
Steinbuch Centre for Computing

www.scc.kit.edu
KIT – die Kooperation von
Forschungszentrum Karlsruhe GmbH
und Universität Karlsruhe (TH)

STEINBUCH CENTRE FOR COMPUTING - SCC

KIT – University of the State of Baden-Württemberg and
National Laboratory of the Helmholtz Association

Hartmut Häfner, Steinbuch Centre for Computing (SCC)

Parallel Programming with MPI and OpenMP

OpenMP

OpenMP Hartmut Häfner 30.8.17 2

Informations on OpenMP

OpenMP Homepage:
http://www.openmp.org/
OpenMP User Group:
http://www.compunity.org
OpenMP Tutorial:
https://computing.llnl.gov/tutorials/openMP/

R.Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, R. Menon:
Parallel programming in OpenMP.
Academic Press, San Diego, USA, 2000, ISBN 1-55860-671-8

R. Eigenmann, Michael J. Voss (Eds):
OpenMP Shared Memory Parallel Programming.
Springer LNCS 2104, Berlin, 2001, ISBN 3-540-42346-X

Simon Hoffmann, Rainer Lienhart: OpenMP.
www.eBook.de, 2009, ISBN 3-540-73122-9

http://www.compunity.org/

OpenMP Hartmut Häfner 30.8.17 3

Timeline on OpenMP

OpenMP 3.0 incorporates Task-concept
OpenMP 4.0 has been released on 7/23/2013 and contains heterogenity,
i.e. support for accelerator cards
OpenMP 4.5 has been released in Novembre 2015, supports
Accelerators/graphics boards and has implemented different Locking-
Mechanisms

OpenMP Hartmut Häfner 30.8.17 4

Shared Memory System

The whole system behaves like a
single computer.
All processors (cores) access the
Shared Memory.
ONE copy of the operating
system.
Parallelization via Shared Memory
or Message Passing

 OpenMP
 MPI

Message Passing via Shared
Memory

Examples: SMP workstations,
NUMA nodes of HPC-systems in
Karlsruhe

Communication network:
Bus or Crossbar Switch

D D

Shared Memory

D D

P

C

P

C

P

C

P

C

OpenMP Hartmut Häfner 30.8.17 5

Important Features of OpenMP

Data are stored in Shared Memory
ONE process when starting the application
Parallel threads will be created and destroyed during the
execution of the program
Threads can access shared or privat data
Coarse-grain or fine-grain parallelization

OpenMP Hartmut Häfner 30.8.17 6

Parallelization – Basic Idea

Parallel Region
Code within a Parallel Region is executed by all created threads

Work sharing Constructs
for DO-loops (!$OMP DO or #pragma omp for)
Single loop-indices are executed by different threads
for code segments (!$OMP SECTIONS or #pragma omp sections)
By !OMP SECTION or #pragma omp section seperated code
segments are executed by different threads

Work Sharing constructs must be implemented within Parallel
Regions!

OpenMP Hartmut Häfner 30.8.17 7

When to use OpenMP?

OpenMP Hartmut Häfner 30.8.17 8

program main
...
!$OMP PARALLEL DO
do i=1,n
 !work
end do
!$OMP END PARALLEL DO
...
!$OMP PARALLEL SECTIONS
!$OMP SECTION
...
!$OMP SECTION
...
!$OMP END PARALLEL SECTION
....
end

Fine-grain Parallelization

OpenMP Hartmut Häfner 30.8.17 9

program main

!$OMP PARALLEL
size = OMP_GET_NUM_THREADS()
iam = OMP_GET_THREAD_NUM()

call work(a, b, n, size, iam)
!$OMP BARRIER
do i= 1, n/size
 ...
end do
...

!$OMP END PARALLEL
end

Coarse-grain Parallelization

OpenMP Hartmut Häfner 30.8.17 10

Overview on OpenMP

Directives
 Fortran: !$OMP … C: #pragma omp …

Parallel regions construct
 Fortran: !$OMP PARALLEL … !$OMP END PARALLEL
 C: #pragma omp parallel{ … }

Work sharing construct
 Fortran: !$OMP DO … !$OMP END DO
 C: #pragma for …

Synchronization construct
 !$OMP BARRIER

Variable scoping clauses and directives
 Fortran: !$OMP THREADPRIVATE (/CBLCK/[,/CBLCK/]…)
 C: #pragma omp threadprivate (list of global vars)

Runtime library (a few routines)
Environment variables

OpenMP Hartmut Häfner 30.8.17 11

OpenMP – typical usage

Normal case - OpenMP is used to parallelize loops:
Find the most time consuming loops with e.g. prof, gprof, xprofiler,
Intel Advisor XE 2017.

