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I Informations on OpenMP QAT

stitute of Technology

® OpenMP Homepage:
http:/lwww.openmp.org/

@ OpenMP User Group:
http://lwww.compunity.org

@ OpenMP Tutorial:
https:/Ilcomputing.linl.gov/tutorials/openMP/

@ R.Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, R. Menon:
Parallel programming in OpenMP.
Academic Press, San Diego, USA, 2000, ISBN 1-55860-671-8
@ R. Eigenmann, Michael J. Voss (Eds):
OpenMP Shared Memory Parallel Programming.
Springer LNCS 2104, Berlin, 2001, ISBN 3-540-42346-X

@ Simon Hoffmann, Rainer Lienhart: OpenMP.
www.eBook.de, 2009, ISBN 3-540-73122-9
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I Timeline on OpenMP QAUT

Karlsruhe Institute of Technology
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@ OpenMP 3.0 incorporates Task-concept

@ OpenMP 4.0 has been released on 7/23/2013 and contains heterogenity,
i.e. support for accelerator cards

@ OpenMP 4.5 has been released in Novembre 2015, supports
Accelerators/graphics boards and has implemented different Locking-
Mechanisms
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I Shared Memory System AT

stitute of Technology

l P | l P | l P | l P | ® The whole system behaves like a
single computer.
@ All processors (cores) access the
c c C C Shared Memory.
@ ONE copy of the operating
Communication network: system.
Bus or Crossbar Switch @ Parallelization via Shared Memory

I or Message Passing
® OpenMP

Shared Memory " MPI _
Message Passing via Shared

Memory
@ Examples: SMP workstations,
@ @ @ @ NUMA nodes of HPC-systems in
Karlsruhe
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I Important Features of OpenMP QAT

@ Data are stored in Shared Memory
@ ONE process when starting the application

@ Parallel threads will be created and destroyed during the
execution of the program

@ Threads can access shared or privat data
@ Coarse-grain or fine-grain parallelization
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I Parallelization - Basic Idea QAT

Karlsruhe Institute of Technology

@ Parallel Region
@ Code within a Parallel Region is executed by all created threads

@ Work sharing Constructs

@ for DO-loops (!$OMP DO or #pragma omp for)
Single loop-indices are executed by different threads

@ for code segments (!$OMP SECTIONS or #pragma omp sections)
By !OMP SECTION or #pragma omp section seperated code
segments are executed by different threads

@ Work Sharing constructs must be implemented within Parallel

Regions!
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I When to use OpenMP? AT

Karlsruhe Institute of Technology

Pe rfc:mance OpenMP+MPI

Scalar
Program

Code does not work

>

Time/Effort
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Fine-grain Parallelization

program main

1SOMP PARALLEL DO
do 1=1,n
Twork
end do
1SOMP END PARALLEL DO

1SOMP PARALLEL SECTIONS
I1$SOMP SECTION

I1$SOMP SECTION

1SOMP END PARALLEL SECTION
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I Coarse-grain Parallelization

program main

1$SOMP PARALLEL
size OMP_GET_NUM_THREADS( )
iam OMP_GET_THREAD_NUM()

call work(a, b, n, size, 1iam)
1SOMP BARRIER
do 1= 1, n/size

end do

1SOMP END PARALLEL
end
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I Overview on OpenMP AT

Karlsruhe Institute of Technology

@ Directives
® Fortran: ! $OMP ... C: #pragma omp ..

W Parallel regions construct
® Fortran: !$OMP PARALLEL .. '$SOMP END PARALLEL

e C: #pragma omp parallel{ .. }

@ Work sharing construct
® Fortran: !$OMP DO .. !'$OMP END DO

® C: #pragma for ..

@ Synchronization construct
e !$SOMP BARRIER

@ Variable scoping clauses and directives
® Fortran: !$OMP THREADPRIVATE (/CBLCK/[,/CBLCK/]..)

® C: #pragma omp threadprivate (1ist of global vars)
@ Runtime library (a few routines)
@ Environment variables
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| OpenMP - typical usage

AT

stitute of Technology

@ Normal case - OpenMP is used to parallelize loops:
@ Find the most time consuming loops with e.g. prof, gprof, xprofiler,

Intel Advisor XE 2017.

@ Separate them onto many threads.

