () (t, 9) PNy, S
= autocorrelation ¢(7) = (z(t + 7)x(t)) 150 , 190
.. (b)
ér) = c— g*(pp)(t + 7,1) — 20°5() 0
= V(¢ c0) — 20°5() 2 M Ein I
— “Newtonian” equation of motion s [ V%
e w e . _ 2 = . !
= initial “velocity” ¢(0+) = —o A o5 10 @
= ¢, from "energy conservation” (c) ¢
) -y
%04 + V(eo;c0) = V(0;¢0) =0 08| A
= without noise (¢ = 0) model explains
self-generated fluctuating activity 0 . P
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Transition to chaos

replica calculation:
pair of systems with common noise and slightly different initial conditions

measure distance at function of time (Derrida & Pommeau 1987)

d(t,t) =Y ([wi(t) — 27(t)])

2

=" (t,t) + P (t, 1) — 2" (1L, 1)

idea: maximum Lyapunov exponent A\n.x related to decay rate of
cross-correlation ¢'? between pair of systems

average of generating functional over coupling matrix and saddle-point
approximation (analogous to single system)

G +1)z(t) =&@) +n°(t), «ae{l,2},
(% (s)n” () = ¢° (w(a” (5)) (2" (1))

two copies coupled by common noise ¢ and identical realization of .J
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Transition to chaos

= consider deviations from fully synchronized state
= expand the cross-correlation around its stationary solution

2 (t,s) = c(t — s) + kD (t, )

= from effective equations derive equation for first order deflection k() (¢, s)
= can be reformulated as Schroedinger equation

(=07 + W(T)] 9(7) = E4(7),

= “ground state energy” E, determines the asymptotic growth rate of k™) (¢, t)
= Lyapunov exponent

)\max:71+\/17E0

= transition to chaos given by ground state with vanishing energy Fo = 0
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Transition to chaos

construct solution from ¢(r)

exact condition for transition to chaos
ge {p(@)*) —co =0
transition not given by local instability
g (¢ (@)) > 1
emergence of new regime with

locally expanding dynamics
asymptotically stable dynamics

decay time of a.c.f does not diverge at
transition

Is new regime good for
computation?

(b) 0 o 1
10 }
|~8 *
0 - ! H I )
0 1 2 3
g
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Does performance peak at the transition?
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Memory capacity

Input Layer . Reservoir

Trained weights
=
Random, fixed input
weights Random, fixed
= common stimulus z(t)
d.Ti N
3 = i + Z Jijo(;) +&(t)+2(1)
j=1

reconstruct z(¢) by sparse linear readout 2(t) = wrz(t + 1)
at later time point t + 7

. i — _ =) —z@)®
memory capacity M () = sup,, 1 =0
(Dembre et al. 2012)

N
M(r) = Z t—7'>2
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Memory capacity

= closed form solution by replica

calculation

M(r) = e To(2g(0')7).

= memory for larger T due to

synaptic coupling

decomposition into single
neuron and network contribution

(a)

2.0

1.8

1.6
[SY

1.4

1.2

1.0
0.0

20
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Intermediate summary

= activity statistics of large random recurrent driven network
accurately predicted by mean-field theory

= transition to chaos exists:
- at point where autocorrelation has inflection point at - = 0

= additive input shifts transition to chaos to larger couplings

= emergence of new dynamic regime with:
- local amplification
- globally regular dynamics
- optimal signal memory
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Is the activity statistics compatible with neuronal
recordings?
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Operational regime of cortical networks

= in which regime are cortical networks operating?
= cannot measure Lyapunov exponent as state of cortical networks cannot be set
= candidate: spectral radius of the connectivity W of the linearized effective

dynamics
2
dil?‘.g [
linearization
o)
dx; l
=1 ‘—Y—’
Wi; 1

= linear dynamics explains correlation structure in spiking neural networks for
asynchronous irregular activity (Grytskyy et al. 2014)

= aim: infer connectivity structure (i.e. the spectral radius) from experimentally
observed correlation structure
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Linear network dynamics

= time-lag integrated covariances are given by expectation values of zero-
frequency Fourier modes (Risken 1996):

ci_j:]: ¢ii(7)dr = f f i(t+7)x(t)), dtdr =(X;(0)X;(0)),

= in linear systems, the generating functional in Fourier domain factorizes into
generating functions for each frequency

2[3) = det (1 — W) / DX / D% S X K)HITX

= with action

~ ~ D ~ .~
S(X,X)=X"(-1+ W)X + EXTX
= time-lag integrated covariances given as propagators

