## **Event Reconstruction and Classification in Proton-Proton Collisions Using Deep Neural Networks**



SPONSORED BY THE



**Federal Ministry** of Education and Research



21.02.17

M. Rieger, F. von Cube





#### **Motivation**



- Top quark heaviest elementary particle in the Standard Model
  - Strongest coupling to Higgs boson
- Top-Higgs coupling can be measured directly in ttH channel
  - Higgs boson produced in association with top quark pair
- $H \rightarrow bb$  highest branching ratio

→ ttH (H→bb) important analysis channel for top-Higgs coupling



- 2/17 -

#### Analysis Overview

• Goal: Cross section measurement  $\rightarrow$  top-Higgs coupling



#### **Challenges?**

- 1. Jet combinatorics
  - 6 quarks  $\leftrightarrow$  jets  $\rightarrow$  180 combinations

- 2. Large background (tt+jets)
- 3. Potentially additional/ missing jets





#### **Jet-Quark Association**

- Produced in collision: Quarks
- Measured in experiment: Jets
- Large number of possible permutations for assignment



 knowledge of particle identities allows calculation of useful variables

#### → Event Reconstruction





#### **Event Reconstruction with DNNs**



- Label correct permutation as 1, all other as -1
- Use permutation with highest output value as reconstructed event





**DNN** response

- 5/17 -

#### **Reconstruction Performance**



|                  | ttH   | н     |
|------------------|-------|-------|
| Benchmark(BDT)   | 25.5% | 35.1% |
| DNN, high-level  | 31.6% | 42.2% |
| DNN, mixed-level | 38.8% | 52.0% |

# → Reconstruction with DNN, use both high- and low-level variables

## **Event Classification**

#### Signal Separation & Classification

 Large background → Need signal vs. background separation



#### Signal Separation & Classification

- Large background → Need signal vs. background separation
- With DNN: Can separate not only signal vs. background, but signal and background sources against each other
  - Multiclassification task
  - Classes: Different physics processes
- Why separation of different backgrounds?



#### Motivation for Categorization

- Processes have associated • systematic uncertainties
- Analysis: Perform global fit ulletacross all categories



D<sub>DNN</sub>: ttbb node, >=6j → Separate categories for each background process can improve constraints of their uncertainties



CMS, private work

- 10/17 -

ROC area: 0.38

Signal x 772.02

V + Jets

VV + Jets

tt + V + Jets

 $L_{int} = 36.80 \text{ fb}^{-1}$ 

tt + 2b/2b

+ 00

Single t/t

≥ 6j, ttJets If, mu

tt + bb

tt + b/b

ttH, bb

ttH. other

Entries / 0.05 14000

12000

10000

8000

### **Categorization with Neural Networks**

- One output node for each physics process
- Fully connected NN
  - 3-4 hidden layers with ELU activations
  - Trained using ADAM
  - Regularization with Dropout, L2



• Use NN output for separation within categories





- 11/17 -

#### **Categorization Impact on Sensitivity**

- Combine results from all categories
- Calculate sensitivity of analysis
  - Compare with benchmark strategy
    - Using DNN only for separation, different common categorization scheme
  - $\rightarrow$  ~19% increase in sensitivity





- 12/17 -

### **Training Optimization**

- Problem: Not all jets detected (limited detector acceptance etc.)
  - Different topologies for events of the same class
- Idea: Provide additional information during training
  - Flags that specify event content
    - → Example: Has<sub>H</sub>, has<sub>W</sub>, …
- But: How to include into network design?







#### **Two Staged Neural Network Training**

- Flags that specify event content
  - Use as training target
    - Events can have multiple outputs



> Extend network







- 14/17 -

#### **Two Staged Neural Network Training**

- Flags that specify event content
  - Use as training target
    - Events can have multiple outputs





- Extend network
- Train on processes
  - Connect first new layer to previous layers
    - Make use of learned internal representations
  - Keep previous layers trainable





- Again calculate sensitivity of analysis
  - Compare to result without this training optimization

Further improvement of ~8% due to the additional information provided





- 16/17 -

#### Summary

- Multiple applications of neural networks in a high-energy physics analysis
- Event reconstruction with neural networks by identifying correct permutation of particles

- Event classification into underlying physics processes
  - Improves sensitivity of analysis
  - Training can be assisted by providing additional information in the form of intermediate training targets



