
KIT – The Research University in the Helmholtz Association

STEINBUCH CENTRE FOR COMPUTING - SCC

www.kit.edu

Scientific Workflows: Tutorial

Ivan Kondov, Elnaz Azmi

Steinbuch Centre for Computing 2 29.08.2017

What is a scientific workflow?

Many different definitions, depending on community

Coordinated execution of repeatable actions accounting for dependencies and

concurrency

Typical actions

Computing, also high performance computing

Data management and analysis

Pre- and post-processing

Visualization

Other common but imprecise names: “protocol”, “recipe”, “procedure”,

“job chain”, “task sequence”, …

Not to confuse with: business process workflows, pipelines and stream

processing

Scientific workflows with FireWorks

Steinbuch Centre for Computing 3 29.08.2017

Basic example: image processing

Scientific workflows with FireWorks

2

1

rotate -90°

flip vertically

flip horizontally

montage

montage

montage

montage

Steinbuch Centre for Computing 4 29.08.2017

Using a bash script

Drawbacks

No clear interfaces between steps

No reuse of data and code

No dependencies

No state tracking

No concurrency: sequential

execution

No capability for heterogeneous /

distributed resources

Workarounds

Partitioning / Refactoring

Checkpointing

Chaining with dependencies:

sub-blocking, multi-step jobs,

multi-jobs or job chains

Scheduling

#!/bin/bash -e

Flip vertically

convert -flip piece-1.png bottom_right.png

Rotate 90 degrees anti-clockwise

convert -rotate -90 piece-2.png top_left.png

Flop horizontally top_left.png

convert -flop top_left.png top_right.png

Flop horizontally bottom_right.png

convert -flop bottom_right.png bottom_left.png

Put the four pieces together

montage -mode concatenate -tile 2x2 \

top_left.png top_right.png bottom_left.png \

bottom_right.png montaged_image.png

Scientific workflows with FireWorks

Steinbuch Centre for Computing 5 29.08.2017

Using a makefile

Advantages:

Steps are defined as targets

Explicit dependencies defined

as rules, {target, dependencies,

commands} triplets

Data and code reuse

Implicit state info and checkpoints
No state information stored

Distribute over resources

Limited on one host with “-j N”

Impossible over nodes and

clusters

Basic idea of the Makeflow

system
http://ccl.cse.nd.edu/software/makeflow

default: montaged_image.png

Flip vertically

bottom_right.png: piece-1.png

 convert -flip $^ $@

Rotate 90 degrees anti-clockwise

top_left.png: piece-2.png

 convert -rotate -90 $^ $@

Flop horizontally top_left.png

top_right.png: top_left.png

 convert -flop $^ $@

Flop horizontally bottom_right.png

bottom_left.png: bottom_right.png

 convert -flop $^ $@

Put the four pieces together

montaged_image.png: top_left.png top_right.png \

 bottom_left.png bottom_right.png

 montage -mode concatenate -tile 2x2 $^ $@

Scientific workflows with FireWorks

Steinbuch Centre for Computing 6 29.08.2017

Examples from science and engineering

High throughput computing

Life sciences: virtual screening, ligand-protein docking,

protein structure prediction, genomics

Materials science: virtual materials design

High energy physics: event generation

Multiscale modeling: Loosely coupled multiscale models

Climate models: regional – global

Materials models: atomistic – coarse-grained – continuum

Scientific workflows with FireWorks

Morphology
deposition:
Monte Carlo

• SIMONA

• LAMMPS

• …

Morphology
relaxation:
Molecular
Dynamics

• LAMMPS

• GROMACS

• DL_POLY

• …

Hopping rates
evaluation:
Density Functional
Theory

• FHI-AIMS

• TURBOMOLE

• NWChem

• ADF

• Gaussian

Transport
simulation:
Kinetic MC

•

•

•

Steinbuch Centre for Computing 7 29.08.2017

Workflow graph

Directed acyclic graph (DAG)

Vertices describe

the workflow steps -

logically separable, reusable

components.