1 1
D——mM
1-W 1-WT |,




Undersampling problem

= relation between covariances between all

spikes/bin

i ’ i spike counts
20
0
0

Macaque Motor .0 0.1 0.2 0.3 0.4
Cortex time (s)

apparently random

neurons in the network and all connections . 1 1
i i i i Y 1-W T 1 - WT
= with present-day recording techniques, there is ij
still a massive undersampling of neural activity
160 .spiL-(ing .ac.liwl.y of individual neurons wial 1 spike count
120 TR $=6
2100 | = iy I S
; 23 : E time
0 T O e spik-es-countaccvari:nces % | I “ I I I E:?

time

= at the local scale: connections are sparse and look

Mitglied in der Helmholtz-Gemeinschaft

» each realization of the random connectivity matrix
changes the covariances between individual neurons

= However, the statistics of covariances can be
assumed to be self-averaging
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Distribution of covariances

= sparse random networks: spectral radius determined by variance of entries in W
= variance in W determined by synaptic weight w
» the larger the synaptic weight, the larger the spectral radius

‘ - ‘ /\/\ E
e 1-0.01
=]
—0.05 0.00 0.05 E
e — 0 E | 3
+~
—0.3 0.0 0.3 2
2 = ]
e — 0 : £
=] L L 1 w0 w0
¥\“ /f —0.5 0.0 05 é&
® o 2
\ f . . | . | 1_0.10
-5 0 5 0 " 1 2
ispersion
rescaled distributions: ﬁ
0

-5 5
covariances

* rescaled: not distinguishable by shape for intermediate to strong couplings
e distributions always centred around = 0
» distinguish by width of distribution
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Hypothesis

e — 0 /\/\

g 1-0.01
£
—0.05 0.00 e
® — 0 E |t 3
=
‘ 5]
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Q
= g
B g g
e — 0 5| ~ . |3 5L
— 0.0 05 & =T
¥\‘ Py 4 0.5 k: z
o o 2 Sl
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-5 0 5 0 1 2
dispersion
rescaled distributions: . 5 0 5 .
’ , spike-count covariances

-5 () 5
covariances

» effective connection strength/spectral radius close to critical value
e activity propagates over several synapses
e activity effectively distributed through the network via various parallel paths
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Quantitative test

= need relation between statistics of correlations and statistics of connections
= calculate disorder-averaged generating function

(ZJ]) ~ / DX / DX 50 (XX)+8im (X X)+37X

. . D -~
So(X,X) = X' (-1 4 p{1}) X + EXTX
B 2

St (X, X) = ;—NXTX X7X.

= Hubbard-Stratonovich transformation: auxiliary field formulation

oSt (XX) /DQ o~ Qi+ QXX +Q:XTX

Wi t &
. ;“I
® disorder average et
aux. field formulation Qs
| D . P
disordered symmetric
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Mean-field theory beyond self-averaging

= moments of the distribution of covariances can be obtained from two-
and four-point correlators of the disorder-averaged generating function

» extract distribution of covariances from auxiliary field fluctuations

(a) autocovariances (b) cross-covariances  (g¢) spectral radius

102 | 10? 1.0
10" o | 10t
O
oL o | 10°
10 Ooooooo I 0.5
;O
- |
| i 0.0 | | |
0.0 0.5 1.0 0.0 0.5 1.0 10° 102 10* 10° 108
spectral radius 1? spectral radius R network size N

= relation between the (normalized) width of the distribution of
covariance and the spectral radius

RP=1-

density

5e2.
1+ N—3

~i

5 0 5
spike-count covariances
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Cortex operates close to regime of optimal performance

= data from macaque motor cortex suggests operation close to breakdown of linear
stability

= functional relevance: individual connections are strong enough to propagate
information over multiple synaptic steps to allow complex processing, mixing and
integration of information of various sources

= complex activity patterns are strengthened

density

5e2.
1+ Cztﬂ'

~i

5 0 5
spike-count covariances
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Summary

= mean-field theory of large random recurrent driven network
= emergence of new dynamic regime with:

- local amplification

- globally regular dynamics

- optimal signal memory

- wide distribution of correlations

= cortical data support operation close to critical point of optmial
memory
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Supplementary slides
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Decoupling of 4-point interaction

= average generating functional

Z0) = (Z[](3))s = / D{x, %} exp (So[x, %) +1Tx)

) %Z//‘%”(tm(t/) (?Vz_@(mj(t))so(mj(t’))> dt dt’

=Q1

decouple 4-point coupling by Hubbard Stratonovich transform
field theory in the auxiliary fields @1 and conjugate field Q-

7531 = [ Pi@u @i} exp (5010 + ¥ 1 2101, Qul +5701 +570:)

21Q1@:] = [ Dixx} exp (Sofo.d] + 357 Qua + (o) Qa(o)

single-neuron problem in fluctuating background field

n
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Saddle-point approximation for auxiliary fields

= saddle-point approximation for auxiliary fields 0 = %

Qi(s,t) = g (p(x(s))p(x(1)) - = ¢°(p)(t;5)  Q3(s,t) =0
= Generating functional at saddle node solution
2
Z* /Dx/D:i‘ exp (So[x,i] + ‘%ET@@)&).

