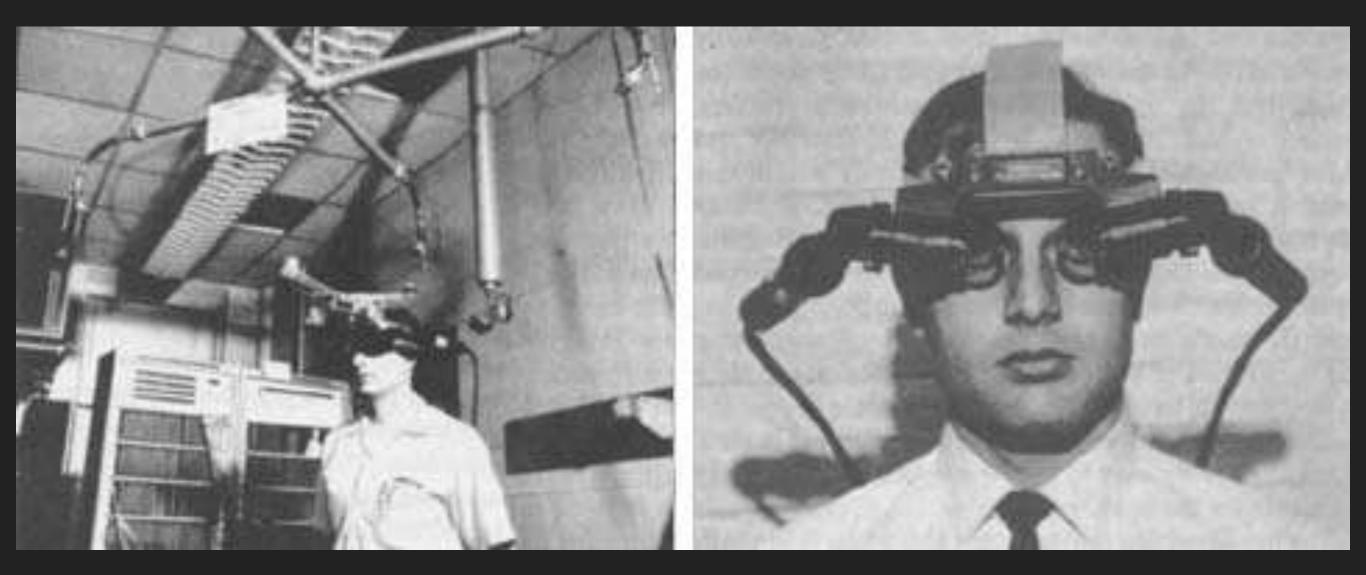
# AUGMENTED REALITY HISTORY, CHALLENGES AND APPLICATIONS

### DIPL.-INF. (FH) JENS REINHARDT

### WHAT IS AUGMENTED REALITY?

- We define Augmented Reality (AR) as a real-time direct or indirect view of a physical real-world environment that has been enhanced / augmented by adding virtual computergenerated information to it [14].
- AR is both interactive and registered in 3D as well as combines real and virtual objects


- First appearance of AR dates back to the 1950s
  - Morton Heilig, a cinematographer, thought of cinema is an activity that would have the ability to draw the viewer into the onscreen activity by taking in all the senses in an effective manner (1956)
  - In 1962, Heilig built a prototype of his vision, which he described in 1955 in "The Cinema of the Future", named Sensorama, which predated digital computing [15]



https://www.wareable.com/media/images/2016/04/sensorama-full-1459515007-sz7p-column-width-inline.jpg