Edges describe the

dataflow links.

The execution sequence

is called control flow.

Control flow satisfies data

dependencies but additional

rules may also apply.

Scientific workflows with FireWorks

grompp

1

0

2

3

Setup

0 1

3

2

mdrun

0

2

1 Analyses

0 1

2

Workflow for molecular dynamics using Gromacs

BMC Bioinformatics15, 292 (2014), DOI: 10.1186/1471-2105-15-292

6th International Workshop on Science Gateways (2014), DOI: 10.1109/IWSG.2014.21

Steinbuch Centre for Computing 8 29.08.2017

The image processing example

Scientific workflows with FireWorks

Steinbuch Centre for Computing 9 29.08.2017

Example from materials science

Scientific workflows with FireWorks

Electron transport simulation

in organic semiconductors

Steinbuch Centre for Computing 10 29.08.2017

Workflows versus pipelines

Workflow

Step 2 begins after Step 1 is ready

Data is passed discretely

Directed acyclic graph: no loops

Pipeline

All steps (stages) run simultaneously

Data is passed continuously

Directed graph, feedback possible

Scientific workflows with FireWorks

Step 1 Step 2 Stage 1 Stage 2

Different meanings to different people!

Source: Ford Europe, https://www.flickr.com/photos/fordeu/5709826282 Source: Bert van Dijk, https://www.flickr.com/photos/zilpho/2964165616

Steinbuch Centre for Computing 11 29.08.2017

Workflow systems

Help composing, managing, running workflows

One size does not fit all: many existing frameworks

Incomplete list of over 120 different workflow systems:

https://github.com/common-workflow-language/common-workflow-

language/wiki/Existing-Workflow-systems

Diversity due to

Workflow language

Workflow editing and validation tools

Workflow engine: scheduling, execution

Use of distributed resources, e.g. via web services

Software license

Application domain

Scientific workflows with FireWorks

https://github.com/common-workflow-language/common-workflow-language/wiki/Existing-Workflow-systems
https://github.com/common-workflow-language/common-workflow-language/wiki/Existing-Workflow-systems
https://github.com/common-workflow-language/common-workflow-language/wiki/Existing-Workflow-systems
https://github.com/common-workflow-language/common-workflow-language/wiki/Existing-Workflow-systems
https://github.com/common-workflow-language/common-workflow-language/wiki/Existing-Workflow-systems
https://github.com/common-workflow-language/common-workflow-language/wiki/Existing-Workflow-systems
https://github.com/common-workflow-language/common-workflow-language/wiki/Existing-Workflow-systems
https://github.com/common-workflow-language/common-workflow-language/wiki/Existing-Workflow-systems
https://github.com/common-workflow-language/common-workflow-language/wiki/Existing-Workflow-systems
https://github.com/common-workflow-language/common-workflow-language/wiki/Existing-Workflow-systems
https://github.com/common-workflow-language/common-workflow-language/wiki/Existing-Workflow-systems
https://github.com/common-workflow-language/common-workflow-language/wiki/Existing-Workflow-systems
https://github.com/common-workflow-language/common-workflow-language/wiki/Existing-Workflow-systems
https://github.com/common-workflow-language/common-workflow-language/wiki/Existing-Workflow-systems
https://github.com/common-workflow-language/common-workflow-language/wiki/Existing-Workflow-systems

Steinbuch Centre for Computing 12 29.08.2017

Why using a workflow system?

Automate complex and high-throughput simulations and analyses

Scalability: exploit concurrency of independent steps

Distributed computing

Parts of the application run on different computing resources

Data and code reuse

Repeat only failed parts of a simulation or a data analysis

Data and code provenance

Reproducibility of research

W7

Validation

Error tracking and recovery from failure; reliability

Rapid prototyping, flexible design

Scientific workflows with FireWorks

Steinbuch Centre for Computing 13 29.08.2017

What is a workflow system good for?

