Deep L-band VLA observations of the Toothbrush cluster

Kamlesh Rajpurohit

Thüringer Landessternwarte Tautenburg

Matthias Hoeft and Reinout J. van Weeren

Radio 2017 October 5, Würzburg

Why we study galaxy clusters in radio

- Galaxy clusters (GCs) grow by mergers
- These mergers create shocks in the intracluster medium (ICM)
- Shocks have a profound impact :
 - heat up the X-ray
 - compress/amplify magnetic fields
 - accelerate particles
- Non-thermal component: fraction of GCs produce diffused synchrotron emission on clusters scale
 - physics of shocks & turbulence
 - particle acceleration mechanisms
 - magnetic fields in the ICM

Radio emission from galaxy clusters

Radio relics: emission traces shocks

- found at cluster outskirts
- elongated morphology
- traces shock
- shows spectral index gradient
- strongly polarized (10~60%)

CIZA J2242.8+5301

Radio relics: emission traces shocks

- found at cluster outskirts
- elongated morphology
- traces shock
- shows spectral index gradient
- strongly polarized (10~60%)

CIZA J2242.8+5301

Radio halos: similar in morphology to X-ray

- centrally located
- radio emission follows X ray emission
- unpolarized
- origin of radiating electrons:
 - 1. Turbulent re-acceleration model
 - 2. Hadronic models

Abell 520

Markevitch 2010

Large scale diffuse radio emission in 1RX J0603.3+4214

• Radio observations by van Weeren +2012 :

- cluster host ~ 2 Mpc relic
- additional fainter relics and halo
- z = 0.225

- Toothbrush relic:
 - clear spectral index gradient towards cluster centre
 - strongly polarized (up to 60%) at
 4.9 GHz

LOFAR image (150 MHz)

Large scale diffuse radio emission in 1RX J0603.3+4214

• Radio observations by van Weeren +2012 :

- cluster host ~ 2 Mpc relic
- additional fainter relics and halo
- -z = 0.225

- Toothbrush relic:
 - clear spectral index gradient towards cluster centre
 - strongly polarized (up to 60%) at
 4.9 GHz

Low frequency spectral index map (150 - 610 MHz)

E-vectors distribution at 4.9 GHz

Chandra observations: weak shock at B1

Toothbrush: enigmatic filamentary structures

Ridge branches into two parts

Spectral index at northern edge - 0.70 < α < -0.75

- Mach number obtained from the integrated spectrum is **M ~ 3.78**

Detailed investigation of the ridge

model ruled out field strength above 5 μG

Comparison of the halo

7" resolution, rms=9 μ Jy, frequency=1.5 GHz

7" resolution, rms=93 μ Jy, frequency=150 MHz

Halo: radio brightness correlates well with X-ray brightness

Halo: average spectral index map of -1.16±0.5

Halo southern most part: a fainter relic !

Degree of polarization: brush depolarized at 1.5 GHz

Strc

Summary

- Toothbrush is made up of filamentary structures
- Lognormal B-field distribution allows to approximate profiles significantly better
- Best fit: Mach ~ 3.75, $B_0 < 5 \mu G$, $\sigma > 0.7$
- Radio brightness correlates well with the X-ray brightness in the central region of the halo.
- Southern part of the halo shows a spectral index gradient and possibly related to a shock front.
- Brush depolarized at 1.5 GHz, strong RM variations across B2 and B1 region.