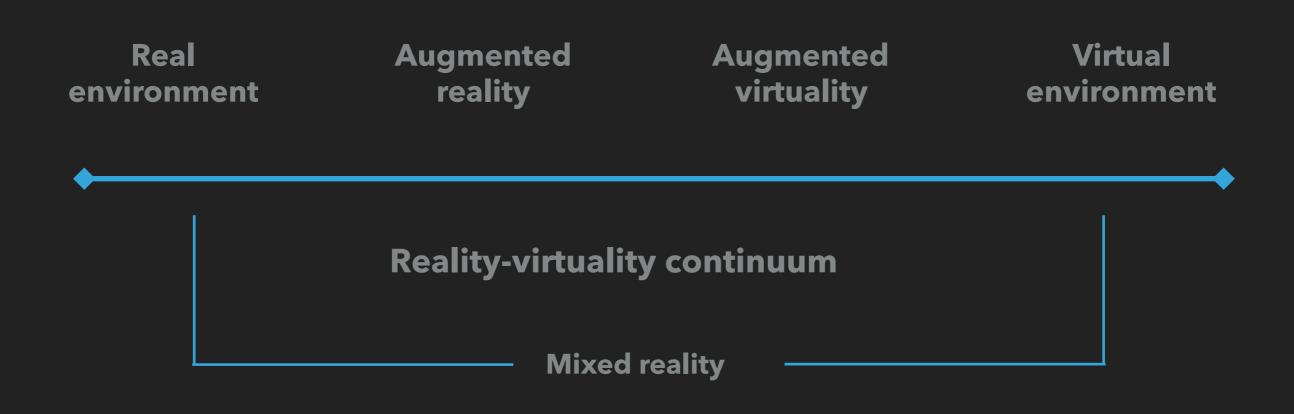
- 1966 invention of the Head Mounted Display (HMD) by Ivan Sutherland
- In 1968, Sutherland was the first one to create an augmented reality system using an optical see-through head-mounted display [16]
- "our objective in this project is to surround the user with displayed three-dimensional information"

### HISTORICAL BACKGROUND



The world's first head-mounted display with the "Sword of Damocles" [1][2]

- In 1975, Myron Krueger creates the Videoplace, a room that allows the users to interact with virtual objects for the first time
- 1984 realisation of his idea "artificial reality" with the help of a computer system




## CRADLE

- I990 Tom Caudell and David Mizell coin the phrase Augmented Reality while helping workers assemble wires and cable for an aircraft [14]
- They also started discussing the advantages of Augmented Reality versus Virtual Reality (VR), such as requiring less power since fewer pixels are needed [16].
- 1990 L.B Rosenberg developed one of the first functioning AR systems, called Virtual Fixtures and demonstrated its benefit on human performance
- Steven Feiner, Blair MacIntyre and Doree Seligmann presented the first major paper on an AR system prototype named KARMA [14]

able for an aircraft [65]. from Boeing coin the phrase Augmented Reality while helping workers assemble wires and cable for an aircraft [65].