You have a ‘spaghetti code’:

Heterogeneous control/data flow pattern

One or several repeatedly used elements (functions, scripts, executables)

Coarse-grained parallelism or ‘embarrassing’ parallelism

 Independent steps run sufficiently long time

Irregular iteration

Run the same job until convergence

Heterogeneous resource requirements

Some stages are parallel, other sequential

Some stages require one computer architecture, others another one

Different memory requirements at different stages

Scientific workflows with FireWorks

Steinbuch Centre for Computing 14 29.08.2017

Workflow system is not good for:

Regular and/or recursive numerical algorithms

Examples: sorting, fast Fourier transform, linear algebra, …

Regular and explicit stepping

Examples: time evolution, solvers

Synchronous algorithms

Parallel steps wait for a certain event to continue.

Asynchronous algorithms with

many tasks

short task runtimes

large data and/or frequent data exchange

Solution: Use a special workflow language

(e.g. the Swift language, http://swift-lang.org) or dataflow-driven framework

Scientific workflows with FireWorks

Steinbuch Centre for Computing 15 29.08.2017

Some workflow systems

Workflow

System

Web

Services
Editor WF Language Engine License Web site

Taverna
WSDL/SOAP

& REST
yes

SCUFL2

(ontology)
yes Apache taverna.incubator.apache.org

Kepler yes yes OWL ontology yes BSD kepler-project.org

Airavata
WSDL/SOAP

& REST
yes

BPEL, SCUFL,

Condor DAG
yes Apache airavata.apache.org

UNICORE
WSDL/SOAP

& REST
URC

Own XML

based
yes BSD www.unicore.eu

DAGMan SOAP no Condor DAG yes Apache research.cs.wisc.edu/htcondor

FireWorks no no
Python, JSON,

YAML based
rlaunch BSD materialsproject.github.io/fireworks

Pegasus yes Wings OWL/RDF yes Apache pegasus.isi.edu

gUSE yes yes
Own XML

based

DCI

bridge
Apache guse.hu

Scientific workflows with FireWorks

Steinbuch Centre for Computing 16 29.08.2017

FireWorks

Define, manage and execute workflows

Open source – a modified BSD license

Website: https://materialsproject.github.io/fireworks

Used in the Materials Project http://www.materialsproject.org

Based on Python and MongoDB

Scientific workflows with FireWorks

A. Jain et al., Concurrency and Computation: Practice and Experience 27, 5037 (2015)

https://materialsproject.github.io/fireworks
https://materialsproject.github.io/fireworks
http://www.materialsproject.org/
http://www.materialsproject.org/

Steinbuch Centre for Computing 17 29.08.2017

Using FireWorks (basic)

Create

• No workflow
language

• No workflow
editor
available

• Write YAML
or JSON

• Use Python
scripts

Add

• LaunchPad:
storage for all
FireWorks
objects

• Use
command
line:
lpad add

• Use Python
scripts

Launch

• FireWorker:
computing
resource

• Rocket
launcher:
rlaunch

• Execution via a
batch system:
qlaunch

• Use Python
scripts

Monitor

• Command line:
lpad get_fws
lpad get_wflows

• Use tracker:
lpad track_fws

• Use web GUI:
lpad webgui

• Use Python
scripts

Scientific workflows with FireWorks

Steinbuch Centre for Computing 18 29.08.2017

FireWorks basics

Scientific workflows with FireWorks

Firetask: an atomic computing job:

one code, one script or one Python

function

Firework:

Contains one or more Firetasks

executed in a sequence

Firetasks in one Firework share

the same working directory

Includes bootstrap information:

spec

Workflow

A Directed Acyclic Graph (DAG)

of Fireworks and links

FWAction (optional)

