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Informations on MPI AT
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MPI-1: A Message-Passing Interface Standard (June,1995)
https:/lwww.mpi-forum.org/docs/mpi-1.1/mpi-11-html/mpi-report.html

MPI-2: A Message-Passing Interface Standard (July, 1997)
https:/lwww.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf

MPI-3: A Message-Passing Interface Standard (September, 2012)
https:/lwww.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

Marc Snir und William Gropp und andere:
MPI: The Complete Reference. (2-volume set). The MIT Press, 1998.
(MPI-1.2 und MPI-2 Standard in readable form)

William Gropp, Ewing Lusk und Rajeev Thakur:

Using MPI, Third Edition: Portable Parallel Programming With the Message-Passing Interface, MIT
Press, Nov. 2014, und

Using Advanced MPI: Advanced Features of the Message-Passing Interface.

MIT Press, Nov. 2014.

Peter S. Pacheco: Parallel Programming with MPI. Morgen Kaufmann Publishers, 1997

MPI-Tutorial vom Livermore Computing Center:
https:/lcomputing.linl.gov/tutorials/impi/

http://lwww.mpi-forum.org
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,Distributed Memory“ System QAT
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Communication network: ® Each node acts as
TCPIIP; InfiniBand 4X DDR independent computer

system
J{] J{] J{] _FZ] @ ONE copy of the operating
system per node
c c e = @ Each processor only
accesses its own local
M M M M memory

@ Parallelization via “Message

@ @ Passing Interface*
@ @ @ Examples: HPC-systems at

KIT, networked workstations
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“Message Passing” Paradigm AT
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Sequential paradigm

—— memory

pro-
gram

— Processor

“Message-Passing” paradigm

5 @ @ (@
memory

Parallel

rogram rogram rogram rogranr———
Prog Prog prog prog Processors

communication network
S—
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“Message Passing” Paradigm (2) AT
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@ On each processor runs one program (process) of a “message passing”
program:
@ Written in a conventional programming language like e.g. C or Fortran
@ typically the same “Executable” on each processor (SPMD)

@ Variables of each program (process) have
@ the same name
@ But different locations (“distributed memory”) and different data
@ _ all variables are private

@ Communicate via Send & Receive routines (“Message Passing Interface”)

program

communication network
S—
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Distribution of Work and Data AT

stitute of Technology

@ The value of the variable rank is determined by a MPI
library routine

@ All (size) processes are started by a MPI initialization-
program (mpirun oder mpiexec)

@ Which processes work on which data is based on the
variable rank

rank=0 rank=1 rank=2
data data data

program| |program| |program program

communication network
S—
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What is SPMD?

@ Single Program, Multiple Data

@ The same program runs on each processor, but on
different datasets

@ MPI also allows MPMD, i.e. Multiple Program, ...

@ MPMD can be emulated by SPMD
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Emulation of MPMD by SPMD

® main(int argc, char **argv)

{

%f (myrank < .... )

ocean( /* arguments */ );

} else {

) weather( /* arguments */ );
}

W program simulated_MPMD

if (myrank < ... ) then

call ocean( some arguments )
else

call weather( some arguments )
endif

end program simulated_MPMD
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Messages AT
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; 00000 ‘

program
communication network
S—

B Messages are data packages to be transferred from one process
to another process

® Necessary Informations for the messages are:

® Sending Process - Receiving process, i.e. their ranks
@ Location of the source - Location of the destination
@ Data type of the source - Data type of the destination
@ Data size of the source - Data size of the destination
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Point-to-Point (P2P) Communication

@ Simplest form of “message passing”
@ A process sends a message to another process

@ Different typs of P2P communications
@ Synchronous Send
@ Asynchronous (buffered) Send
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Synchronous Send

Karlsruhe Institute of Technology

AT
@ Sending process gets information, that the message has been
received

@ Analogy to a Fax device

4
ﬂ
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Asynchronous (buffered) Send

@ One only knows, when the message has been sent

= s, 9
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Blocking Operations AT

@ Operations are local activities like sending oder
receiving of a message

@ Blocking Send- or Receive-subroutines will only be left,
when the corresponding operation has been finished.

