ST

Karlsruhe Institute of Technology

Parallel Programming with MPI and OpenMP

MPI

Hartmut Hafner, Steinbuch Centre for Computing (SCC)

STEINBUCH CENTRE FOR COMPUTING - SCC

KIT — University of the State of Baden-Wurttemberg and
National Laboratory of the Helmholtz Association

Informations on MPI AT

Karlsruhe Institute of Technology

MPI-1: A Message-Passing Interface Standard (June,1995)
https:/lwww.mpi-forum.org/docs/mpi-1.1/mpi-11-html/mpi-report.html

MPI-2: A Message-Passing Interface Standard (July, 1997)
https:/lwww.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf

MPI-3: A Message-Passing Interface Standard (September, 2012)
https:/lwww.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

Marc Snir und William Gropp und andere:
MPI: The Complete Reference. (2-volume set). The MIT Press, 1998.
(MPI-1.2 und MPI-2 Standard in readable form)

William Gropp, Ewing Lusk und Rajeev Thakur:

Using MPI, Third Edition: Portable Parallel Programming With the Message-Passing Interface, MIT
Press, Nov. 2014, und

Using Advanced MPI: Advanced Features of the Message-Passing Interface.

MIT Press, Nov. 2014.

Peter S. Pacheco: Parallel Programming with MPI. Morgen Kaufmann Publishers, 1997

MPI-Tutorial vom Livermore Computing Center:
https:/lcomputing.linl.gov/tutorials/impi/

http://lwww.mpi-forum.org

SCC

Steinbuch Centre
for Gomputing

MPI-Introduction Hartmut Hafner 30.8.17

,Distributed Memory“ System QAT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Communication network: ® Each node acts as
TCPIIP; InfiniBand 4X DDR independent computer

system
J{] J{] J{] _FZ] @ ONE copy of the operating
system per node
c c e = @ Each processor only
accesses its own local
M M M M memory

@ Parallelization via “Message

@ @ Passing Interface*
@ @ @ Examples: HPC-systems at

KIT, networked workstations

S C C MPI-Introduction Hartmut Hafner 30.8.17

Steinbuch Centre
uuuuuuuuuuuu

“Message Passing” Paradigm AT

Karlsruhe Institute of Technology

Sequential paradigm

—— memory

pro-
gram

— Processor

“Message-Passing” paradigm

5 @ @ (@
memory

Parallel

rogram rogram rogram rogranr———
Prog Prog prog prog Processors

communication network
S—

S C C MPI-Introduction Hartmut Hafner 30.8.17

Steinbuch Centre
uuuuuuuuuuuu

“Message Passing” Paradigm (2) AT

Karlsruhe Institute of Technology

@ On each processor runs one program (process) of a “message passing”
program:
@ Written in a conventional programming language like e.g. C or Fortran
@ typically the same “Executable” on each processor (SPMD)

@ Variables of each program (process) have
@ the same name
@ But different locations (“distributed memory”) and different data
@ _ all variables are private

@ Communicate via Send & Receive routines (“Message Passing Interface”)

program

communication network
S—

S C C MPI-Introduction Hartmut Hafner 30.8.17

Steinbuch Centre

Distribution of Work and Data AT

stitute of Technology

@ The value of the variable rank is determined by a MPI
library routine

@ All (size) processes are started by a MPI initialization-
program (mpirun oder mpiexec)

@ Which processes work on which data is based on the
variable rank

rank=0 rank=1 rank=2
data data data

program| |program| |program program

communication network
S—

MPI-Introduction Hartmut Hafner 30.8.17

Steinbuch Centre
uuuuuuuuuuuu

What is SPMD?

@ Single Program, Multiple Data

@ The same program runs on each processor, but on
different datasets

@ MPI also allows MPMD, i.e. Multiple Program, ...

