ST

Karlsruhe Institute of Technology

Parallel Programming with MPI and OpenMP

OpenMP

Hartmut Hafner, Steinbuch Centre for Computing (SCC)

STEINBUCH CENTRE FOR COMPUTING - SCC

KIT — University of the State of Baden-Wurttemberg and
National Laboratory of the Helmholtz Association

I Informations on OpenMP QAT

stitute of Technology

® OpenMP Homepage:
http:/lwww.openmp.org/

@ OpenMP User Group:
http://lwww.compunity.org

@ OpenMP Tutorial:
https:/Ilcomputing.linl.gov/tutorials/openMP/

@ R.Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, R. Menon:
Parallel programming in OpenMP.
Academic Press, San Diego, USA, 2000, ISBN 1-55860-671-8
@ R. Eigenmann, Michael J. Voss (Eds):
OpenMP Shared Memory Parallel Programming.
Springer LNCS 2104, Berlin, 2001, ISBN 3-540-42346-X

@ Simon Hoffmann, Rainer Lienhart: OpenMP.
www.eBook.de, 2009, ISBN 3-540-73122-9

Steinbuch Gentre OpenMP Hartmut Hafner 30.8.17

for Computing

http://www.compunity.org/

I Timeline on OpenMP QAUT

Karlsruhe Institute of Technology

CIC++ 1.0 CIC++ 2.0 OvenMP 2 ¢ R N
Fortran 1.0 Fortran 1.1 Fortran 2.0 il e

| | | | | |

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

@ OpenMP 3.0 incorporates Task-concept

@ OpenMP 4.0 has been released on 7/23/2013 and contains heterogenity,
i.e. support for accelerator cards

@ OpenMP 4.5 has been released in Novembre 2015, supports
Accelerators/graphics boards and has implemented different Locking-
Mechanisms

Steinbuch Gentre OpenMP Hartmut Hafner 30.8.17

I Shared Memory System AT

stitute of Technology

l P | l P | l P | l P | ® The whole system behaves like a
single computer.
@ All processors (cores) access the
c c C C Shared Memory.
@ ONE copy of the operating
Communication network: system.
Bus or Crossbar Switch @ Parallelization via Shared Memory

I or Message Passing
® OpenMP

Shared Memory " MPI _
Message Passing via Shared

Memory
@ Examples: SMP workstations,
@ @ @ @ NUMA nodes of HPC-systems in
Karlsruhe

Steinbuch Gentre OpenMP Hartmut Hafner 30.8.17

rrrrrrrrrrrr

I Important Features of OpenMP QAT

@ Data are stored in Shared Memory
@ ONE process when starting the application

@ Parallel threads will be created and destroyed during the
execution of the program

@ Threads can access shared or privat data
@ Coarse-grain or fine-grain parallelization

Steinbuch Gentre OpenMP Hartmut Hafner 30.8.17

for Computing

I Parallelization - Basic Idea QAT

Karlsruhe Institute of Technology

@ Parallel Region
@ Code within a Parallel Region is executed by all created threads

@ Work sharing Constructs

@ for DO-loops (!$OMP DO or #pragma omp for)
Single loop-indices are executed by different threads

@ for code segments (!$OMP SECTIONS or #pragma omp sections)
By !OMP SECTION or #pragma omp section seperated code
segments are executed by different threads

@ Work Sharing constructs must be implemented within Parallel

Regions!

Steinbuch Gentre OpenMP Hartmut Hafner 30.8.17

rrrrrrrrrrrr

I When to use OpenMP? AT

Karlsruhe Institute of Technology

Pe rfc:mance OpenMP+MPI

Scalar
Program

Code does not work

>

Time/Effort

Steinbuch Gentre OpenMP Hartmut Hafner 30.8.17

for Computing

Fine-grain Parallelization

program main

1SOMP PARALLEL DO
do 1=1,n
Twork
end do
1SOMP END PARALLEL DO

1SOMP PARALLEL SECTIONS
I1$SOMP SECTION

I1$SOMP SECTION

1SOMP END PARALLEL SECTION

Steinbuch Gentre
for Computing

OpenMP

Karlsruhe Institute of Technology

Hartmut Hafner

30.8.17

I Coarse-grain Parallelization

program main

1$SOMP PARALLEL
size OMP_GET_NUM_THREADS()
iam OMP_GET_THREAD_NUM()

