

Towards the Fenix Infrastructure

D. Pleiter | LSDMA Symposium, Karlsruhe | 29 August 2017

Fenix Goals

Develop and deploy services that facilitate federation

Based on European and national resources

Establish infrastructure following the laaS paradigm for multiple research communities

- Encourage communities to build community specific platforms
- Delegate resource allocation to communities

Architectural features

- Scalable compute resources
- A federated data infrastructure
- Interactive Computing Services providing access to
 - the federated data infrastructure and
 - the scalable compute resources

Disclaimer

The Fenix infrastructure is still in a design and development phase. Several aspects presented in this talk are to be considered tentative

Fenix Consortium

Currently involved centres

- BSC (ES)
- CEA (FR)
- CINECA (IT)
- CSCS (CH)
- JSC (DE)

Consortium features

- European HPC centres that provide resources within PRACE-2.0
- Strong links to key science drivers

Foreseen extensibility

Open for more partners and stakeholders

Research Communities: The Human Brain Project

Goals of the Human Brain Project (HBP)

- Enable research aiming for understanding of the human brain
- Transfer neuroscience knowledge for development of future technologies

FET Flagship project funded by EC

- Future & Emerging Technologies projects (co-)funded by European Commission
- Science-driven, seeded from FET, extending beyond ICT
- Ambitious, unifying goal, large-scale

Current HBP status

- 114 participants in Specific Grant Agreement 1 (SGA1)
- SGA1 runs from 2016-18 with an overall budget of about € 110M

Other Research Communities

Materials science

- Data sets from simulations but also experiments
- European community already engaged in enabling data sharing

Genomics

- Explosion of data volumes
- Some groups start to exploit HPC infrastructures

Physical science experiments

- Data from large-scale experiments, e.g. ERIC
- Need for scalable simulations for interpreting experimental results or to process data

Common Features and Requirements

Variety of data sources

- Distributed data sources
- Heterogeneous characteristics

HPC systems as source and sink of data

- Scalable model simulations creating data
- Data processing using advanced data analytics methods

Aim for data curation, comparative data analysis and for building-up knowledge graphs

→ Need for infrastructure to facilitate data sharing and high-performance data processing

Selected HBP Use Cases

GUI based interaction with extreme scale network models

- Various simulators supporting different models
- Need for interactive visualisation of network generation and simulation

Enrichment of the human brain atlas with qualitative and quantitative datasets

 Spatial and semantic registration of diverse datasets to the human brain atlas

Validation of neuromorphic results

 Analysis of the similarities and differences of results obtained through simulation on HPC and from neuromorphic systems

[[]K. Amunts et al.]

https://brainscales.kip.uni-heidelberg.de/

Use Case Analysis

Analysis of workflow based on abstract infrastructure model

- Data ingest
- Data repository
- Processing station
- Data transport

Use case/workload specific annotation of components

- Data transport
 - Maximum/average required bandwidth
 - Interface requirements
- Data repository
 - Maximum capacity requirements
 - Access control requirements
- Processing station
 - Data processing hardware architecture requirements
 - Required software stacks

Design Principles

- Bring data in close proximity to the data processing resources
 - Take advantage of high bandwidth active data repositories and large capacity archive data repositories
- Improve data resilience, data availability and data access performance through federation (and data replication if necessary)
- Data centres involved are independent and provide this infrastructure as a service to different research communities
- Make Fenix being perceived by user as single infrastructure
 - Single sign-on
 - Data location services
 - Unified transfer mechanisms

Design Principles (cont.)

- Security, flexibility, extensibility, scalability, use of open standards
- Take into account requirements of different subcommunities with respect to the interfaces used for data access and for the execution of their workflows
- The design is driven by specific use cases to ensure that the infrastructure is productively usable for the target science communities soon after deployment

Key Challenges

Common AAI infrastructure

- Federated user identities
- Single sign-on

Federation of storage resources

Scalable vs. federated access

Integration of interactive computing resources

New type of resource

Management of resource allocation

- Different resource classes
- Delegation of resource allocation to research communities

Architecture Overview

Interactive Computing Services

Interactivity

- capability of a system to support distributed computing workloads while permitting
 - Monitoring of applications
 - On-the-fly interruption by the user

Architectural requirements

- Interactive access
- Tight integration with scalable compute resources
- Fast access to data

Support for interactive user frameworks

- Jupyter notebook
- R
- Matlab/Octave

Scale-out Computing Resources

Highly scalable applications among use casest

- Brain simulators
- DFT-based applications

Focus on increased memory footprint

- Integration of dense memory technologies
 - Initial work through R&D services procured within a Pre-Commercial Procurement of the HBP

Future vision: Elastic access to scalable compute resources

 Allow users of Interactive Computing Services to launch scalable applications

Architectural Concepts: Data Store Types

Archival Data Repository

- Data store optimized for capacity, reliability and availability
- Used for storing large data products permanently that cannot be easily regenerated

Active Data Repository

- Data repository localized close to computational or visualization resources
- Used for storing temporary slave replica of large data objects

Upload buffers

 Used for keeping temporary copy of large, not easy to reproduce data products, before these are moved to an Archival Data Repository

Architectural Concepts: HPC vs. Cloud

State-of-the-art: HPC

- Highly-scalable parallel file systems
 - Scale to O(10⁵) clients
 - Optimised for parallel read/write streams
- Interface(s): POSIX
 - Well established interface
 - Wealth of middleware relying on this interface

State-of-the-art: Cloud

- Solutions for widely distributed storage resources
 - Optimised for flexibility
- Various interfaces: Amazon S3, OpenStack Swift
 - Typically web-based stateless interfaces
- Advantages compared to POSIX
 - Suitable for distributed environments (e.g. support for federated IDs)
 - Simple clients
 - Rich mechanisms for access control

Storage Architecture

Concept

- Federate archival data repositories with Cloud interfaces
- Non-federated active data repositories with POSIX interface accessible from HPC nodes

Envisaged implementation: Mandate same technology at all sites

 Current candidate: OpenStack SWIFT

Fenix Credits

Fenix Credit =

Currency for authorising resource consumption

Different types of resources

- Scalable compute resources (N_{node} × time)
- Interactive computing services (N_{node} × time)
- Active data repositories (capacity × time)
- Archival data repositories (capacity)

Business model

- Resource providers provide Fenix Credits based on TCO analysis
- Fenix Communities allocated resources based on peerreview process

Summary and Outlook

Strong science drivers towards data-oriented, federated HPC infrastructures

• Examples: Brain research, materials science

Many opportunities and challenges

- Federation of services including AuthN
- POSIX vs. Cloud storage technologies
- Integration of interactive computing services
- New models for allocating HPC and data resources to research communities

Fenix

 Group of (currently) 5 European supercomputing centres committing to federate relevant services

Credits

BSC

Javier Bartolome, Sergi Girona and others

CEA

 Hervé Lozach, Jacques-Charles Lafoucriere, Jean-Philippe Nomine, Gilles Wiber and others

CINECA

 Carlo Cavazzoni, Giovanni Erbacci, Giuseppe Fiameni, Roberto Mucci and others

CSCS

Colin McMurtrie, Sadaf Alam, Thomas Schulthess and others

Jülich Supercomputing Centre

 Anna Lührs, Björn Hagemeier, Boris Orth, Thomas Lippert and others