@ MPMD can be emulated by SPMD

MPI-Introduction Hartmut Hafner

Steinbuch Centre
uuuuuuuuuuuu

Karlsruhe Institute of Technology

30.8.17

Emulation of MPMD by SPMD

® main(int argc, char **argv)

{

%f (myrank <)

ocean(/* arguments */);

} else {

) weather(/* arguments */);
}

W program simulated_MPMD

if (myrank < ...) then

call ocean(some arguments)
else

call weather(some arguments)
endif

end program simulated_MPMD

S C C MPI-Introduction Hartmut Hafner

Steinbuch Centre
uuuuuuuuuuuu

Karlsruhe Institute of Technology

30.8.17

Messages AT

Karlsruhe Institute of Technology
; 00000 ‘

program
communication network
S—

B Messages are data packages to be transferred from one process
to another process

® Necessary Informations for the messages are:

® Sending Process - Receiving process, i.e. their ranks
@ Location of the source - Location of the destination
@ Data type of the source - Data type of the destination
@ Data size of the source - Data size of the destination

MPI-Introduction Hartmut Hafner 30.8.17

Steinbuch Centre
oooooooooooo

Point-to-Point (P2P) Communication

@ Simplest form of “message passing”
@ A process sends a message to another process

@ Different typs of P2P communications
@ Synchronous Send
@ Asynchronous (buffered) Send

S C C MPI-Introduction Hartmut Hafner

Steinbuch Centre
uuuuuuuuuuuu

Karlsruhe Institute of Technology

30.8.17

Synchronous Send

Karlsruhe Institute of Technology

AT
@ Sending process gets information, that the message has been
received

@ Analogy to a Fax device

4
ﬂ

ok

Steinbuch Centre
oooooooooooo

MPI-Introduction

Hartmut Hafner 30.8.17

Karlsruhe Institute of Technology

Asynchronous (buffered) Send

@ One only knows, when the message has been sent

= s, 9
¥ = &

Hartmut Hafner

==

MPI-Introduction

Steinbuch Centre
uuuuuuuuuuuu

Blocking Operations AT

@ Operations are local activities like sending oder
receiving of a message

@ Blocking Send- or Receive-subroutines will only be left,
when the corresponding operation has been finished.

@ Synchronous Send: Send-routine will only be left, when
the message has been arrived at the receiving process

Asynchronous Send: Sending routine will only be left,
when data have been completely sent

Receiving: Receive-routine will only been left, when data
have completely been stored in the storage of the
application program

S C C MPI-Introduction Hartmut Hafner 30.8.17

Steinbuch Centre
uuuuuuuuuuuu

Non-blocking Operations

AT

® Non-blocking operation: returns after initialization of

communication (leaves routine) and allows the calling
process to go on with executing code

B Before accessing the sent data the process must call a WAIT-

routine and thus wait on the end of execution of the non-
blocking operation %

‘e
il
M
Il
il

MPI-Introduction
Steinbuch Centre
uuuuuuuuuuu

Hartmut Hafner 30.8.17

Collective Communications QAT

stitute of Technology

® Many processes are concurrently involved

@ Usually optimized implementations from the MPI provider
like e.g. “tree based” algorithms

@ Can be implemented from P2P-routines

S C C MPI-Introduction Hartmut Hafner 30.8.17

Steinbuch Centre
uuuuuuuuuuuu

Broadcast AT

@ “One-to-all” communication

S C C MPI-Introduction Hartmut Hafner 30.8.17

Steinbuch Centre
uuuuuuuuuuuu

Reduction-Operations AT

@ Combine data from (all) processes to compute a single
result

(B
«

15

 RET

300

S C C MPI-Introduction Hartmut Hafner 30.8.17

Steinbuch Centre
uuuuuuuuuuuu

Barriers

@ Synchronize (all) processes

Karlsruhe Institute of Technology

Steinbuch Centre
oooooooooooo

MPI-Introduction

Hartmut Hafner

30.8.17

Initialization and Termination of MPI QAT

Karlsruhe Institute of Technology
@ C: int MPI_Init(int *argc, char ***argv)

int MPI_finalize()

#include <mpi.h>
int main(int argc, char **argv)

{
MPI_Init(&argc, &argv);

MPI_Finalize();

@ Fortran: MPI_INIT(IERROR) program XxxxX

INTEGER IERROR Implicit none
include "mpif.h
MPI_FINALIZE(IERROR) integer ierror

call MPI1_Init(ierror)

call MPI1_Finalize(ierror)

@ MPIL_INIT must be the first MPI routine; after MP1_Finalize further MPI-
commands or a re-initialization of MPI are forbidden!