= Gaussian noise with correlation function (@) (¢, s)
= corresponds to off effective equation

o—o
‘C’Tt — a4 () + (). o\\\. /
() = o2 (o) (1, 9) o o
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Saddle-point approximation for auxiliary fields

vertex function

I(q1,q2) :=sup j q1 +j q2 — In Z[3, j]
ig

equation of state for lowest order mean-field I'[g1, g2] ~ —S|[q1, ¢2],

0 35[Q1, Q2]

0Q¢1,2}

saddle-point solution for auxiliary fields

Qi(s,t) = g (p(x(s)p((1) g- =: §°Coptw)p(a) (5:1)
Q;(Svt) =0

Generating functional at saddle node solution

2
Z* X /'D.Z‘/'va' exp (So[x, 53] + %:fTC¢(z)w(z):f).
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Effective dynamical mean-field equation

generating functional with saddle node solutions

7" x /Dz/D:E exp (So[x, z)+ Ei’TC’MI)W(I):ﬁ).

Gaussian noise with correlation function Cy (2, (2) (s, t)
= read off effective equation

W — () +£0)
<77(t)7]<5)> = gzccp(w)cp(w) (t> 8)
Coop
O —0 Q.
/ vee /V(QQ/V\I
°* o
) —_— | /QT
./

N\
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Memory capacity

= capacity to reconstruct past input from the current network state

N
M(r) = Z z(t—1)) 2

i=1

= consider pair of system with independent noise and common input

Z{1Y e )] (3) = Hizl{ /on‘ /Di“ exp (So[xa,i“] — 1T I (x*) + laTxa)

X exp (; / () Th() B (1) dt)

s idea: (z;(t) z(t — 7))? related to cross-correlation ¢'? between pair of
systems, which obeys

(8 +1) (s +1) ¢(t,5) — g*(¢/ (2))” " (t, 8) = 6(1) &(s),

= explicit solution for memory curve

M(r) = 0*106_2710(2g<<p/>7') . slide 28



Two step reduction of recurrent (LIF) networks

dynamic 73

N,
equations « co,,,,
(model specific) eqyw
Yy
averaged
4 dynamics

determining (\e\e’
working point “\e’b‘\
(firing rate)

v

linearization of
dynamic equations
at working point

é/
Ol

UP input noise OUP

analytical complexity

ke

1%

output noise

Grytskyy D, Tetzlaff T, Diesmann M and Helias M (2013)
A unified view on weakly correlated recurrent networks.
Front. Comput. Neurosci. 7:131.

step 1: mean firing rates
(s) =v=0)

step 2: fluctuations

vi(t) = si(t) — v

yit) = D [ha * yal () + & (1)

k
equivalent covariances
for:

linear approx. of
influence
Dirac-6 autocorrelation

holds for several model
classes

differ in location of noise
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criticality has been observed in
experimental data with different
dynamics:

= “neural avalanches”
this type of dynamics arises in
excitation-dominated networks

Criticality in neuroscience

however, motor cortex data suggest

balanced between excitation and
inhibition

spiking activity o widual neurons

population spiking activity 0 51015202530

spike counts

0.1 0.2 0.3 0.4
Cortex time (s}

Macaque Motor

-5 0 5
spike-count covariances

electrode number [n]

S il i
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L i i e ioii
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time (s) Al
» e At = 4 ms .!I
__ &0 .
=
E el _a\
E = =
3 = - _E
EED % & = : m
= ] :. E
E ¢ i
o ‘s
™ I
1 "= -
D 4 B 12 [msg)
i 1 i
s | A
t+ At t+2AL T+ 3t
1 ]
°es . .
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Beggs and Plenz (2003)
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Two types of criticality

excitation dominated balanced
eigenvector i eigenvector i
= l Ny !
E neuron I : :
= ! neuron id |
1 I 1 I
1 01
Re(A) Re(\)
=
=
w
a
[«]
s
—0.5 0.0 —10 10
covariances covariances
g
S 10 30
3
2
5 OoF 0
ey
:E _ 1 O 1 1 1 1 _ 30 1 1 1
§ 0 200 400 600 800 1000 0 200 400 600 800 1000
time (ms) time (ms)

= so far studied criticality: visible on population level, because population mode unstable
» large, global fluctuations

= criticality found in the data:
= complex combination of activations of neurons