Separate them onto many threads.

void main()
{
 double Res[1000];

 for(int i=0;i<1000;i++)
{

do_huge_comp(Res[i]);
 }
}

void main()
{
 double Res[1000];
#pragma omp parallel for
 for(int i=0;i<1000;i++)
{

do_huge_comp(Res[i]);
 }
}

Separate this loop onto many threads.

Parallel programSequential program

OpenMP Hartmut Häfner 30.8.17 12

OpenMP Directives

Directives: !$OMP directive clauses
 #pragma omp directive clauses

parallel
private: List with private variables

shared: List with global variables
firstprivate: Value of private Variable w is copied from master thread to all threads

lastprivate: Value of sequential last variable is copied to master thread

reduction(op:variable): Operator: +,-,*,/,&&,||,==
schedule

do or for: Worksharing-construct loop

sections: Worksharing-construct (Code-)sections

critical: At each arbitrary time only ONE thread executes the assignment

master: Only the master thread executes the enclosed codesegment

single: Only the chronologically first thread executes the enclosed code
segment; all other threads wait till the first thread has ended its execution
barrier: All threads wait at the barrier

atomic: Atomic operations are handled as critical section

OpenMP Hartmut Häfner 30.8.17 13

Important Directive: OMP PARALLEL

OMP PARALLEL - Directive starts Parallel Region

Within [clauses] can be specified, which variables are privat
and which are shared for the threads.

Fortran:
!$OMP PARALLEL [clauses]
 block
!$OMP END PARALLEL

C:
#pragma omp parallel [clauses]
 {block}

[clauses] can be
private(list)
shared(list)
schedule(type[,chunk])

OpenMP Hartmut Häfner 30.8.17 14

The Clause schedule

The clause schedule can be:
static: Iterations are divided into pieces of size chunk. The pieces
are assigned statically to the threads of a team

dynamic: Iterations are divided into pieces of size chunk. When a
thread has ended its work, it gets dynamically the next piece
guided: Each thread works at a piece of size chunk. When a thread
has ended its work, it gets a new piece of work of decreasing size

runtime: Schedule is determined by environment variable
“OMP_SCHEDULE”

OpenMP Hartmut Häfner 30.8.17 15

Important Directive: OMP DO

Fortran:
!$OMP DO [clauses]
Fortran DO Konstrukt
[!$OMP END DO [NOWAIT]]

C:
#pragma omp for [clauses]
for Schleife

The loop following on the directive is divided on all threads of the
parallel team
Loops must have the syntax

 do i = i1, i2 [,i3] or
 for-loop must be canonically

Number of loops must be known at start time of the loop

OpenMP Hartmut Häfner 30.8.17 16

Directive: OMP SECTIONS

Fortran: C:
!$OMP PARALLEL [clauses] #pragma omp parallel
!$OMP SECTIONS {
 a= … #pragma omp sections
!$OMP SECTION {{ a= … ;}
 b= … #pragma omp section
!$OMP SECTION { b= … ;}
 c= … #pragma omp section
!$OMP END SECTIONS [NOWAIT] { c= … ;}
!$OMP END PARALLEL } /* end sections */

} /* end parallel */

The existing sections are separated between the parallel teams.
Each section will be executed once by a thread

OpenMP Hartmut Häfner 30.8.17 18

OpenMP 3.0 Directive: OMP TASK

Directive TASK creates a Task (working package: code + data)

Thread executing TASK-construct creates working package

Execution of the working package can be delayed
Working package can be executed by an arbitrary thread of the team

Similar to construct OMP SECTIONS
Avoids to many nested Parallel Regions
Allows to parallelize irregular problems (e.g. recursive algorithms)

OpenMP Hartmut Häfner 30.8.17 19

OpenMP 4.5 Directive: OMP TASKLOOP

Directive TASKLOOP uses OpenMP-tasks for execution
and allows e.g. the concurrent usage of tasks and
an ordinary loop

#pragma omp taskgroup
{
#pragma omp task
 long_running_task() // kann nebenher ablaufen

#pragma omp taskloop collapse(2) grainsize(500) nogroup
 for (int i = 0; i < N; i++)
 for (int j = 0; j < M; j++)
 loop_body();
}

OpenMP Hartmut Häfner 30.8.17 20

Scope of Variables

Shared Memory programming model:
The most variables are shared by default.

Global variables are shared among threads.
Fortran: COMMON blocks, SAVE variables, MODULE variables
C: File scope variables, static

But not all ist shared...
Stack variables in subroutines called within parallel regions are
private.
Automatic variables within a block of assignments are private.

Some loop indices are private by default:
Fortran: Loop indices are private, even when they are specified as
shared.

