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2 Recap Yesterday

● Linear Perceptron 
 

Parameter 
y = w ⋅ x + b

θ = (w, b)

Model Objective Training
● Fit between training data 

and prediction

● Regression (mse): 

ℒ = (ytrue − ypred)2

● Find parameters which 
minimize loss ( )


● Gradient descent 
ℒ

θ → θ − α
dℒ
dθ
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3 Approximate N-Dim Arbitrary Functions

● Find rules which connect Data→Answers (x→y)

x

y
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3 Approximate N-Dim Arbitrary Functions

● Find rules which connect Data→Answers (x→y)

x

y

Need: 
Non-linear model!
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4 Non Linear Network Models

● Need non-linear model


● Chain layers

■ 

■

h = W(1)x + b(1)

y = W(2)h + b(2)

x1

x2

h1

h2

h3

y1

y2

+b(1)
+b(2)

W(1) W(2)

W b

■ Model is still linear:

－ 

－

y = W(2)(W(1)x + b(1)) + b(2)

y = W(2)W(1)x + W(2)b(1) + b(2)

● Solution: Apply non linear activation function  to each element:

■

σ
h′ = σ(W1x + b1)
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5 The Perceptron (revisited)

● Approximate Non-Linear Function 

● Parametrizable (N+1 parameters):


■ Weights: w1, w2, …, wN

■ Bias: b


● Functional form:

f : ℝN → ℝ1

y = σ (∑
i

wi ⋅ xi + b) = σ(Wx + b)

⋅ w1x1 y

b ⋅ 1

x2

⋅ w2

…

∑ σ

Non linear 
activation!
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6 Activation Functions

● Non-linear perceptron:  with non-linear activation function 

● Many different possibilities, three common examples: Sigmoid, ReLU, Tanh

y = σ(Wx + b) σ

Hyperbolic tangent


σ(x) = e2x − 1
e2x + 1

Tanh 

Logistic function


σ(x) = 1
1 + e−x

Sigmoid 

Rectified Linear Unit

ReLU 

σ(x) = max(0,x)
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7 Neural Network Architecture

● Build network out of nodes/neurons 

■ Strength of connections between nodes in specified by weight matrix W

■ Width: number of nodes per layer

■ Depth: number of layers holding weights

σ(Wx + b)
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Neural Networks

Basic unit                     is called node/neuron (analogy to neuroscience)

● Strength of connections between neurons is specified by weight matrix

● Width: number of neurons per layer

● Depth: number of layers holding weights (do not count input layer)
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8 Neural Network Architecture

● Build network out of nodes/neurons 

■ Strength of connections between nodes in specified by weight matrix W

■ Width: number of nodes per layer

■ Depth: number of layers holding weights


● Each new layer can extract more abstract features

σ(Wx + b)
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Neural Networks

Basic unit                     is called node/neuron (analogy to neuroscience)

● Strength of connections between neurons is specified by weight matrix

● Width: number of neurons per layer

● Depth: number of layers holding weights (do not count input layer)
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9 Universal Approximation Theorem (1/2)

● A neural network with one hidden layer with a finite number of nodes can (in 
theory) approximate any reasonable function to arbitrary precision

x

w=1

w=-1

w=1

w=100

b=100

w=5w=100
y1

y2

y3

y3=y1-y2 
=σ(100x)-σ(100x-100)
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  0.25 (σ(100x + 200) - σ(100x + 100)) 
+ 0.5  (σ(100x + 100) - σ(100x +   0)) 
+ 1.0  (σ(100x +   0) - σ(100x - 100)) 
+ 1.2  (σ(100x - 100) - σ(100x - 200)) 
+ 0.8  (σ(100x - 200) - σ(100x - 300)) 
+ 1.6  (σ(100x - 300) - σ(100x - 400))

f(x) = 

10 Universal Approximation Theorem (2/2)

● A neural network with one hidden layer with a finite number of nodes can (in 
theory) approximate any reasonable function to arbitrary precision
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  0.25 (σ(100x + 200) - σ(100x + 100)) 
+ 0.5  (σ(100x + 100) - σ(100x +   0)) 
+ 1.0  (σ(100x +   0) - σ(100x - 100)) 
+ 1.2  (σ(100x - 100) - σ(100x - 200)) 
+ 0.8  (σ(100x - 200) - σ(100x - 300)) 
+ 1.6  (σ(100x - 300) - σ(100x - 400))

f(x) = 

10 Universal Approximation Theorem (2/2)

● A neural network with one hidden layer with a finite number of nodes can (in 
theory) approximate any reasonable function to arbitrary precision

● No statement on number of nodes

● Shallow models hard to train

⇒ Train Deep Models!

