

Neural Network Building Blocks (3/3)

Docent: Dennis Noll (RWTH) Tutor: Boyang Yu (LMU)

Deep Learning School "Basic Concepts"

09.08.22

² Exercise 3.1 - Regression

- You are given data which follows a very complex function. Your task is to approximate this function using a deep neural network.
 - Open this notebook
 - Visualize the data
 - Create the model:
 - What is a suitable size?
 - How many inputs and outputs?
 - What are suitable activations?
 - Compile the model:
 - Which loss function should be used? (Documentation)
 - Which optimizer should be used?
 - Train the model and visualize its prediction. What do you observe?
 - Try to improve your model. You may try the following configurations. Describe your observations.
 - Different activation functions
 - ReLU, Sigmoid, Thanh
 - Different learning rates
 - 0.0001, 0.001, 0.01, 0.1, 1, 10
 - What happens if you increase the uncertainty of the data points?

Dennis Noll - 09.08.22

• Notes/Solutions:

4 Exercise 3.2 - Classification (Gaussians)

- You are given data from two classes. In each class the data follows a distribution out of one or many gaussian distributions with class dependent parameters. Your task is to build a model which can classify between the two classes.
 - Open <u>this notebook</u>
 - Visualize the data
 - Create the model:
 - What is a suitable size?
 - How many inputs and outputs?
 - What are suitable activations?
 - Hint: Think about the activation of the last layer.
 - Compile the model:
 - Which loss function should be used? (Documentation)
 - Which optimizer should be used?
 - Train the model
 - Visualize the output of the network along with the training data. Describe your observation.
 - Now we will make our exercise more difficult:
 - Make the functions more complex (N_PEAK) and train the classifier again. Describe your observations.
 - Raise the number of dimensions (N_DIM) to 2 (and 10) and train the classifier again.
 Describe your observations.

5 Exercise 3.2 - Classification (Gaussians)

• Notes/Solutions:

6 Exercise 3.3 [advanced] - Classification

 You are given training data from two one-dimensional gaussian probability distributions. The number of samples from each of the distributions is assumed to be very large. The parameter of the probability distributions are as follows:

Dennis Noll - 09.08.22

Gauss:
$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

- Distribution A: $\mu = 0, \sigma = 1.5$
- Distribution B: $\mu = 1, \sigma = 1.2$
- You train a sufficiently large network (f_{DNN}) with a single output utilizing a sigmoid activation with the cross-entropy to perform a classification between the two distributions.
- Tasks:
 - Using pen & paper: Predict the output of the network $f_{DNN}(x)$ in dependence of x.
 - Hint: Start with the cross entropy loss. What do you know about its derivative?
 - Use <u>this notebook</u> to perform the task. Compare the output of your training to your calculation.

7 Exercise 3.3 [advanced] - Classification

• Notes/Solutions:

<u>All Notebooks (Repo)</u> <u>All Notebooks (Colab)</u>