OpenMP Hartmut Häfner 30.8.17 21

Environment Variables

OMP_NUM_THREADS
Sets the number of threads used during execution
If the number of threads changes dynamically during execution, the
value of the environment variable is the maximal value of running
threads
sh, ksh, bash: export OMP_NUM_THREADS=16

OMP_SCHEDULE
Is only interpreted at do/for or parallel do/parallel for directives
when the clause schedule(runtime) is used

Sets type and chunk for all loops with above mentioned clause

sh, ksh, bash: export OMP_SCHEDULE=“STATIC,4“

OpenMP Hartmut Häfner 30.8.17 22

Shared memory Programming Faults

Race conditions
Data-race: Minimally 2 threads access the same shared variable
and at least 1 thread modifies the variable and the accesses take
place concurrently and not synchronized (often when using shared
data accidentally)

Deadlock
Threads wait on a locked resource never reaching the state
unlocked (avoid nesting of different locks)

OpenMP Hartmut Häfner 30.8.17 23

Example for a race condition

The results are varying unpredictable
No warning from your program

!$OMP PARALLEL SECTIONS
 a = b + c
!$OMP SECTION
 b = a + c
!$OMP SECTION
 c = b + a
!$OMP END PARALLEL SECTIONS

OpenMP Hartmut Häfner 30.8.17 24

False-sharing

Many threads write! data into
the same cacheline
The cacheline must be
swapped between the caches
of the CPUs dedicated to the
accessing threads →
consumes much time

a 0 0 0 0 0 0 00 0 0

CPU CPU

thread 0 thread 1

cache-line

memory

a[0]++

0 0 0 01 0 0 0

1

a[1]++

1 0 0 0

1 1 0 0

1 1 0 0

OpenMP Hartmut Häfner 30.8.17 25

Computation of PI

program compute_pi
integer :: i
integer, parameter :: n=50000000, dp = kind(1.d0)
real(kind=dp) :: w,x,sum,pi,d

w=1.0/n; sum=0.0

do i=1,n
 x = (i-0.5) * w
 d = w * SQRT(1.0 - x**2)
 sum = sum + d
enddo
pi = 4. * sum
print *, 'computed pi = ', pi

end program compute_pi

1.0

1.0

OpenMP Hartmut Häfner 30.8.17 26

Parallel Computation of PI

program compute_pi
integer :: i
integer, parameter :: n=500000000, dp = kind(1.d0)
real(kind=dp) :: w,x,sum,pi,d

w=1.0/n; sum=0.0
!$OMP PARALLEL PRIVATE(x,d), SHARED(w,sum)
!$OMP DO REDUCTION(+: sum)
do i=1,n
 x = (i-0.5) * w
 d = w * SQRT(1.0 - x**2)
 sum = sum + d
enddo
!$OMP END DO
!$OMP END PARALLEL
pi = 4. * sum
print *, 'computed pi = ', pi
end program compute_pi

HP XC3000
1 core:
real 2.92s
user 2.93s

2 cores:
real 1.50s
user 2.99s

4 cores:
real 0.75s
user 2.97s

8 cores:
real 0.39s
user 3.10s

OpenMP Hartmut Häfner 30.8.17 27

Parallel Program PI descriptively

w = 1.0/n
sum = 0.0
!$OMP PARALLEL

sum = sum
 + sum0 + sum1
 + sum2 + sum3

!$OMP END PARALLEL

x1, d1, sum1

i = ...

x1 = ...
d1 = ...
sum1 = ...

x2, d2, sum2

i = ...

x2 = ...
d2 = ...
sum2 = ...

x3, d3, sum3

i = ...

x3 = ...
d3 = ...
sum3 = ...

x0, d0, sum0

i = ...

x0 = ...
d0 = ...
sum0 = ...

thread 1 thread 2 thread 3

OpenMP Hartmut Häfner 30.8.17 28

Mutual exclusion Synchronization –
critical (section)

Only one single thread can enter a critical section at a certain time.

 a_max = MINUS_INFINITY; a_min = PLUS_INFINITY

!$OMP PARALLEL DO
 do i=1,n

 if (a(i) > a_max) then
!$OMP CRITICAL(MAXLOCK)
 if (a(i) > a_max) then; a_max = a(i); endif
!$OMP END CRITICAL(MAXLOCK)
 endif

 if (a(i) < a_min) then
!$OMP CRITICAL(MINLOCK)
 if (a(i) < a_min) then; a_min = a(i); endif
!$OMP END CRITICAL(MINLOCK)
 endif

 enddo

OpenMP Hartmut Häfner 30.8.17 29

Mutual exclusion Synchronization –
atomic (update)

atomic is a special case of a critical section, that can be used, to
set scalar variables in simple assignments.

Fortran: !$OMP ATOMIC

C: #pragma omp atomic

The assignmant must have the following syntax:
 x = x operator expr

 x = intrinsic(x, expr)

 Operators
 Fortran: +, -, *, /, .AND., .OR., .EQV., .NEQV., MAX, MIN, IAND, IOR, IEOR
 C: +, -, *, /, &, |, ^, &&, ||

	InstitutsCluster
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29