But: 
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11 Parameter Initialization

● Initialization of model parameters critical for performance

● Choose Gaussian distributed initial weights

● Two standard initializations:


■ Sigmoid, Tanh: 

■ ReLU:  

σ2 = 2/(nin + nout)
σ2 = 2/nin

Weights too large Weights too small
exploding signals vanishing signals

[2]
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13 Regression and Classification

● Two different tasks of supervised learning

● Different architecture, objective and training

5000€

● Predict continuous variable (e.g. Student → Future net income)
Regression

7500€

3200€ 4500€

Cat

Classification
● Predict discrete class (e.g. Picture → Cat/Dog)

Cat
Dog

[3]
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14 Regression: Predict continuous variables

● Predict a real number associated with a feature vector

● Example:


■ Prediction: What is the future net income of the students?

■ Input: Grade in course, Age, Participation


● Last activation: Linear (no activation)

● Loss: Mean squared error

Deep Learning
Glombitza | RWTH Aachen | 
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Regression vs. Classification

● Regression: Predict continuous label 

● Classification: Separate into different classes (cats, dogs, airplanes, …)

● Can sometimes convert to the other

ℒ = 1
n

n

∑
i

(ytrue
i − ypred

i )2
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15 Regression (Example)

● Example: Dataset with n=3 samples

ℒ ∝ 0.25 + 4 + 1 = 5.25

i = 1 Income [k€]

True ytrue 5

Pred ypred 5.5

(ytrue-ypred)2 0.25

ℒ1 = 0.25

Grade in course: A

Age: 27

Participation: Good

i = 2 Income [k€]

True ytrue 6

Pred ypred 4

(ytrue-ypred)2 4

ℒ2 = 4

Grade in course: C

Age: 25

Participation: Fair

sdfdsf

i = 3 Income [k€]

True ytrue 9

Pred ypred 8

(ytrue-ypred)2 1

ℒ3 = 1

Grade in course: A

Age: 32

Participation: Awesome

ℒ = 1
n

n

∑
i

(ytrue
i − ypred

i )2
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16 Classification: Predict discrete classes

● Predict a discrete value (label) associated with a feature vector

● Example:


■ Prediction: Does this picture show a cat or a dog?

■ Input: Pixels of image


● Last activation: Sigmoid/softmax (probability )

● Loss: Cross-Entropy with c classes

q ∈ [0,1]

Deep Learning
Glombitza | RWTH Aachen | 
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Regression vs. Classification

● Regression: Predict continuous label 

● Classification: Separate into different classes (cats, dogs, airplanes, …)

● Can sometimes convert to the other

pcat=1

pcat=0

σ
q

ℒ = − 1
n

n

∑
i

c

∑
j

pij ⋅ log(qij)

[3]
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17 Classification (Example)

● Example: Dataset with n=3 samples of c=2 classes (cats and dogs)

ℒ ∝ 0.5 + 0.4 + 0.1 = 1.0

ℒ(θ) = − 1
n

n

∑
i

c

∑
j

pij ⋅ log(qij)

Cat Dog

True p1j 1 0

Pred q1j 60 % 40 %

log(q1j) -0.5 -0.9

ℒ1 = 0.5

i = 1
Cat Dog

True p2j 0 1

Pred q2j 30 % 70 %

log(q2j) -1.2 -0.4

ℒ2 = 0.4

i = 2
Cat Dog

True p3j 1 0

Pred q3j 90 % 10 %

log(q3j) -0.1 -2.3

ℒ3 = 0.1

i = 3

[3]
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19 Optimization (Gradient Descent) - Revisited

● Minimize objective function 

● Update model ( ) in opposite direction of gradient iteratively

ℒ(θ)
θ

θ → θ − α
dℒ
dθ

Wi Wi+1

dℒ
dθ

GradientStep size

(learning rate)