### AUGMENTED REALITY



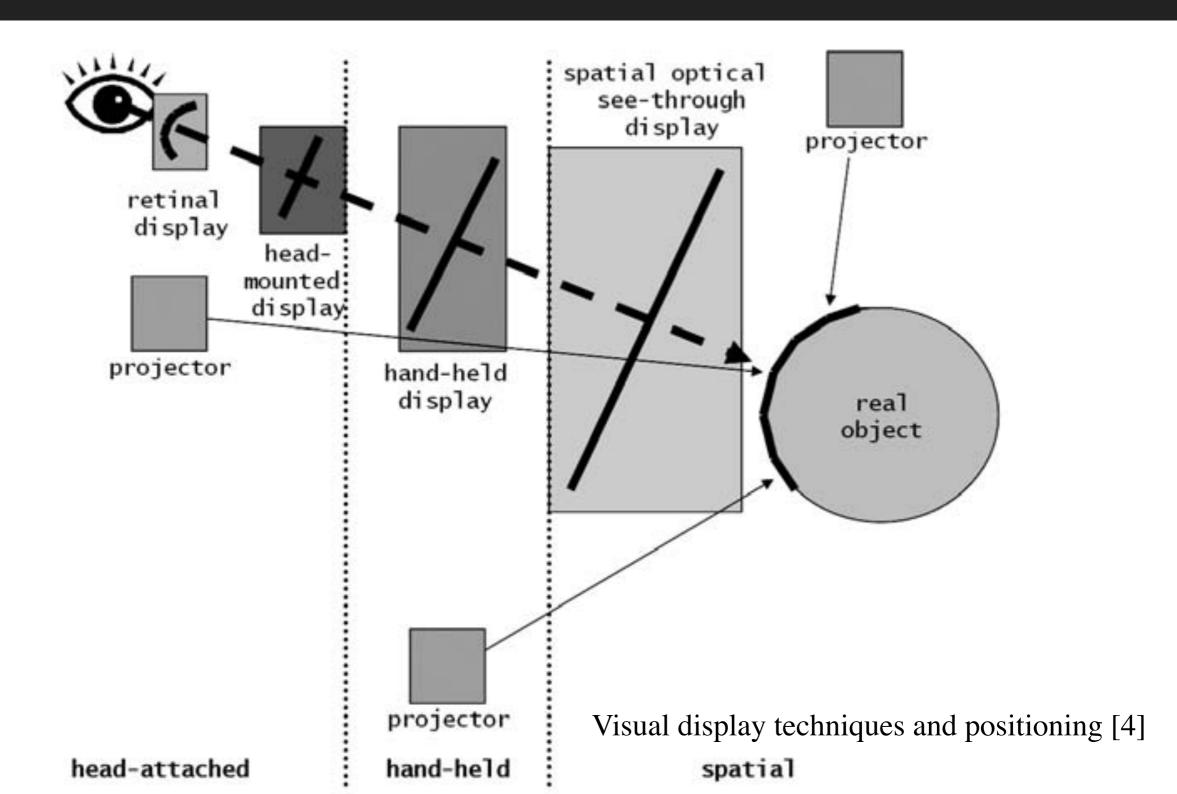
Reality-virtuality continuum [8]

### AUGMENTED REALITY

- combines real and virtual objects in a real environment
- registers (aligns) real and virtual objects with each other
- runs interactively, in three dimensions, and in real time.



http://blogs.solidworks.com/solidworksblog/wp-content/uploads/sites/2/6a00d83451706569e2017ee8115a91970d.jpg




http://mashable.com/2012/11/21/augmented-reality-advertising-privacy-law//#d9jbNWLqMOqx

### **AR DEVICES**

- Main devices for AR are
  - displays,
  - input devices,
  - tracking,
  - and computers.

### **DISPLAY TECHNOLOGIES**



### **DISPLAY POSITIONING**

- Head-mounted (Head-worn) [9]
  - Cakmakci and Rolland [9] give a recent detailed review of head-mounted display technology
  - video/optical see-through headmounted display (HMD)
  - virtual retinal display (VRD)
  - head-mounted projectors or projective displays (HMPD)