Firework

ID

Name

Spec

Data

Data

Firetasks

Firetask Firetask

Firework

ID

Name

Spec

Data

Data

Firetasks

Firetask Firetask

Steinbuch Centre for Computing 19 29.08.2017

Workflow example in YAML

fws:

- fw_id: 1

 name: First act

 spec:

 _tasks:

 - _fw_name: ScriptTask

 script: echo 'To be, or not to be,'

- fw_id: 2

 name: Second act

 spec:

 _tasks:

 - _fw_name: ScriptTask

 script: echo 'that is the question:'

links:

 1:

 - 2

metadata: {}

name: Hamlet workflow

JSON also possible
YAML is a superset of JSON

Attribute name is optional

Submit from the command line:

lpad add -c hamlet.yaml

Run the workflow:

rlaunch rapidfire

Scientific workflows with FireWorks

Steinbuch Centre for Computing 20 29.08.2017

The same workflow in Python

from fireworks import Firework, Workflow, LaunchPad, ScriptTask

from fireworks.core.rocket_launcher import rapidfire

fw1 = Firework(ScriptTask.from_str(

 'echo "To be, or not to be,"'

)

)

fw2 = Firework(ScriptTask.from_str(

 'echo "that is the question:"'

)

)

workflow = Workflow(

 [fw1, fw2],

 links_dict={fw1: fw2}

)

launchpad = LaunchPad()

launchpad.add_wf(workflow)

rapidfire(launchpad)

Scientific workflows with FireWorks

FireServer

Workflow

FireWorker FireWorker

rlaunch qlaunch

lpad add

LaunchPad

Steinbuch Centre for Computing 21 29.08.2017

Firetasks

• ScriptTask

• FileWriteTask, FileDeleteTask,
FileTransferTask, CompressDirTask,
ArchiveDirTask

• TemplateWriterTask

• PyTask

Built-in Firetasks

• PythonFunctionTask

• CommandLineTask

• ForeachTask

• JoinDictTask

• JoinListTask

• … write your own Firetasks → Exercise 5

Custom Firetasks

Scientific workflows with FireWorks

Steinbuch Centre for Computing 22 29.08.2017

FWAction object

Can be returned by

Firetasks

Python functions

called by PyTask

Purpose:

Pass (meta)data from one

firework to another

Dynamically change

workflow

Scientific workflows with FireWorks

data: {}
spec:

{data: {}}

Step 1 Step 2

Step 1 Step N Step 2

Step 1 Step 2

Original workflow

update_spec, mod_spec

detours

defuse_children

Exercises 2, 3, 5

Exercise 5

Steinbuch Centre for Computing 23 29.08.2017

Using FireWorks (advanced)

Manage

Cancel

Pause

Resume

Remove

Set priority

Extend

Append WF

Recover

Update FW

Rerun FW

Detect
lost runs

and more

Statistics
report

Archive WF

Detect
duplicates

Scientific workflows with FireWorks

Exercise 4

Steinbuch Centre for Computing 24 29.08.2017

Using FireWorks productively

Use batch systems: qlaunch

Deal with failures and crashes

FIZZLED: what to do next?

In-place fix (lpad update_fws) and rerun (lpad rerun_fws) the Firework

– preservation of all COMPLETED guaranteed

Error fix and resubmit the whole workflow – better reproducibility

RUNNING forever

Use the command lpad detect_lostruns

Manage duplicates

Running workflows with reusing the data from identical Fireworks

After fixing an error a new workflow will repeat only the changed Fireworks

Monitoring (lpad webgui) and reports (lpad report)

Configure security

Tune performance

Scientific workflows with FireWorks

Steinbuch Centre for Computing 25 29.08.2017

Web GUI

Use with:

lpad webgui

Scientific workflows with FireWorks

Steinbuch Centre for Computing 26 29.08.2017

Exercise 1: Managing control flow

Scientific workflows with FireWorks

Lollypop

man

 4 Tire

changers

 4 Tire

carriers

2 jack

men

Refuelers

Brakes First gear Go

 4 Tire

carriers

Lift

car

Lower

car
R

e
le

a
s
e

o
ld

 t
ir

e
s

R
e
m

o
v
e

o
ld

 t
ir

e
s

In
s
ta

ll

n
e
w

 t
ir

e
s

L
o

c
k

n
e
w

 t
ir

e
s

Refuel

Time

4x

4x

4x

4x

Steinbuch Centre for Computing 27 29.08.2017

“Sequential” workflow

Scientific workflows with FireWorks

First gear

Brakes

Refuel

Lift car

Go!