ℒ(θ)

θ
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20 Backpropagation (Calculate  )dℒ/dθ

● Each network is a series of (simple) mathematical operations

● Each operation has:


■ Local output (forward pass)

■ Local derivative (backward pass)


● Use chain rule to evaluate derivatives  for every parameter dℒ/dθi θi

x

y

· + σ

)W b

Example:    ypred = z3 = σ(Wx + b)

z1 z2 z3

∂ℒ/∂W = ∂ℒ/∂z3 ⋅ ∂z3/∂z2 ⋅ ∂z2/∂z1 ⋅ ∂z1/∂W
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21 Backpropagation (Example)

x

1

y

1

· +

)W

0.5

b

0.1

∂ℒ/∂W = ∂ℒ/∂z3 ⋅ ∂z3/∂z2 ⋅ ∂z2/∂z1 ⋅ ∂z1/∂W









z1 = Wx = 0.5
z2 = z1 + b = 0.6
z3 = σ(z2) = ReLU(z2) = 0.6
ℒ(z3) = (z3 − y)2 = 0.16

Forward pass











∂ℒ/∂z3 = 2(z3 − y) = − 0.8
∂z3/∂z2 = ∂σ(z2)/∂z2 = 1
∂z2/∂z1 = 1
∂z1/∂W = x = 1
⇒ ∂ℒ/∂W = − 0.4 ⋅ 1 ⋅ 1 ⋅ 1 = − 0.4

Backward pass

z1 z2 z3
ReLU
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Visualizing the Loss Landscape of Neural Nets

Hao Li1, Zheng Xu1, Gavin Taylor2, Christoph Studer3, Tom Goldstein1

1University of Maryland, College Park 2United States Naval Academy 3Cornell University
{haoli,xuzh,tomg}@cs.umd.edu, taylor@usna.edu, studer@cornell.edu

Abstract

Neural network training relies on our ability to find “good” minimizers of highly
non-convex loss functions. It is well-known that certain network architecture
designs (e.g., skip connections) produce loss functions that train easier, and well-
chosen training parameters (batch size, learning rate, optimizer) produce minimiz-
ers that generalize better. However, the reasons for these differences, and their
effect on the underlying loss landscape, are not well understood. In this paper, we
explore the structure of neural loss functions, and the effect of loss landscapes on
generalization, using a range of visualization methods. First, we introduce a simple
“filter normalization” method that helps us visualize loss function curvature and
make meaningful side-by-side comparisons between loss functions. Then, using
a variety of visualizations, we explore how network architecture affects the loss
landscape, and how training parameters affect the shape of minimizers.

1 Introduction

Training neural networks requires minimizing a high-dimensional non-convex loss function – a
task that is hard in theory, but sometimes easy in practice. Despite the NP-hardness of training
general neural loss functions [3], simple gradient methods often find global minimizers (parameter
configurations with zero or near-zero training loss), even when data and labels are randomized before
training [43]. However, this good behavior is not universal; the trainability of neural nets is highly
dependent on network architecture design choices, the choice of optimizer, variable initialization, and
a variety of other considerations. Unfortunately, the effect of each of these choices on the structure of
the underlying loss surface is unclear. Because of the prohibitive cost of loss function evaluations
(which requires looping over all the data points in the training set), studies in this field have remained
predominantly theoretical.

(a) without skip connections (b) with skip connections

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter
normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.
32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

22 Loss Landscape

● Loss (one number) describes how O(1k-1b) parameters must change

● Loss landscape can look very complicated (e.g. local minima)

● Different improvements possible:


■ Model (Architectures)

■ Loss (Regularisation)

■ Training (Optimizers)

[4]

https://papers.nips.cc/paper/2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf
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23 Stochastic Gradient Descent

● Until now: Calculation of loss and gradient based on whole dataset

● New idea: Approximate loss and gradient on subset of dataset (mini-batch)

Gradient Descent Stochastic Gradient Descent

Pro Contra

● More parameter updates

● Stochasticity helps 

escaping local minima

● Gradient not exact, however in 
practice good enough



Dennis Noll - 09.08.22
24 Epoch and Batches

● Training over dataset in batches:

■ Batch = Certain number of samples for which gradients are calculated

■ Epoch = One run through the whole training dataset

Dataset

PredictionsBatch

Parameter

Update
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25 Learning Rate (⍺)

● Training with gradient descent (learning rate ⍺ = step size scale) 

● Stable learning rates converge smoothly and avoid local minima

θ → θ − α
dℒ
dθ

O
bj

ec
tiv

e Much too high

Training steps

Too high

Too low

Just right

)(θ) Too small

Parameters

)(θ) Too high

Parameters



Dennis Noll - 09.08.22
27 Summary

● Non-linear perceptron 

Parameter 

● Deep networks

● General function approx.

y = σ(w ⋅ x + b)
θ = (w, b)

Model Objective
● Fit between training data 

and prediction

● Regression (mse):



● Classification (cross-ent.):

ℒ = (ytrue − ypred)2

ℒ ∝ − ΣiΣj pij log(qij)

Training
● Find parameters which 

minimize loss ( )

● Gradient descent 




● Backpropagation

● SGD & Batching

ℒ

θ → θ − α
dℒ
dθ
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28 Now is a Very Good Time!

● Enough data

● Often very well 

structured

facebook

180 PB

google 
searches

SKA

300 PB

HL-LHC

600 PB

Data

● Very good open 
source libraries


● Industry-near

Software

● Highly parallel

● GPU, TPU, …

Hardware

science!

science!

[5,6]
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29 Exercise 2.1 - Non-linear function XOR

● Try the Checkerboard example at playground.tensorflow.org

1. Try various settings for the number of layers and neurons using ReLU as 

activation. What is the smallest network that gives a good fit result? Is the 
configuration stable?


2. What do you observe for multiple trainings with the same settings?

3. Try additional input features. Which one is most helpful?

http://playground.tensorflow.org/#activation=relu&batchSize=10&dataset=xor&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=2&seed=0.89226&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false
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30 Exercise 2.1 - Non-linear function XOR

● Notes/Solutions:



Dennis Noll - 09.08.22
31 Exercise 2.2 - Non-linear function XOR

● Solve the checkerboard task using this notebook.

1. Inspect the implemented model. What is the total number of parameters? First 

do the calculation on paper, then verify your result using model.summary().

2. Train your model to an accuracy of at least 90%. How many epochs are 

needed to achieve this?

3. Plot the raw data and the output of your model. Describe your observations.

4. Change the network according to the following configurations and retrain the 

model. Describe your observations.

－ 8 neurons in the hidden layer

－ 2 neurons in the hidden layer

－ Add an additional hidden layer of 4 neurons with a ReLU activation

https://colab.research.google.com/github/Nollde/deep_learning_basics/blob/main/lecture2/exercise_2_2_checkerboard.ipynb
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32 Exercise 2.2 - Non-linear function XOR

● Notes/Solutions:
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Backup
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35 Excursus: Tensors!

● Immutable objects, usually placeholder for values (e.f. tf.Tensor)

● Defined by: Type (int, float, …) Rank & Shape

● First dimension usually “batch“

Scalar 1D Array 2D Array 3D Array

Rank 0 1 2 3

Code

(Tensorflow)

tf.constant(4)
tf.constant( 
  [1, 2, 3], 
)

tf.constant( 
  [ 
    [1, 2], 
    [3, 4], 
    [5, 6], 
  ] 
)

tf.constant( 
  [ 
    [ 
      […], 
    …, 
  ] 
)

Shape [ ] [3] [3, 2] [3, 2, 5]

Value 4 [1, 2, 3]

…

Ex
am

pl
es
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36 Excursus: Graphs!

● Graph = static computing model consisting of

■ Tensors (value placeholders)

■ Structural elements which connect tensors (e.g. tf.Operation)


● Defined by: Inputs, Outputs, Operations and connections

x1

x2

+

● Graphs can be optimized (parallel execution): Super fast!

● Graphs are portable: Run on CPU, GPU, TPU, Multiple devices in parallel

● Graphs are static: Everybody gets the same results, everywhere

Created by tf.function - see Marcels lecture

( )2

+f(x1, x2) = x1+x2+x22