https://upload.wikimedia.org/wikipedia/commons/d/dd/Google\_Glass\_Main.jpg



https://www.microsoft.com/microsoft-hololens/en-us

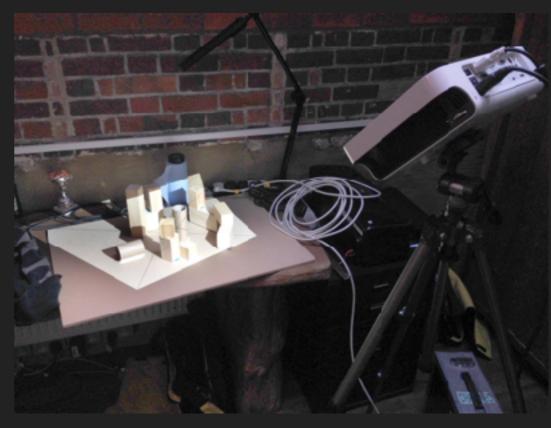
### **DISPLAY POSITIONING**

- Hand-held
  - video/optical see-through displays
  - hand-held projectors



http://static511.layar.com.s3.amazonaws.com/old/2010/09/10x0902samsung75nh10.jpg

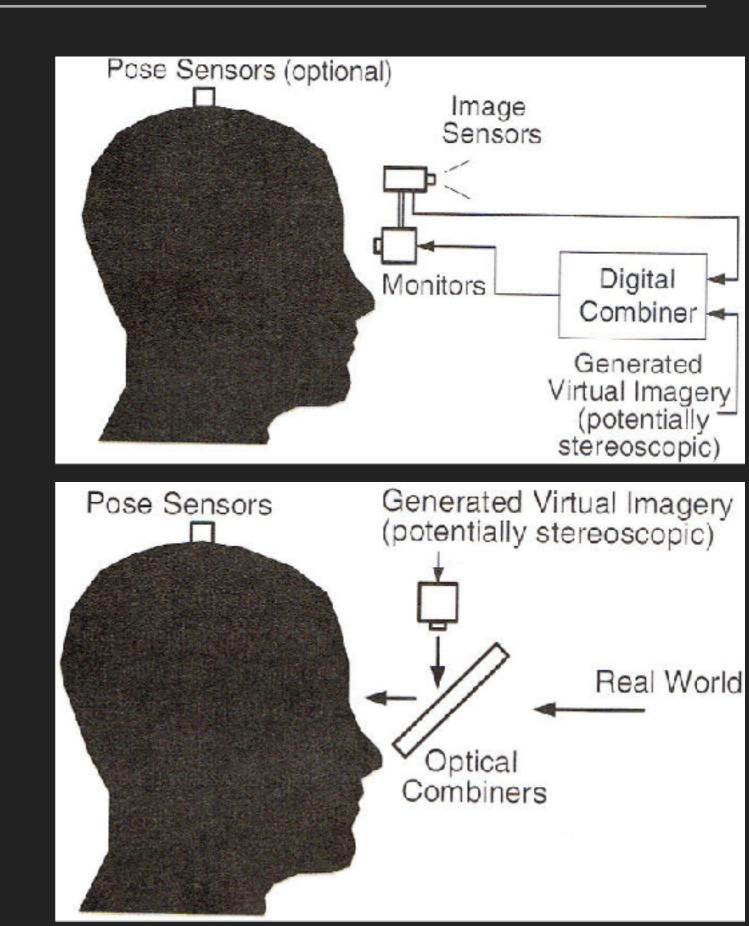



http://i.imgur.com/PZRD5xl.jpg?1

### **DISPLAY POSITIONING**

- Spatial Displays
  - placed statically within the environment
  - screen-based video seethrough
  - spatial optical see-through displays
  - projectors




http://korala.lt/file/2012/02/HoloScreen-21.jpg



https://i1.creativecow.net/u/278136/0\_photo.jpg

### **VISUAL DISPLAYS**

- basically three ways to visually present an augmented reality
  - video-see-through
  - optical see-through
  - projective displays



### VIDEO SEE-THROUGH

#### advantages

- Since reality is digitised, it is easier to mediate or remove objects from reality
- includes removing or replacing of markers or placeholders with virtual objects
- brightness and contrast of virtual objects are matched easily with the real environment
- techniques of video production are usable, but needed in real time
- digitised images allow tracking of head movement

#### disadvantages

- see-through include a low resolution of reality
- a limited field-of-view (although this can easily be increased)

### **OPTICAL SEE THROUGH**

possible for head-worn displays, hand-held displays, and spatial setups

#### advantages

- leave the real-world resolution intact
- parallax-free(no eye-offset due to camera positioning) [8]
- users can still see when power fails [8]

#### disadvantages

- transparent mirrors and lenses reduces brightness and contrast
  - of images and
  - real-world perception

### **PROJECTIVE DISPLAYS**

#### advantages

- (do not require special eye-wear)
- can cover large surfaces for a wide field-of-view
- Projection surfaces may range from flat, plain coloured walls to complex scale models [3]

#### disadvantages

- additional interaction devices needed (indirect interaction)
- need to be calibrated
- Imited to indoor use only (or by night also outdoor)
- due to low brightness and contrast