@ Synchronous Send: Send-routine will only be left, when
the message has been arrived at the receiving process

Asynchronous Send: Sending routine will only be left,
when data have been completely sent

Receiving: Receive-routine will only been left, when data
have completely been stored in the storage of the
application program
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Non-blocking Operations

AT

® Non-blocking operation: returns after initialization of

communication (leaves routine) and allows the calling
process to go on with executing code

B Before accessing the sent data the process must call a WAIT-

routine and thus wait on the end of execution of the non-
blocking operation %

‘e
il
M
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Collective Communications QAT
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® Many processes are concurrently involved

@ Usually optimized implementations from the MPI provider
like e.g. “tree based” algorithms

@ Can be implemented from P2P-routines
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Broadcast AT

@ “One-to-all” communication

S C C MPI-Introduction Hartmut Hafner 30.8.17

Steinbuch Centre
uuuuuuuuuuuu



Reduction-Operations AT

@ Combine data from (all) processes to compute a single
result

(B
«

15

 RET

300
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Barriers

@ Synchronize (all) processes
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Initialization and Termination of MPI QAT
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@ C: int MPI_Init( int *argc, char ***argv)

int MPI_finalize()

#include <mpi.h>
int main(int argc, char **argv)

{
MPI_Init(&argc, &argv);

MPI_Finalize();

@ Fortran: MPI_INIT( IERROR ) program XxxxX

INTEGER IERROR Implicit none
include "mpif.h
MPI_FINALIZE(IERROR) integer ierror

call MPI1_Init(ierror)

call MPI1_Finalize(ierror)

@ MPIL_INIT must be the first MPI routine; after MP1_Finalize further MPI-
commands or a re-initialization of MPI are forbidden!
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Communicator MPI COMM WORLD AT
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@ All processes of a MPI-program normally use the
communicator MPI_COMM_WORLD

@ MPI_COMM_WORLD is a predefined handle in mpi.h and
mpif.h

@ Each process has its own rank in a communicator with
the numbers 0..(size-1)

MPI_COMM_WORLD

Y 9 2 6
DIFNNG
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Why the context must be considered? ([T
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because of the usage of libraries!

Process 0 Process 1 Process 2
receive(any) <
call subroutine B call subroutine B call subroutine B

e send(to process 0)

receive(from 1) “

isend(to process 2) \\
—> | receive(from 0)

-~ send(to process 1)
receive(from 2) “

Steinbuch Centre
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MPI_COMM_WORLD: What can happen?! QT
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Process () Process 1 Process 2

receive(any) In this example
the

communicator

restricts the

77 4\\‘ send(to process 0) messages on

receive(from 1) \\ send(to process 0) their context!

send(to process 2)

call subroutine B call subroutine B Delay

call subroutine B

receive(from 2)

receive(from 0)
send(to process 1)

Steinbuch Centre
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2 nhecessary MPl-commands QAT
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@ The rank identifies different processes with values between 0
and size-1; the value of the variable size is returned by the
MPI-system!

@ The rank is the base for parallel code and the distribution of
data

a C: int MPI_Comm_rank(MPI_Comm comm, int *rank)
int MPI_Comm_size(MPI_Comm comm, int *size)

® Fortran: INTEGER comm, rank, size, 1error
MPI_COMM_RANK( comm, rank, ierror)
MPI_COMM_SIZE( comm, size, ierror)

00000

S —
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MPI Execution Model AT
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Task 0 Task 1
PROGRAM main
REAL A(n,n)
INTEGER ierr A > A
CALL MPI_Init(ierr)

CALL MPI_Comm_Size(...)
CALL MPI_Comm_Rank(...)

IF (rank == 0) THEN

CALL MPI_Send(A, ..)

ELSE

CALL MPI_RecV(A, ..)

ENDIF

CALL MPI_Finalize (...)

END PROGRAM main
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MPI Basis Datatypes for C AT
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MPI Datatype C datatype
MPI_CHAR signed char
MPI_SHORT signed short int
MPI_INT signed int
MPI_LONG signed long int
MPI_UNSIGNED CHAR unsigned char
MPI_UNSIGNED SHORT unsigned short int

MPI_UNSIGNED unsigned int
MPI_UNSIGNED LONG unsigned long int
MPI_FLOAT float
MPI1_DOUBLE double
MPI_LONG_DOUBLE long double
MPI_BYTE

MPI_PACKED
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MPI Basis Datatypes for Fortran AT

Karlsruhe Institute of Technology

I MPI Datatype Fortran datatype I
MPI_INTEGER INTEGER
MPI_INTEGER1 INTEGER (1 Byte)
MPI_INTEGER2 INTEGER (2 Byte)
MPI_INTEGER4 INTEGER (4 Byte)
MPI_REAL REAL
MPI_REAL2 REAL (2 Byte)
MPI_REAL4 REAL (4 Byte)
MPI_REALS8 REAL (8 Byte)
MPI_DOUBLE_PRECISION DOUBLE PRECISION
MPI_COMPLEX COMPLEX
MPI_DOUBLE_COMPLEX DOUBLE PRECISION COMPLEX
MPI_ LOGICAL LOGICAL
MPI_CHARACTER CHARACTER(2)
MPI_BYTE
MPI_PACKED
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P2P Communication AT
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@ Communication between 2 prozesses
Process sends message to another process