Lower car

Release old

tires

Remove old

tires

Lock new

tires

Install new

tires

Firework: Exchange tires

Firetask:

Release old

tires

Firetask:

Remove old

tires

Firetask:

Lock new

tires

Firetask:

Install new

tires

Steinbuch Centre for Computing 28 29.08.2017

Solution graphs

Scientific workflows with FireWorks

Steinbuch Centre for Computing 29 29.08.2017

“Parallel” workflow

Scientific workflows with FireWorks

First gear

Brakes

Refuel

Lift car

Go! Lower car

Firework: Exchange tire 1

Firework: Exchange tire 2

Firework: Exchange tire 3

Firework: Exchange tire 4

Firework: Exchange tires

Firetask:

Release old

tires

Firetask:

Remove old

tires

Firetask:

Lock new

tires

Firetask:

Install new

tires

Steinbuch Centre for Computing 30 29.08.2017

“Parallel” workflow

Scientific workflows with FireWorks

Steinbuch Centre for Computing 31 29.08.2017

Exercise 1: Problems

Problem 1.1

Switch to working directory and copy problems:

cd exercises/work/1_control_flow

cp ../../problems/1_control_flow/*.yaml .

One by one, check the three sequential

workflows for errors, and then find and correct

the errors. Finally add the workflow to

LaunchPad:

lpad add -c f1_pitstop_seq_wrong_2.yaml

Query workflow state:

lpad get_wflows -d all

Execute with:

rlaunch singleshot

After running each single Firework, monitor the

output and the states of the Fireworks until the

workflow is completed.

Problem 1.2

Repeat the steps of Problem 1.1 for the

parallel version of the workflow

f1_pitstop_par_wrong_1.[json|yaml]

f1_pitstop_par_wrong_2.[json|yaml]

f1_pitstop_par_wrong_3.[json|yaml]

Scientific workflows with FireWorks

Steinbuch Centre for Computing 32 29.08.2017

Exercise 2: Managing data flow

Scientific workflows with FireWorks

Interview

candidates

Screen

candidates

Candidates

apply
Post the job

Steinbuch Centre for Computing 33 29.08.2017

PythonFunctionTask

Purpose: passes a list of data entities

as positional arguments to a Python

function and forwards the returned

objects to the next Firework via

FWAction.

Mandatory parameters:

function: the name of the Python

function

Optional parameters:

inputs: a list of items for input that

must be in spec

outputs: a list of returned objects to

pass to spec

See and run example under:

exercises/demos/2_data_flow

- fw_id: 1

 name: Grind coffee

 spec:

 _tasks:

 - _fw_name: PythonFunctionTask

 function: auxiliary.print_func

 inputs: [roasted coffee beans]

 outputs: coffee powder

 roasted coffee beans: top selection

- fw_id: 2

 name: Brew coffee

 spec:

 _tasks:

 - _fw_name: PythonFunctionTask

 function: auxiliary.print_func

 inputs: [coffee powder, water]

 outputs: café solo

 water: workflowing water

Scientific workflows with FireWorks

Steinbuch Centre for Computing 34 29.08.2017

Exercise 2: Problems

Problem 2.1

Change to folder exercises/work/2_data_flow.

Copy
exercises/inputs/2_data_flow/template.[json|yaml]

Complete the workflow to implement

exercises/problems/2_data_flow/recruiting-script.py.