### **CHARACTERISTICS OF VISUAL AR DISPLAYS**

| Positioning                     | STRVEVED VISITAL A  | Head-               | worn    |                                  | Hand-held                   | Spatial                       |                    |                      |
|---------------------------------|---------------------|---------------------|---------|----------------------------------|-----------------------------|-------------------------------|--------------------|----------------------|
| Technology                      | Retinal             | Optical             | Video   | Projective                       | All                         | Video                         | Optical            | Projective           |
| Mobile                          | +                   | +                   | +       | +                                | +                           | -                             |                    | -                    |
| Outdoor use                     | +                   | ±                   | <br>    | +                                | ±                           |                               |                    |                      |
| Interaction                     | +                   | +                   | +       | +                                | +                           | Remote                        |                    |                      |
| Multi-user                      | +                   | +                   | +       | +                                | +                           | +                             | Limited            | Limited              |
| Brightness                      | +                   | _                   | +       | +                                | Limited                     | +                             | Limited            | Limited              |
| Contrast                        | +                   | _                   | +       | +                                | Limited                     | +                             | Limited            | Limited              |
| Resolution                      | Growing             | Growing             | Growing | Growing                          | Limited                     | Limited                       | +                  | +                    |
| Field-of-view                   | Growing             | Limited             | Limited | Growing                          | Limited                     | Limited                       | +                  | +                    |
| Full-colour                     | +                   | +                   | +       | +                                | +                           | +                             | +                  | +                    |
| Stereoscopic                    | +                   | +                   | +       | +                                | -                           | _                             | +                  | +                    |
| Dynamic refocus<br>(eye strain) | +                   | _                   | _       | +                                | _                           | _                             | +                  | +                    |
| Occlusion                       | ±                   | ±                   | +       | Limited                          | ±                           | +                             | Limited            | Limited              |
| Power economy                   | +                   |                     | _       | _                                | _                           |                               | _                  | _                    |
| Opportunities                   | Future<br>dominance | Current dominance   |         |                                  | Realistic,<br>mass-market   | Cheap,<br>off-the-shelf       | Tuning, ergonomics |                      |
| Drawbacks                       |                     | Tuning,<br>tracking | Delays  | Retro-<br>reflective<br>material | Processor,<br>Memory limits | No<br>see-through<br>metaphor | Clipping           | Clipping,<br>shadows |

CHARACTERISTICS OF SURVEYED VISUAL AR DISPLAYS [8]

### TRACKING SENSORS AND APPROACHES

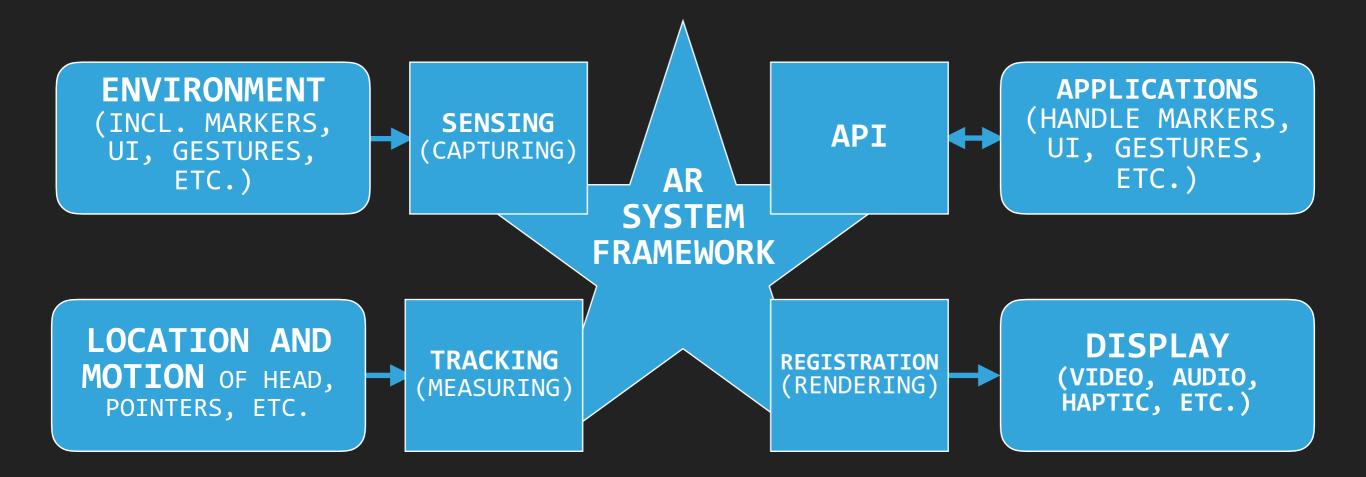
- User Movement Tracking & interaction tracking
- Mechanical, ultrasonic, and magnetic
  - Global positioning systems
  - Radio
  - Inertial
  - Optical
  - Hybrid (Sensor Fusion)