S C C MPI-Introduction Hartmut Hafner 30.8.17

Steinbuch Centre
uuuuuuuuuuuu

Communicator MPI COMM WORLD AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

@ All processes of a MPI-program normally use the
communicator MPI_COMM_WORLD

@ MPI_COMM_WORLD is a predefined handle in mpi.h and
mpif.h

@ Each process has its own rank in a communicator with
the numbers 0..(size-1)

MPI_COMM_WORLD

Y 9 2 6
DIFNNG

MPI-Introduction Hartmut Hafner 30.8.17

Steinbuch Centre
uuuuuuuuuuuu

Why the context must be considered? ([T

stitute of Technology

because of the usage of libraries!

Process 0 Process 1 Process 2
receive(any) <
call subroutine B call subroutine B call subroutine B

e send(to process 0)

receive(from 1) “

isend(to process 2) \\
—> | receive(from 0)

-~ send(to process 1)
receive(from 2) “

Steinbuch Centre
uuuuuuuuuuuu

MPI_COMM_WORLD: What can happen?! QT

Karlsruhe Institute of Technology

Process () Process 1 Process 2

receive(any) In this example
the

communicator

restricts the

77 4\\‘ send(to process 0) messages on

receive(from 1) \\ send(to process 0) their context!

send(to process 2)

call subroutine B call subroutine B Delay

call subroutine B

receive(from 2)

receive(from 0)
send(to process 1)

Steinbuch Centre
oooooooooooo

2 nhecessary MPl-commands QAT

stitute of Technology

@ The rank identifies different processes with values between 0
and size-1; the value of the variable size is returned by the
MPI-system!

@ The rank is the base for parallel code and the distribution of
data

a C: int MPI_Comm_rank(MPI_Comm comm, int *rank)
int MPI_Comm_size(MPI_Comm comm, int *size)

® Fortran: INTEGER comm, rank, size, 1error
MPI_COMM_RANK(comm, rank, ierror)
MPI_COMM_SIZE(comm, size, ierror)

00000

S —

S C C MPI-Introduction Hartmut Hafner 30.8.17

Steinbuch Centre
uuuuuuuuuuuu

MPI Execution Model AT

Karlsruhe Institute of Technology

Task 0 Task 1
PROGRAM main
REAL A(n,n)
INTEGER ierr A > A
CALL MPI_Init(ierr)

CALL MPI_Comm_Size(...)
CALL MPI_Comm_Rank(...)

IF (rank == 0) THEN

CALL MPI_Send(A, ..)

ELSE

CALL MPI_RecV(A, ..)

ENDIF

CALL MPI_Finalize (...)

END PROGRAM main

S C C MPI-Introduction Hartmut Hafner 30.8.17

Steinbuch Centre
uuuuuuuuuuuu

MPI Basis Datatypes for C AT

Karlsruhe Institute of Technology

MPI Datatype C datatype
MPI_CHAR signed char
MPI_SHORT signed short int
MPI_INT signed int
MPI_LONG signed long int
MPI_UNSIGNED CHAR unsigned char
MPI_UNSIGNED SHORT unsigned short int

MPI_UNSIGNED unsigned int
MPI_UNSIGNED LONG unsigned long int
MPI_FLOAT float
MPI1_DOUBLE double
MPI_LONG_DOUBLE long double
MPI_BYTE