call work(a, b, n, size, 1iam)
1SOMP BARRIER
do 1= 1, n/size

end do

1SOMP END PARALLEL
end

Steinbuch Gentre
for Computing

Karlsruhe Institute of Technology

hd

OpenMP

Hartmut Hafner

30.8.17

I Overview on OpenMP AT

Karlsruhe Institute of Technology

@ Directives
® Fortran: ! $OMP ... C: #pragma omp ..

W Parallel regions construct
® Fortran: !$OMP PARALLEL .. '$SOMP END PARALLEL

e C: #pragma omp parallel{ .. }

@ Work sharing construct
® Fortran: !$OMP DO .. !'$OMP END DO

® C: #pragma for ..

@ Synchronization construct
e !$SOMP BARRIER

@ Variable scoping clauses and directives
® Fortran: !$OMP THREADPRIVATE (/CBLCK/[,/CBLCK/]..)

® C: #pragma omp threadprivate (1ist of global vars)
@ Runtime library (a few routines)
@ Environment variables

Steinbuch Gentre OpenMP Hartmut Hafner 30.8.17

for Computing

| OpenMP - typical usage

AT

stitute of Technology

@ Normal case - OpenMP is used to parallelize loops:
@ Find the most time consuming loops with e.g. prof, gprof, xprofiler,

Intel Advisor XE 2017.

@ Separate them onto many threads.

Separate this loop onto many threads.

void main()
{
double Res[1000];
for(int i=0;i<1000;i++)
{
do_huge_comp(Res[i]);
}
}

Sequential program

Steinbuch Gentre
for Computing

void main()
{
double Res[1000];
#pragma omp parallel for
for(int i=0;i<1000;i++)
{
do_huge_comp(Res[i]);

}

Parallel program

OpenMP Hartmut Hafner 30.8.17

I OpenMP Directives AT

Karlsruhe Institute of Technology

Directives: '$OMP directive clauses

#pragma omp directive clauses
@ parallel
@ private: List with private variables
@ shared: List with global variables
@ firstprivate: Vvalue of private Variable w is copied from master thread to all threads
@ lastprivate: value of sequential last variable is copied to master thread
@ reduction(op:variable): Operator: +,-,*,/,&&, ||,==
@ schedule
do or for: Worksharing-construct loop
sections: Worksharing-construct (Code-)sections
critical: At each arbitrary time only ONE thread executes the assignment
master: Only the master thread executes the enclosed codesegment

single: Only the chronologically first thread executes the enclosed code
segment; all other threads wait till the first thread has ended its execution

barrier: All threads wait at the barrier
atomic: Atomic operations are handled as critical section

Steinbuch Gentre OpenMP Hartmut Hafner 30.8.17

for Computing

I Important Directive: OMP PARALLEL QWT

@ OMP PARALLEL - Directive starts Parallel Region

® Within [clauses] can be specified, which variables are privat
and which are shared for the threads.

@ Fortran:
1$SOMP PARALLEL [clauses]

block
1SOMP END PARALLEL

a C
#pragma omp parallel [clauses]
{block}

@ [clauses] can be
@ private(list)
@ shared(list)
@ schedule(type[, chunk])

Steinbuch Gentre OpenMP Hartmut Hafner 30.8.17

cccccccccccc

I The Clause schedule QAT

Karlsruhe Institute of Technology

The clause schedule can be:

W static: Iterations are divided into pieces of size chunk. The pieces
are assigned statically to the threads of a team

@ dynamic: Iterations are divided into pieces of size chunk. When a
thread has ended its work, it gets dynamically the next piece

@ guided: Each thread works at a piece of size chunk. When a thread
has ended its work, it gets a new piece of work of decreasing size

@ runtime: Schedule is determined by environment variable
“OMP_SCHEDULE”

SCHEDULE (STATIC)

SCHEDULE (STATIC, smallar)

SCHEDULE (DYHAMIC, @mal Lac)