### TRACKING

| Technology            | Range (m)      | Setup time (hr) | Precision (mm) | Time (s) | Environment |
|-----------------------|----------------|-----------------|----------------|----------|-------------|
| Optical: marker-based | 10             | 0               | 10             | 8        | in/out      |
| Optical: markerless   | 50             | 0-1             | 10             | 00       | in/out      |
| Optical: outside-in   | 10             | 10              | 10             | 00       | in          |
| Optical: inside-out   | 50             | 0-1             | 10             | 00       | in/out      |
| GPS                   | 00             | 0               | 5000           | 00       | out         |
| WiFi                  | 100            | 10              | 1000           | 00       | in/out      |
| Accelerometer         | 1000           | 0               | 100            | 1000     | in/out      |
| Magnetic              | 1              | 1               | 1              | 00       | in/out      |
| Ultrasound            | 10             | 1               | 10             | 00       | in          |
| Inertial              | 1              | 0               | 1              | 10       | in/out      |
| Hybrid                | 30             | 10              | 1              | 00       | in/out      |
| UWB                   | 10– <b>300</b> | 10              | 500            | 00       | in          |
| RFID: active          | 20-100         | when needed     | 500            | 00       | in/out      |
| RFID: passive         | 0.05–5         | when needed     | 500            | 00       | in/out      |

### **INPUT DEVICES**

- Iarge variety of input devices for AR (also VR)
  - Gloves
  - wristband
  - smartphone
  - phone as pointing device (see Google Sky Map)
  - Chosen input device depend on the application
  - big aim: hand free interaction


### **USER INTERFACE AND INTERACTION**

- New UI paradigm
- Tangible UI and 3D pointing
- Natural UI
  - Haptic UI and gesture recognition
  - Visual UI and gesture recognition
  - Aural UI and speech recognition
- Multimodal AR interfaces

### MORE AR REQUIREMENTS

- Höllerer and Feiner [5][6] mention three more requirements for a mobile AR system:
  - computational framework,
  - wireless networking,
  - and data storage and access technology.
- Content is of course also required, so some authoring tools are mentioned here as well.

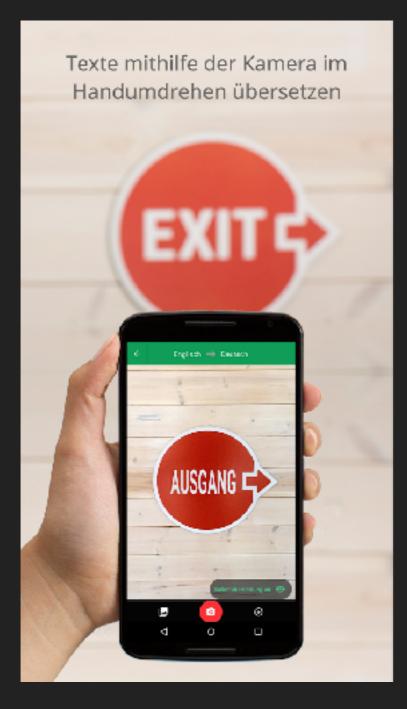
### **TYPICAL AR FRAMEWORK TASK**



Typical AR system framework tasks (adopted from [8])