@ Communication takes place within a communicator,
by default MPI_COMM_WORLD

@ Processes are identified by their “ranks” within the
communicator

Communicator

@ @ @ message
@ 3 @destination
source @
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Sending Messages AT
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C: int MPI_Send(void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

Fortran:

MPI_SEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

buf is the first element of a message; count values of type
datatype are transferred

dest is the rank of the destination process within the
communicator comm

tag is a additional non-negative information of typ integer
tag can be used, to differentiate different messages

S C C MPI-Introduction Hartmut Hafner 30.8.17

Steinbuc
ffffff

hhhhhhh
pppppp



Receiving Messages AT
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C: int MPI_Recv(void *buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Status *status)

Fortran: MPI_RECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM,
STATUS, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM
INTEGER STATUS(MPI_STATUS_SIZE), IERROR

buf/count/datatype describe the buffer of a received
message

The message is received, that has been sent from the process
with rank within the communicator comm

Envelope information is stored in status
Only messages with fitting tag are received
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Anforderungen an P2P Kommunikationen &‘(lT

For a successfull communication
@ the sending routine must specify a valid rank

@ the receiving process must specify a valid rank
(wildcards allowed!)

the communicator must be the same
The tags must be the same (wildcards allowed!)

the datatype of the message must be the same

the receive buffer must be large enough
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Usage of Wildcards AT

stitute of Technology

® Wildcards can be used when receiving a message

@ For receiving from an arbitrary source
source = MPI_ANY_SOURCE

@ For receiving a message with an arbitrary tag
tag = MPI_ANY_TAG

® Actual parameters - source and tag - are stored in the
array status when calling MPI receive
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Communication Types AT
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Communication Definition Remark
type

Synchronous send Exectution only ends, if the

MPI_SSEND corresponding receive routine

has been started

Buffered send Execution always ends A buffer created by the user
MPI_BSEND with MPI_BUFFER_ATTACH

IS necessary

Standard send Either synchronous or buffered Uses an internal buffer
MPI_SEND
Ready send Only starts, when corresponding Risky
MPI_RSEND receive routine already has been

started
Receive Ends, when a message has The same routine for all
MPI_RECV been stored communication types
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Rules for Communication Types QAT
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W Standard send (MPI_SEND)

@ Minimal transfer time
@ Can lead to a deadlock in ,,synchronous mode*“
@ - risks for communication type ,,synchronous send*
@ Synchronous send (MPI_SSEND)
® Risk of ,,deadlock*
@ Risk of serialization
@ Risk of waiting - ,,idle” time
@ High latency /| Best Bandwidth
® Buffered send (MPI_BSEND)
@ Low latency |/ Bad bandwidth
@ Ready send (MPI_RSEND)

@ You shoud‘nt use it without a 200% garanty, that MPI_Recv
already has been called when calling MPI_Send
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(Non-)Blocking Communication T
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@ Send and Receive can be blocking or non-blocking

@ A blocking Send can be used with a non-blocking Receive
and vice versa

@ Non-blocking Send can be used in each communication

type
® standard - MPI_ISEND

@ synchronous - MPI_ISSEND
® buffered - MPI_IBSEND
@ ready — MPI_IRSEND
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Collective Operations

MPI_SEND/RECV

MPI_BCAST

MPI_SCATTER

MPI_GATHER

MPI_REDUCERALL

Steinbuch Centre
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Collective Operations (2) AT
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Datatypes

MPI_Comm comm

MPI_Datatype datatype, intype, outtype
MPI_Op op

MPI_Uop *function()

int count, root, incnt, outcnt, commute
void *buffer, *inbuf, *outbuf

Functions

Wait on all processes
MPI_Barrier (comm)

Broadcast: send buffer to all processes
MPI_Bcast(buffer, count, datatype, root, comm)

Gather data from all processes

MPI_?ather(outbuf, outcnt, outtype, inbuf, incnt, intype, root,
comm
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MPI Provider AT
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@ Computer-companies (Intel, IBM Platform, ...)

@ MPICH2 - ,public domain“ MPI-library of Argonne
@ for all UNIX platforms, for Linux and Windows
@ MVAPICH/MVAPICH2 for MPI via InfiniBand and iWARP

@ OpenMPI www.open-mpi.org
® Merging of FT-, LA- and LAM/MPI
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