SCHEDULE (GATLDED }

Steinbuch Gentre OpenMP Hartmut Hafner 30.8.17

cccccccccccc

I Important Directive: OMP DO AT

@ Fortran:
1$OMP DO [clauses]
Fortran DO Konstrukt
[!SOMP END DO [NOWAIT]]

a C:
#pragma omp for [clauses]
for Schleife

® The loop following on the directive is divided on all threads of the
parallel team

@ Loops must have the syntax
do 1 = 11, 12 [,13] or
for-loop must be canonically
@ Number of loops must be known at start time of the loop

Steinbuch Gentre OpenMP Hartmut Hafner 30.8.17

for Computing

| Directive: OMP SECTIONS AT

stitute of Technology

@ Fortran: C:

1SOMP PARALLEL [clauses] #pragma omp parallel
1SOMP SECTIONS {

a= .. #pragma omp sections
1SOMP SECTION {{ a= .. ;}

b= .. #pragma omp section
1SOMP SECTION { b= . ;}

c= . #pragma omp section
I$OMP END SECTIONS [NOWAIT] { c= .. ;}
1SOMP END PARALLEL } /* end sections */

} /* end parallel */

@ The existing sections are separated between the parallel teams.
Each section will be executed once by a thread

Steinbuch Gentre OpenMP Hartmut Hafner 30.8.17

for Computing

I OpenMP 3.0 Directive: OMP TASK QAT

stitute of Technology

@ Directive TASK creates a Task (working package: code + data)
@ Thread executing TASK-construct creates working package

@ Execution of the working package can be delayed
® Working package can be executed by an arbitrary thread of the team

® Similar to construct OMP SECTIONS
® Avoids to many nested Parallel Regions
@ Allows to parallelize irregular problems (e.g. recursive algorithms)

Steinbuch Gentre OpenMP Hartmut Hafner 30.8.17

for Computing

| OpenMP 4.5 Directive: OMP TASKLOOP S\(CIT

Karlsruhe Institute of Technology

@ Directive TASKLOOP uses OpenMP-tasks for execution

and allows e.g. the concurrent usage of tasks and
an ordinary loop

#pragma omp taskgroup
{
#pragma omp task
long_running_task () // kann nebenher ablaufen

#fpragma omp taskloop collapse(2) grainsize (500) nogroup
for (int i = 0; 1 < N; i++)
for (int j = 0; j < M; Jj++)
loop_body () ;

Steinbuch Gentre OpenMP Hartmut Hafner 30.8.17

for Computing

I Scope of Variables AT

Karlsruhe Institute of Technology

@ Shared Memory programming model:
@ The most variables are shared by default.

@ Global variables are shared among threads.
® Fortran: COMMON blocks, SAVE variables, MODULE variables
@ C: File scope variables, static

@ But not all ist shared...

@ Stack variables in subroutines called within parallel regions are
private.

@ Automatic variables within a block of assignments are private.
@ Some loop indices are private by default:

@ Fortran: Loop indices are private, even when they are specified as
shared.

Steinbuch Gentre OpenMP Hartmut Hafner 30.8.17

for Computing

I Environment Variables AT

stitute of Technology

@ OMP_NUM_THREADS

@ Sets the number of threads used during execution

@ If the number of threads changes dynamically during execution, the
value of the environment variable is the maximal value of running

threads
@ sh, ksh, bash: export OMP_NUM_THREADS=16

@ OMP_SCHEDULE

@ Is only interpreted at do/for or parallel do/parallel for directives
when the clause schedule(runtime) is used

B Sets type and chunk for all loops with above mentioned clause
@ sh, ksh, bash: export OMP_SCHEDULE="“STATIC, 4“

OpenMP Hartmut Hafner 30.8.17

Steinbuch Gentre
for Computing

I Shared memory Programming Faults A\‘(IT

stitute of Technology

@ Race conditions

@ Data-race: Minimally 2 threads access the same shared variable
and at least 1 thread modifies the variable and the accesses take
place concurrently and not synchronized (often when using shared
data accidentally)

@ Deadlock

@ Threads wait on a locked resource never reaching the state
unlocked (avoid nesting of different locks)