### APPLICATIONS

- wide range of applications possible with AR
  - Personal information systems
    - [10] "biggest potential markets for AR"
  - Personal Assistance and Advertisement
  - Navigation
  - Touring


### APPLICATIONS

- Industrial applications
  - Design
  - Assembly
  - Maintenance
  - Training and Simulation

### APPLICATIONS

- AR for entertainment
  - Sports broadcasting
  - Event broadcasting
  - Games
  - Edutainment
- AR for Office
- AR for collaboration

### **APPLICATION – PERSONAL ASSISTANCE**





https://play.google.com/store/apps/details?id=com.google.android.apps.translate&hl=de

### **APPLICATION - NAVIGATION**



http://www.wearear.de/augmented-reality-bei-mercedes-benz/

### **APPLICATION – NAVIGATION**



http://0.design-milk.com/images/2013/08/IKEA-augmented-reality-app-catalogue-01.jpg

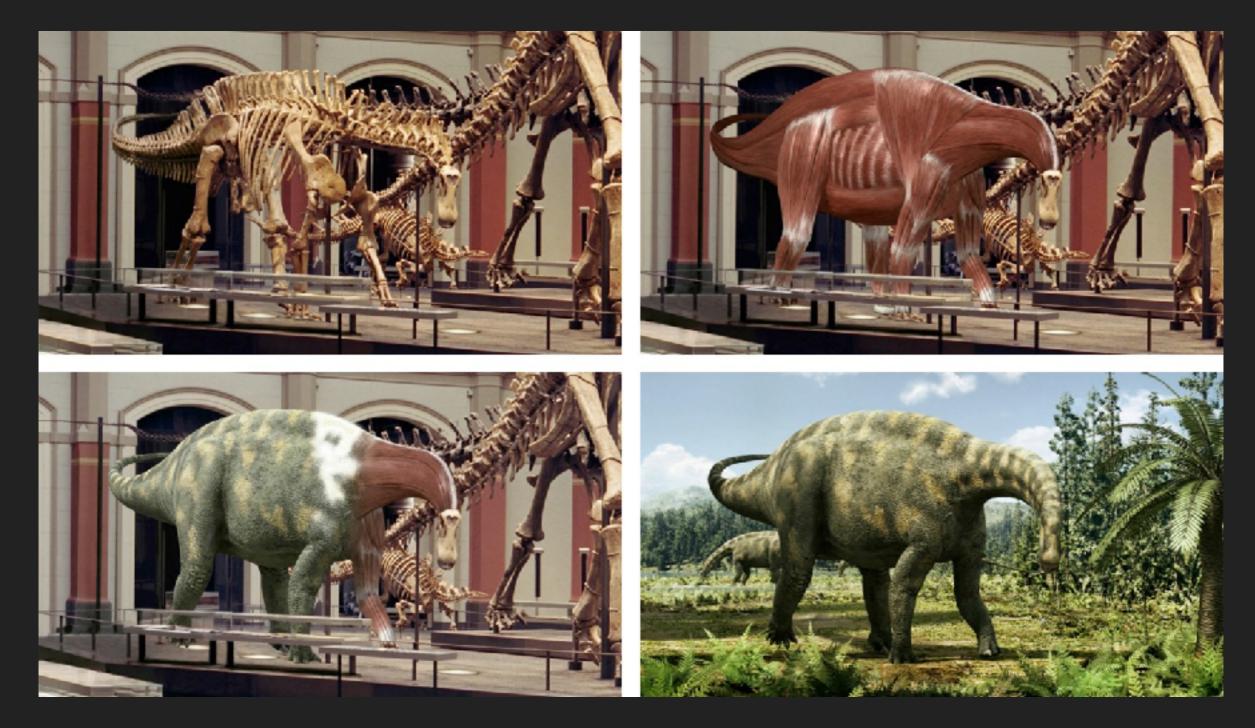
### **APPLICATION – MAINTENANCE**



https://artcom.de/project/augmentierte-3d-exponate/

### **APPLICATION - DESIGN**




https://www.jvrb.org/past-issues/1.2004/34

### **APPLICATION – EDUTAINMENT**



https://artcom.de/project/museum-fuer-naturkunde/

### **APPLICATION – EDUTAINMENT**



https://artcom.de/project/museum-fuer-naturkunde/

### ACCEPTANCE

- Social acceptance issues
  - Interaction with AR systems implemented in mobile applications need to be subtle, discrete and unobtrusive, so to not disrupt the user if s/he is under a high load of work and the disruption is not of priority level
- Natural Interaction
- Fashion acceptance
- Personal and private systems