Separate this loop onto many threads.

void main()
{
double Res[1000];
for(int i=0;i<1000;i++)
{
do_huge_comp(Res[i]);
}
}

Sequential program

Steinbuch Gentre
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void main()
{
double Res[1000];
#pragma omp parallel for
for(int i=0;i<1000;i++)
{
do_huge_comp(Res[i]);

}

Parallel program
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I OpenMP Directives AT
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Directives: '$OMP directive clauses

#pragma omp directive clauses
@ parallel
@ private: List with private variables
@ shared: List with global variables
@ firstprivate: Vvalue of private Variable w is copied from master thread to all threads
@ lastprivate: value of sequential last variable is copied to master thread
@ reduction(op:variable): Operator: +,-,*,/,&&, ||,==
@ schedule
do or for: Worksharing-construct loop
sections: Worksharing-construct (Code-)sections
critical: At each arbitrary time only ONE thread executes the assignment
master: Only the master thread executes the enclosed codesegment

single: Only the chronologically first thread executes the enclosed code
segment; all other threads wait till the first thread has ended its execution

barrier: All threads wait at the barrier
atomic: Atomic operations are handled as critical section
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I Important Directive: OMP PARALLEL  QWT

@ OMP PARALLEL - Directive starts Parallel Region

® Within [clauses] can be specified, which variables are privat
and which are shared for the threads.

@ Fortran:
1$SOMP PARALLEL [clauses]

block
1SOMP END PARALLEL

a C
#pragma omp parallel [clauses]
{block}

@ [clauses] can be
@ private(list)
@ shared(list)
@ schedule(type[, chunk])
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I The Clause schedule QAT

Karlsruhe Institute of Technology

The clause schedule can be:

W static: Iterations are divided into pieces of size chunk. The pieces
are assigned statically to the threads of a team

@ dynamic: Iterations are divided into pieces of size chunk. When a
thread has ended its work, it gets dynamically the next piece

@ guided: Each thread works at a piece of size chunk. When a thread
has ended its work, it gets a new piece of work of decreasing size

@ runtime: Schedule is determined by environment variable
“OMP_SCHEDULE”

SCHEDULE ( STATIC)

SCHEDULE (STATIC, smallar)

SCHEDULE (DYHAMIC, @mal Lac )

SCHEDULE (GATLDED }
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I Important Directive: OMP DO AT

@ Fortran:
1$OMP DO [clauses]
Fortran DO Konstrukt
[!SOMP END DO [NOWAIT] ]

a C:
#pragma omp for [clauses]
for Schleife

® The loop following on the directive is divided on all threads of the
parallel team

@ Loops must have the syntax
do 1 = 11, 12 [ ,13 ] or
for-loop must be canonically
@ Number of loops must be known at start time of the loop
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| Directive: OMP SECTIONS AT
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@ Fortran: C:

1SOMP PARALLEL [clauses] #pragma omp parallel
1SOMP SECTIONS {

a= .. #pragma omp sections
1SOMP SECTION {{ a= .. ;}

b= .. #pragma omp section
1SOMP SECTION { b= . ;}

c= . #pragma omp section
I$OMP END SECTIONS [NOWAIT] { c= .. ;}
1SOMP END PARALLEL } /* end sections */

} /* end parallel */

@ The existing sections are separated between the parallel teams.
Each section will be executed once by a thread
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I OpenMP 3.0 Directive: OMP TASK QAT

stitute of Technology

@ Directive TASK creates a Task (working package: code + data)
@ Thread executing TASK-construct creates working package

@ Execution of the working package can be delayed
® Working package can be executed by an arbitrary thread of the team

® Similar to construct OMP SECTIONS
® Avoids to many nested Parallel Regions
@ Allows to parallelize irregular problems (e.g. recursive algorithms)
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| OpenMP 4.5 Directive: OMP TASKLOOP  S\(CIT

Karlsruhe Institute of Technology

@ Directive TASKLOOP uses OpenMP-tasks for execution

and allows e.g. the concurrent usage of tasks and
an ordinary loop

#pragma omp taskgroup
{
#pragma omp task
long_running_task () // kann nebenher ablaufen

#fpragma omp taskloop collapse(2) grainsize (500) nogroup
for (int i = 0; 1 < N; i++)
for (int j = 0; j < M; Jj++)
loop_body () ;
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I Scope of Variables AT

Karlsruhe Institute of Technology

@ Shared Memory programming model:
@ The most variables are shared by default.

@ Global variables are shared among threads.
® Fortran: COMMON blocks, SAVE variables, MODULE variables
@ C: File scope variables, static

@ But not all ist shared...

@ Stack variables in subroutines called within parallel regions are
private.