Steinbuch Gentre OpenMP Hartmut Hafner 30.8.17

for Computing

I Example for a race condition

1SOMP PARALLEL SECTIONS
a=b+c

1SOMP SECTION
b=a+c¢c

1$OMP SECTION
c=b + a

1SOMP END PARALLEL SECTIONS

@ The results are varying unpredictable
@ No warning from your program

Steinbuch Centre OpenMP

rrrrrrrrrrrr

Hartmut Hafner

Karlsruhe Institute of Technology

30.8.17

I False-sharing

a[0]+

thread O

-+

CPU

a[1]++

thread 1

CPU

104Q0Q@ cache-line

)30 QC

)] memory

Steinbuch Gentre
for Computing

AT

stitute of Technology

Many threads write! data into
the same cacheline

The cacheline must be
swapped between the caches
of the CPUs dedicated to the
accessing threads -
consumes much time

OpenMP Hartmut Hafner 30.8.17

I Computation of Pl QAT

Karlsruhe Institute of Technology

program compute_pi

integer i 1

integer, parameter :: n=50000000, dp = kind(1.d0)
real(kind=dp) I: w,X,sum,pi,d

w=1.0/n; sum=0.0 o

do 1=1,
X
d
sum
enddo
pi = 4. * sum
print *, 'computed pi = ', pi

(1-0.5) * w
w * SQRT(1.0 - x**2) \
sum + d

A 4

(L I | =

end program compute_pi

Steinbuch Gentre OpenMP Hartmut Hafner 30.8.17

for Computing

I Parallel Computation of PI QAT

Karlsruhe Institute of Technology

program compute_pi

integer . |
integer, parameter :: n=500000000, dp = kind(1.dO)
real(kind=dp) :: W,X,sum,pi,d HP XC3000
1 core:

w=1.0/n; sum=0.0 real 2.92s
1$OMP PARALLEL PRIVATE(X,d), SHARED(w,sum) |user 2.93s
1SOMP DO REDUCTION(+: sum)
do i=1,n 2 cores:

X = (i-0.5) * w real 1.50s

d = w * SQRT(1.0 - x**2) user 2.99s

sum = sum + d 4 _

cores:

enddo real 0.75s
!$OMP END DO user 2.97s
1SOMP END PARALLEL
pl1 = 4. * sum 8 cores:
print *, 'computed pi = ', pi real 0.39s
end program compute_pi user 3.10s

Steinbuch Gentre OpenMP Hartmut Hafner 30.8.17

for Computing

I Parallel Program PI descriptively AT

w=1.0/n
sum = 0.0
1SOMP PARALLEL

1SOMP END PARALL thread 2 thread 3

Steinbuch Gentre OpenMP Hartmut Hafner 30.8.17

for Computing

I Mutual exclusion Synchronization - QT
critical (section)

@ Only one single thread can enter a critical section at a certain time.

a_max = MINUS_INFINITY; a_min = PLUS_INFINITY

1SOMP PARALLEL DO
do i=1,n

if (a(i) > a_max) then
1SOMP CRITICAL (MAXLOCK)
if (a(1i) > a_max) then; a_max = a(i); endif
1SOMP END CRITICAL (MAXLOCK)
endif

if (a(i) < a_min) then
1SOMP CRITICAL(MINLOCK)
if (a(i) < a_min) then; a_min = a(1i); endif
1SOMP END CRITICAL(MINLOCK)
endif

enddo

Steinbuch Gentre OpenMP Hartmut Hafner 30.8.17

for Computing

Mutual exclusion Synchronization - AT
atomic (update)

W atomic is a special case of a critical section, that can be used, to
set scalar variables in simple assignments.

® Fortran: !'$OMP ATOMIC
W C: #pragma omp atomic

@ The assignmant must have the following syntax:
X = X operator expr
X = intrinsic(x, expr)

Operators
Fortran: +, -, *, /, .AND., .OR., .EQV., .NEQV., MAX, MIN, IAND, IOR, IEOR
C:+I 4 *I /I &I II AI &&I II

Steinbuch Gentre OpenMP Hartmut Hafner 30.8.17

for Computing

	InstitutsCluster
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29