### FUTURE OF AR

- AR is still in infancy state
- future possible applications are infinite
- also brings the possibility of enhancing missing senses for some users
- Even the future is not far from challenges for augmented reality. We
- social acceptance issues, privacy concerns, and ethical concern arising with the future of augmented reality applications in the industry.

### SOURCES (1)

- [1] H. Tamura. Steady steps and giant leap toward practical mixed reality systems and applications. In VAR'02: Proc. Int'l Status Conf. on Virtual and Augmented Reality, Leipzig, Germany, Nov. 2002.
- [2] I. E. Sutherland. A head-mounted three-dimensional display. In Proc. Fall Joint Computer Conf., pp. 757-764, Washington, DC, 1968. Thompson Books.
- [3] O. Bimber and R. Raskar. Modern approaches to augmented reality. In J. Fujii, editor, SIGGRAPH'05: Int'l Conf. on Computer Graphics and Interactive Technique, Los Angeles, CA, USA, Jul. 31-Aug. 4 2005. ISBN 1-59593-364-6.
- [4] O. Bimber and R. Raskar. Spatial Augmented Reality: Merging Real and Virtual Worlds. A. K. Peters, Wellesley, MA, USA, 2005. ISBN 1-56881-230-2.
- [5] ISWC'99: Proc. 3rd Int'l Symp. on Wearable Computers, San Francisco, CA, USA, Oct. 18-19 1999. IEEE CS Press. ISBN 0-7695-0428-0.
- [6] T. Höllerer, S. Feiner, and J. Pavlik. Situated documentaries: Embedding multimedia presentations in the real world. In [5], pp. 79-86.

### SOURCES (2)

- [7] T. H. Höllerer and S. K. Feiner. Mobile Augmented Reality. In H. Karimi and A. Hammad, editors, Telegeoinformatics: Location-Based Computing and Services. CRC Press, Mar. 2004. ISBN 0-4153-6976-2.
- [8] D.W.F. van Krevelen, R. Poelman. A Survey of Augmented Reality Technologies, Applications and Limitations, In: The International Journal of Virtual Reality, 2010, 9(2):1-20,
- [9] O. Cakmakci and J. Rolland. Head-worn displays: A review. Display Technology, 2(3):199–216, Sep. 2006.
- [10] C. E. Hughes, C. B. Stapleton, D. E. Hughes, and E. M. Smith. Mixed reality in education, entertainment, and training. IEEE Computer Graphics and Applications, pp. 24–30, Nov./Dec. 2005.
- [11] IWAR'99: Proc. 2nd Int'l Workshop on Augmented Reality, San Francisco, CA, USA, Oct. 20-21 1999. IEEE CS Press. ISBN 0-7695-0359-4.
- [12] A. Butz, T. Höllerer, S. Feiner, B. MacIntyre, and C. Beshers. Enveloping users and computers in a collaborative 3D augmented reality. In [11], pp. 35–44.
- [13] Hevner, A.; Chatterjee, S.: Design science research in information systems. Springer 2010. ISBN: 1441956522.

### SOURCES (3)

- [14] Wikipedia, the free encyclopedia (2010) http:// en.wikipedia.org/wiki/Augmented\_reality, AugmentedReality
- [15] Wikipedia, the free encyclopedia (2009) http:// en.wikipedia.org/wiki/Sensorama, Sensorama
- [16] https://www.icg.tugraz.at/~daniel/ HistoryOfMobileAR/ (2009) History of mobile augmented reality