@ Automatic variables within a block of assignments are private.
@ Some loop indices are private by default:

@ Fortran: Loop indices are private, even when they are specified as
shared.
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I Environment Variables AT

stitute of Technology

@ OMP_NUM_THREADS

@ Sets the number of threads used during execution

@ If the number of threads changes dynamically during execution, the
value of the environment variable is the maximal value of running

threads
@ sh, ksh, bash: export OMP_NUM_THREADS=16

@ OMP_SCHEDULE

@ Is only interpreted at do/for or parallel do/parallel for directives
when the clause schedule(runtime) is used

B Sets type and chunk for all loops with above mentioned clause
@ sh, ksh, bash: export OMP_SCHEDULE="“STATIC, 4“

OpenMP Hartmut Hafner 30.8.17
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I Shared memory Programming Faults A\‘(IT
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@ Race conditions

@ Data-race: Minimally 2 threads access the same shared variable
and at least 1 thread modifies the variable and the accesses take
place concurrently and not synchronized (often when using shared
data accidentally)

@ Deadlock

@ Threads wait on a locked resource never reaching the state
unlocked (avoid nesting of different locks)
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I Example for a race condition

1SOMP PARALLEL SECTIONS
a=b+c

1SOMP SECTION
b=a+c¢c

1$OMP SECTION
c=b + a

1SOMP END PARALLEL SECTIONS

@ The results are varying unpredictable
@ No warning from your program
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I False-sharing

a[0]+

thread O

-+

CPU

a[1]++

thread 1

CPU

104Q0Q@ cache-line

)30 QC

) ] memory
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Many threads write! data into
the same cacheline

The cacheline must be
swapped between the caches
of the CPUs dedicated to the
accessing threads -
consumes much time
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I Computation of Pl QAT

Karlsruhe Institute of Technology

program compute_pi

integer i 1

integer, parameter :: n=50000000, dp = kind(1.d0)
real(kind=dp) I: w,X,sum,pi,d

w=1.0/n; sum=0.0 o

do 1=1,
X
d
sum
enddo
pi = 4. * sum
print *, 'computed pi = ', pi

(1-0.5) * w
w * SQRT(1.0 - x**2) \
sum + d

A 4

(L I | =

end program compute_pi
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I Parallel Computation of PI QAT

Karlsruhe Institute of Technology

program compute_pi

integer . |
integer, parameter :: n=500000000, dp = kind(1.dO)
real(kind=dp) :: W,X,sum,pi,d HP XC3000
1 core:

w=1.0/n; sum=0.0 real 2.92s
1$OMP PARALLEL PRIVATE(X,d), SHARED(w,sum) |user 2.93s
1SOMP DO REDUCTION(+: sum)
do i=1,n 2 cores:

X = (i-0.5) * w real 1.50s

d = w * SQRT(1.0 - x**2) user 2.99s

sum = sum + d 4 _

cores:

enddo real 0.75s
!$OMP END DO user 2.97s
1SOMP END PARALLEL
pl1 = 4. * sum 8 cores:
print *, 'computed pi = ', pi real 0.39s
end program compute_pi user 3.10s
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I Parallel Program PI descriptively AT

w=1.0/n
sum = 0.0
1SOMP PARALLEL

1SOMP END PARALL thread 2 thread 3
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I Mutual exclusion Synchronization - QT
critical (section)

@ Only one single thread can enter a critical section at a certain time.

a_max = MINUS_INFINITY; a_min = PLUS_INFINITY

1SOMP PARALLEL DO
do i=1,n

if (a(i) > a_max) then
1SOMP CRITICAL (MAXLOCK)
if (a(1i) > a_max) then; a_max = a(i); endif
1SOMP END CRITICAL (MAXLOCK)
endif

if (a(i) < a_min) then
1SOMP CRITICAL(MINLOCK)
if (a(i) < a_min) then; a_min = a(1i); endif
1SOMP END CRITICAL(MINLOCK)
endif

enddo
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Mutual exclusion Synchronization - AT
atomic (update)

W atomic is a special case of a critical section, that can be used, to
set scalar variables in simple assignments.

® Fortran: !'$OMP ATOMIC
W C: #pragma omp atomic

@ The assignmant must have the following syntax:
X = X operator expr
X = intrinsic(x, expr)

Operators
Fortran: +, -, *, /, .AND., .OR., .EQV., .NEQV., MAX, MIN, IAND, IOR, IEOR
C:+I 4 *I /I &I II AI &&I II
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