Check the workflow, add it to LaunchPad and run

it in singleshot mode.

Watch the changes in the Fireworks with each

rlaunch.

Problem 2.2

Copy recruiting-[012].[json|yaml] from the folder
exercises/problems/2_data_flow

Detect and correct the errors and run the

workflow in rapidfire mode.

Compare the corrected versions to each other

and to solution of Problem 2.1.

Compare the results of two instances of the

same workflow. Why do they differ?

- fw_id: 1

 name: Post the job

 spec:

 _tasks:

 - _fw_name: PythonFunctionTask

 function: auxiliary.print_func

 inputs: [job description]

 outputs: [job description]

 job description:

 title: chief fiction scientist

 contract conditions: {contract
type: fixed-term, salary: 400, social
insurance: true}

 qualifications: {academic
degree: master, education background:
fiction science, experience: 4,
skills: understanding science fiction}

 work description: work in
fictitious projects

Scientific workflows with FireWorks

Steinbuch Centre for Computing 35 29.08.2017

Exercise 3: Using command line and files

#!/bin/bash -e

Flip vertically

convert -flip piece-1.png bottom_right.png

Rotate 90 degrees anti-clockwise

convert -rotate -90 piece-2.png top_left.png

Flop horizontally top_left.png

convert -flop top_left.png top_right.png

Flop horizontally bottom_right.png

convert -flop bottom_right.png bottom_left.png

Put the four pieces together

montage -mode concatenate -tile 2x2 \

top_left.png top_right.png bottom_left.png \

bottom_right.png montaged_image.png

Scientific workflows with FireWorks

Command Input of type path Output of type path

Input type data, value -90,

prefix -rotate, separator ' '

Command in Subprocess style:

[montage, -mode, concatenate, -tile, 2x2]

4 inputs of type path

1 output of type path

Steinbuch Centre for Computing 36 29.08.2017

Exercise 3: Using the CommandLineTask

Required parameters

command_spec: specification of the

command

 command_spec:

 binding:

 prefix: [string, null]

 separator: [string, null]

 source:

 type: [path, data, identifier,
stdin, stdout, stderr, null]

 value: [string, number, null]

 target:

 type: [path, data, identifier,
stdin, stdout, stderr, null]

 value: string

Optional parameters:

inputs, outputs: the same as for

PythonFunctionTask

But they are in command_spec

- fw_id: 1

 name: Image rotation step

 spec:

 _tasks:

 - _fw_name: CommandLineTask

 inputs: [rotation angle, original image]

 outputs: [rotated image]

 command_spec:

 command: [convert]

 original image:

 source: original image

 rotated image:

 target: {type: path, value: /tmp}

 rotation angle:

 binding:

 prefix: -rotate

 separator: ' '

 source: {type: data, value: -90}

 original image:

 type: path

 value: /tmp/piece-2.png

Scientific workflows with FireWorks

Shared with other

Firetasks or from

parent Fireworks

Visible only for

this Firetask

Steinbuch Centre for Computing 37 29.08.2017

Exercise 3: Problems

Problem 3.2

Swirl the image at different angles: 90°,

180°, 270° and 360°

Animate the images in the sequence:

0° → 90° → 180° → 270° → 360° → 270°

→ 180° → 90° → 0°

Available operations (in the demos):

Swirl

Animate

 Scientific workflows with FireWorks

Problem 3.1

Reconstruct capital letters from one of

four pieces: X, O

Reconstruct capital letters from two of

four pieces:

A, C, D, E, H, M, N, S, T, U, V, W, Y, Z

Available operations (in the demos):

Rotate +90 degrees

Horizontal flip

Vertical flip

Montage

Steinbuch Centre for Computing 38 29.08.2017

Exercise 4: Extending a workflow

Scientific workflows with FireWorks

- fw_id: -6
 name: Pass filename
 spec:
 _tasks:
 - _fw_name: PythonFunctionTask
 function: auxiliary.print_func
 inputs: [montaged image]
 outputs: [montaged image]

