

LOFAR observations of the quiet solar corona

C. Vocks and G. Mann

EUROPÄISCHE UNION Investition in unsere Zukunft Europäischer Fonds für regionale Entwicklung

The Sun is a strong radio source:

- Thermal: 10⁶ K corona
- Non-thermal: Flares, CMEs

Intensities:

- Thermal: some 10⁴ Jy
- Non-thermal: up to 10⁸ Jy

Radio wave emission:

Plasma emission

$$f = \sqrt{N \mathrm{e}^2 / (m_\mathrm{e} \epsilon_0)} / (2\pi)$$

The frequency f depends only on the density N

Solar observations:

- The Sun is very dynamic
- Short-lived features associated with radio bursts
- \rightarrow Snapshot imaging, e.g. 1 s or 0.25 s cadence

Quiet Sun:

- Solar radio emission is fairly constant
- Take advantage of changing baselines in the uv plane
 - \rightarrow Aperture synthesis imaging

Special challenge:

- The Sun is moving in the sky: 2.5' per hour
- Standard imaging pipeline cannot be used
- Solar imaging pipeline takes this into account
- Imaging with casapy

Only the first 3 hours used

05 October 2017

-2

07:50:00

09:13:20

10:36:40

12:00:00

Time (from 2013/08/08)

17:33:20

16:10:00

14:46:40

13:23:20

Radio 2017, Würzburg

Radio 2017, Würzburg

7

Radio 2017, Würzburg

8

Radio 2017, Würzburg

3000

LOFAR

140

intensity []y/beam]

Image:

• 79 MHz

• 3 h

Radio 2017, Würzburg

Y [arcsec]

Image:

• 3 h

• 74 MHz

3000 LOFAR 64 after 2013-08-08 Ø 08:02:13 UT 73.63 MHz 10737.4 s 2000 56 48 1000 40 32 0 24 -100016 8 -20000 -3000-3000-2000-10000 1000 2000 3000

Radio 2017, Würzburg

x [arcsec]

05 October 2017

• 3 h

3000 16 LOFAR after 2013-08-08 Image: 08:02:13 UT 14 58.98 MHz 10737.4 s 2000 • 59 MHz 12 • 3 h 1000 10 Y [arcsec] 8 0 6 -10004 2 -20000 -3000-3000-2000-10000 1000 2000 3000 x [arcsec]

intensity []y/beam]

05 October 2017

intensity []y/beam]

05 October 2017

• 3 h

15

Image:

• 3 h

Image:

- 44 MHz
- 3 h

intensity []y/beam]

Image:

- 34 MHz
- 3 h

05 October 2017

Radio 2017, Würzburg

• 3 h

Radio 2017, Würzburg

05 October 2017

• 3 h

Profiles:

* ##+ ++

- Averages over azir....
- Polar (solid line) and equatorial (dashed line) regions
- Brightness temp. calculated

Profiles:

* ##+ ++

- Averages over azir¹¹
- Polar (solid line) and equatorial (dashed line) regions
- Brightness temp. calculated

Profiles:

* ##+ ++

- Averages over azir¹¹
- Polar (solid line) and equatorial (dashed line) regions
- Brightness temp. calculated

Profiles:

#+ ++

- Averages over azir....
- Polar (solid line) and equatorial (dashed line) regions
- Brightness temp. calculated

Profiles:

#+ ++

- Averages over azir....
- Polar (solid line) and equatorial (dashed line) regions
- Brightness temp. calculated

Profiles:

#+ ++

- Averages over azir....
- Polar (solid line) and equatorial (dashed line) regions
- Brightness temp. calculated

Profiles:

*#++ ++

- Averages over azir....
- Polar (solid line) and equatorial (dashed line) regions
- Brightness temp. calculated

Profiles:

*#++ ++

- Averages over azir....
- Polar (solid line) and equatorial (dashed line) regions
- Brightness temp. calculated

Profiles:

*#++ ++

- Averages over azir...th
- Polar (solid line) and equatorial (dashed line) regions
- Brightness temp. calculated

Profiles:

• ##+ ++

- Averages over azir...th
- Polar (solid line) and equatorial (dashed line) regions
- Brightness temp. calculated

Profiles:

• ≠≠+ ++

- Averages over azir¹¹
- Polar (solid line) and equatorial (dashed line) regions
- Brightness temp. calculated

Profiles:

• ##+ ++

- Averages over azir¹¹
- Polar (solid line) and equatorial (dashed line) regions
- Brightness temp. calculated

Coronal intensity profiles

Radio wave ray path:

- n = $(1 \omega_p^2 / \omega^2)^{1/2} = 1$ in IP space
- $n \rightarrow 0$ near plasma freq.
- Total reflectance

Free-free emission:

- Proportional to N²
- Line-of-sight integral
- Absorption of radio waves in the corona also has to be considered

AIP

R_{Sun}

 R_{ω}

α

Note: AIPRay-tracing simulation of i(
$$\alpha$$
)Note: Correction of the second second

<u>Model parameters:</u> R_{ω} and coronal temperature, T

<u>Temperature dependence:</u> • Scale height H₀

Rayleight-Jeans law

Z

0.5

0.0

1.0

1.0

0.5

0.1

3.0

Solid line:

1.5

20

1.0

Hydrostatic model

2.0

R., (solar radii)

• $N = 1.6 \ 10^{14} \ m^{-3}$ at coronal base

2.5

• T = 2.2 MK, consistent with fits

R_w (solar radii) Dotted line:

2.0

1.5

1/r² density profile

2.5

3.0

Solar wind

Quiet Sun observations with LOFAR:

- Earth's rotation can be used to improve uv coverage
- Radio Sun appears bigger with decreasing frequency
- But the Sun does not appear disk-like
- Coronal refraction has to be considered when analyzing LOFAR images
- Ray-tracing simulations allow for fitting coronal parameters
- Coronal density and temperature profiles
- Transition into the solar wind observed