MPI_PACKED

MPI-Introduction Hartmut Hafner 30.8.17

Steinbuch Centre
uuuuuuuuuuuu

MPI Basis Datatypes for Fortran AT

Karlsruhe Institute of Technology

I MPI Datatype Fortran datatype I
MPI_INTEGER INTEGER
MPI_INTEGER1 INTEGER (1 Byte)
MPI_INTEGER2 INTEGER (2 Byte)
MPI_INTEGER4 INTEGER (4 Byte)
MPI_REAL REAL
MPI_REAL2 REAL (2 Byte)
MPI_REAL4 REAL (4 Byte)
MPI_REALS8 REAL (8 Byte)
MPI_DOUBLE_PRECISION DOUBLE PRECISION
MPI_COMPLEX COMPLEX
MPI_DOUBLE_COMPLEX DOUBLE PRECISION COMPLEX
MPI_ LOGICAL LOGICAL
MPI_CHARACTER CHARACTER(2)
MPI_BYTE
MPI_PACKED

S C C MPI-Introduction Hartmut Hafner 30.8.17

Steinbuch Centre
uuuuuuuuuuuu

P2P Communication AT

stitute of Technology

@ Communication between 2 prozesses
Process sends message to another process

@ Communication takes place within a communicator,
by default MPI_COMM_WORLD

@ Processes are identified by their “ranks” within the
communicator

Communicator

@ @ @ message
@ 3 @destination
source @

MPI-Introduction Hartmut Hafner 30.8.17

Steinbuch Centre
uuuuuuuuuuuu

Sending Messages AT

Karlsruhe Institute of Technology

C: int MPI_Send(void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

Fortran:

MPI_SEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

buf is the first element of a message; count values of type
datatype are transferred

dest is the rank of the destination process within the
communicator comm

tag is a additional non-negative information of typ integer
tag can be used, to differentiate different messages

S C C MPI-Introduction Hartmut Hafner 30.8.17

Steinbuc
ffffff

hhhhhhh
pppppp

Receiving Messages AT

Karlsruhe Institute of Technology

C: int MPI_Recv(void *buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Status *status)

Fortran: MPI_RECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM,
STATUS, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM
INTEGER STATUS(MPI_STATUS_SIZE), IERROR

buf/count/datatype describe the buffer of a received
message

The message is received, that has been sent from the process
with rank within the communicator comm

Envelope information is stored in status
Only messages with fitting tag are received

S C C MPI-Introduction Hartmut Hafner 30.8.17

Steinbu
fffff

cccccccc
mmmmmmm

Anforderungen an P2P Kommunikationen &‘(lT

For a successfull communication
@ the sending routine must specify a valid rank

@ the receiving process must specify a valid rank
(wildcards allowed!)

the communicator must be the same
The tags must be the same (wildcards allowed!)

the datatype of the message must be the same

the receive buffer must be large enough

S C C MPI-Introduction Hartmut Hafner 30.8.17

Steinbuch Centre
uuuuuuuuuuuu

Usage of Wildcards AT

stitute of Technology

® Wildcards can be used when receiving a message

@ For receiving from an arbitrary source
source = MPI_ANY_SOURCE

@ For receiving a message with an arbitrary tag
tag = MPI_ANY_TAG

® Actual parameters - source and tag - are stored in the
array status when calling MPI receive

MPI-Introduction Hartmut Hafner 30.8.17

Steinbuch Centre
uuuuuuuuuuuu

Communication Types AT

Karlsruhe Institute of Technology

Communication Definition Remark
type

Synchronous send Exectution only ends, if the

MPI_SSEND corresponding receive routine

has been started

Buffered send Execution always ends A buffer created by the user
MPI_BSEND with MPI_BUFFER_ATTACH

IS necessary

Standard send Either synchronous or buffered Uses an internal buffer
MPI_SEND
Ready send Only starts, when corresponding Risky
MPI_RSEND receive routine already has been

started
Receive Ends, when a message has The same routine for all
MPI_RECV been stored communication types