Steinbuch Centre for Computing 39 29.08.2017

Problem 4.1

cp exercises/solutions/3_files_and_commands/image_swirl.json \
image_swirl_montaged.json

Change all Firework IDs to become negative integers

Add the linking Firework

- fw_id: -6
 name: Pass filename
 spec:
 _tasks:
 - _fw_name: PythonFunctionTask
 function: auxiliary.print_func
 inputs: [montaged image]
 outputs: [montaged image]

Add '-6': [-1, -2, -3, -4, -5] to the links

Set original image: {source: montaged image}

lpad get_fws -n "Put the four pieces together"

lpad append_wflow -i <ID> -f image_swirl_montaged.json

lpad get_wflows -s "RUNNING"

rlaunch rapidfire

Scientific workflows with FireWorks

Steinbuch Centre for Computing 40 29.08.2017

Exercise 5: Writing a Firetask

from fireworks.core.firework import FiretaskBase, FWAction

from fireworks.utilities.fw_utilities import explicit_serialize

@explicit_serialize

class MyFiretask(FiretaskBase):

 _fw_name = 'MyFiretask'

 required_params = ['par1', 'par2']

 optional_params = ['optional par']

 def run_task(self, fw_spec):

 if self.get('optional par'):

 actions = [

 'update_spec': {

 'par1': self['par1'],

 'optional par': self['optional par']

 }

]

 else:

 actions = []

 return FWAction(*actions)

Scientific workflows with FireWorks

- fw_id: 1

 spec:

 _tasks:

 - _fw_name: {{custom_tasks.MyFiretask}}

 par1: data.json

 par2: data.yaml

 optional par: {}

Firework

Firetask

Steinbuch Centre for Computing 41 29.08.2017

Problem 5.1: Data Loader Firetask

Use the provided snippet as template

Use the json.load() method

Return a FWAction object with update_spec

Register the Firetask:

export PYTHONPATH=`pwd`:$PYTHONPATH

Add the workflow to LaunchPad:

lpad add exercises/problems/5_author_firetask/dataloader.json

Scientific workflows with FireWorks

from fireworks.core.firework import FiretaskBase, FWAction

from fireworks.utilities.fw_utilities import explicit_serialize

@explicit_serialize

class ' '(FiretaskBase):

 _fw_name = ' '

 required_params = [' ', ' ']

 def run_task(self, fw_spec):

 json.load(' ')

 return FWAction(update_spec={' ': self[' ']})

Candidates

apply

Post job

job

description

application

template

Steinbuch Centre for Computing 42 29.08.2017

Problem 5.2: Conditional Repeater Firetask
- fw_id: 2

 name: Candidates apply

 spec:

 _tasks:

 - _fw_name: PythonFunctionTask

 function: recruiting.candidates_apply

 inputs:

 - application template

 - maximum applications

 outputs: [applicant profiles]

 - _fw_name: RepeatIfLengthLesser

 measure: applicant profiles

 minimum: number to screen

number to screen: 10

Scientific workflows with FireWorks

Interview

candidates

Candidates

apply

Enough

candidates

Candidates

apply

No

Yes

Enough

candidates

No

Yes

Repeat until “Yes”

if len(fw_spec[self['measure']]) < fw_spec[self['minimum']]:

 firework = Firework(

 tasks=[load_object(task) for task in fw_spec['_tasks']]

 spec=fw_spec

 name='repeat '+self['measure']

)

 return FWAction(detours=firework)
Firetask

Firework

Steinbuch Centre for Computing 44 29.08.2017

Legal notice

This work is licensed under an

Attribution-NonCommercial-NoDerivatives 4.0 International

Creative Commons License

http://creativecommons.org/licenses/by-nc-nd/4.0/

Copyright © 2017 Karlsruhe Institute of Technology (KIT)

Scientific workflows with FireWorks

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