S C C MPI-Introduction Hartmut Hafner 30.8.17

Steinbuch Centre
uuuuuuuuuuuu

Rules for Communication Types QAT

stitute of Technology

W Standard send (MPI_SEND)

@ Minimal transfer time
@ Can lead to a deadlock in ,,synchronous mode*“
@ - risks for communication type ,,synchronous send*
@ Synchronous send (MPI_SSEND)
® Risk of ,,deadlock*
@ Risk of serialization
@ Risk of waiting - ,,idle” time
@ High latency /| Best Bandwidth
® Buffered send (MPI_BSEND)
@ Low latency |/ Bad bandwidth
@ Ready send (MPI_RSEND)

@ You shoud‘nt use it without a 200% garanty, that MPI_Recv
already has been called when calling MPI_Send

S C C MPI-Introduction Hartmut Hafner 30.8.17

Steinbuch Centre
uuuuuuuuuuuu

(Non-)Blocking Communication T

stitute of Technology

@ Send and Receive can be blocking or non-blocking

@ A blocking Send can be used with a non-blocking Receive
and vice versa

@ Non-blocking Send can be used in each communication

type
® standard - MPI_ISEND

@ synchronous - MPI_ISSEND
® buffered - MPI_IBSEND
@ ready — MPI_IRSEND

S C C MPI-Introduction Hartmut Hafner 30.8.17

Steinbuch Centre
uuuuuuuuuuuu

Collective Operations

MPI_SEND/RECV

MPI_BCAST

MPI_SCATTER

MPI_GATHER

MPI_REDUCERALL

Steinbuch Centre
oooooooooooo

Process 0

<

Process 1

>

<

Process 2

&W

>

MPI-Introduction

Hartmut Hafner

KIT

Karlsruhe Institute of Technology

30.8.17

Collective Operations (2) AT

Karlsruhe Institute of Technology

Datatypes

MPI_Comm comm

MPI_Datatype datatype, intype, outtype
MPI_Op op

MPI_Uop *function()

int count, root, incnt, outcnt, commute
void *buffer, *inbuf, *outbuf

Functions

Wait on all processes
MPI_Barrier (comm)

Broadcast: send buffer to all processes
MPI_Bcast(buffer, count, datatype, root, comm)

Gather data from all processes

MPI_?ather(outbuf, outcnt, outtype, inbuf, incnt, intype, root,
comm

MPI-Introduction Hartmut Hafner 30.8.17

Steinbuch Centre
uuuuuuuuuuuu

MPI Provider AT

stitute of Technology

@ Computer-companies (Intel, IBM Platform, ...)

@ MPICH2 - ,public domain“ MPI-library of Argonne
@ for all UNIX platforms, for Linux and Windows
@ MVAPICH/MVAPICH2 for MPI via InfiniBand and iWARP

@ OpenMPI www.open-mpi.org
® Merging of FT-, LA- and LAM/MPI

S C C MPI-Introduction Hartmut Hafner 30.8.17

Steinbuch Centre
oooooooooooo

	Folie 1
	Folie 3
	Distributed Memory System
	The Message-Passing Programming Paradigm
	Folie 6
	Data and Work Distribution
	What is SPMD?
	Emulation of Multiple Program (MPMD), Example
	Messages
	Point-to-Point Communication
	Synchronous Sends
	Buffered = Asynchronous Sends
	Blocking Operations
	Non-Blocking Operations
	Collective Communications
	Broadcast
	Reduction Operations
	Barriers
	Initializing MPI
	Communicator MPI_COMM_WORLD
	Folie 27
	Folie 28
	Rank
	MPI Execution Model
	MPI Basic Datatypes — C
	MPI Basic Datatypes — Fortran
	Folie 34
	Sending a Message
	Receiving a Message
	Requirements for Point-to-Point Communications
	Wildcarding
	Communication Modes — Definitions
	Rules for the communication modes
	Blocking and Non-Blocking
	Folie 45
	Folie 46
	Folie 48

