S
RN Rl AL T
3 ‘:si::i:'«%""'o"lllm

3% 9954,
“ e,»?%&%%'o":'gg/f/

I Y]
\

Mastering Model Building

Docent: ~ Marcel Rieger (UHH)
Tutors: Bogdan Wiederspan (UHH), Boyang Yu (LMU), Lars Sowa (KIT)

" Deep Learning School — "Basic Concepts"

"lt‘i Universitat Hamburg 09.08.2022

DER FORSCHUNG | DER LEHRE | DER BILDUNG

DATA HUB

2 Scope of "Mastering model building" Mastering model building

"Neural Network Building Blocks" — Dennis Noll

|

"Mastering model building”

e Goals

s Extend your intuition on effective model building
m lLearn practical concepts that guide through model optimization

s Fill your box of tools that help you identify the do's & don'ts

e Contents

s Variants of and improvements in fully-connected networks
s Numerical insights & considerations

s Overtraining suppression and regularization
s Optimization techniques
m Technical insights to TensorFlow and Keras

|

"Convolutional Neural Networks!" — Judith Reind|

3

Schedule

Today
14:30 - 16:00

Today
16:30 - 18:00

Tomorrow
09:00 - 10:30

20 1

30 1

40"

25 1

25 1

40"

10"

70 1

10”

Mastering model building

. Variants of and improvements in fully-connected networks (FCNs)

- Gradient calculation (recap), vanishing gradients, ResNet, ensemble learning, multi-purpose networks

. Numerical insights & considerations

- Domains, feature & output scaling, batch normalization, SELU, categorical embedding, class imbalance

. Techniques 1/2 & hands-on

- Keras functional API, custom Keras layer, computing gradients

. Regularization & overtraining suppression

- Overtraining & generalization, capacity & capability, regularization, dataset splitting

. Model optimization

- Optimizer choices, class-importance, hyper-parameters, search strategies

. Techniques 2/2 & hands-on

- Compute architecture, TensorFlow eager and graph, custom training loop, tensorboard

. Exercise introduction: Identifying Jets in Particle Collider Experiments

- Problem statement, input data & features, objective(s)

. Hands-on!

- Classification task, implementing newly learned techniques, extension to multi-purpose network

. Exercise summary and tips

- Example wrap-up, additional practical tips

4 Before we start ... Mastering model building

e Ask questions!

m Feel free to interrupt as more people might have the exact same question that's worth discussing

m Learning to discuss ML topics is an important goal of this school

e Time for hands-on parts is deliberately generous

m lechnical insights and practical hands-on experience are essential for mastering ML

= You should be able to fully understand and digest presented concepts & code examples
m Best ideas emerge from just "playing around”

e | have a particle-physicist's bias ...

s Chosen examples might reflect that

s |'ll try to keep them as simple as possible

1. Variants of and improvements in fully-connected networks (FCNs

6 Gradients by example (1) Mastering model building

e Consider f(x,y,7) = (x +y) - z as a computational graph
that is too complicated to derive directly

e Perform the forward pass and back-propagation for

X=-2,y=5,z=-4 9

6 Gradients by example (1) Mastering model building

e Consider f(x,y,7) = (x +y) - z as a computational graph
that is too complicated to derive directly

e Perform the forward pass and back-propagation for

X=-2,y=5,z=-4 9

6 Gradients by example (1) Mastering model building

e Consider f(x,y,7) = (x +y) - z as a computational graph
that is too complicated to derive directly

e Perform the forward pass and back-propagation for

X=-2,y=5,z=-4 9
X
e Introduceg=x+y—->f=qg-z " >
5 -12 :
. of 09 _ 0q : "
o rartial derivatives —=¢q, —=z, —=—=1
07 0q ox 0y
4

6 Gradients by example (1) Mastering model building

e Consider f(x,y,7) = (x +y) - z as a computational graph
that is too complicated to derive directly

e Perform the forward pass and back-propagation for

X=-2,y=5,z=-4 9
X
e Introduceg=x+y—->f=qg-z + 3
5 -12 f
y >
0 0 0 0
o Partial derivatives —f = ¢, —f = 7. hch = bl =] 1
07 0q ox 0y
-4

6 Gradients by example (1) Mastering model building

e Consider f(x,y,7) = (x +y) - z as a computational graph
that is too complicated to derive directly

e Perform the forward pass and back-propagation for

X=-2,y=5,z=-4 9
X
e Introduceg=x+y—->f=qg-z " >
5 -12 f
y >
0 0 0 0
o Partial derivatives —f = ¢, —f = 7. hch = bl =] 1
07 0q ox 0y
-4
Z
3

6 Gradients by example (1) Mastering model building

e Consider f(x,y,7) = (x +y) - z as a computational graph
that is too complicated to derive directly

e Perform the forward pass and back-propagation for

X=-2,y=5,z=-4 9
X
e Introduceg=x+y—->f=qg-z " >
5 -4 12 f
y >
0 0 0 0
o Fartial derivatives —f = ¢, —f = Z, A _A_ 1 L
07 0q ox 0y
-4
A
3

6 Gradients by example (1) Mastering model building

e Consider f(x,y,7) = (x +y) - z as a computational graph
that is too complicated to derive directly

e Perform the forward pass and back-propagation for

X=-2,y=5,z=-4 9
X
_4 ;
e Introduceg=x+y—->f=qg-z v
5 -4 12 ir
N of 0 _ dq | 1
R Partial derivatives —=¢q¢, —=z, —=—=1
07 0q ox 0y
4
: 3
o Obtain ™ through chain rule (same for y)
of o o0q

" Ox O0g oOx

6 Gradients by example (1) Mastering model building

e Consider f(x,y,7) = (x +y) - z as a computational graph
that is too complicated to derive directly

e Perform the forward pass and back-propagation for

X=-2,y=5,z=-4 9
X
_4 ;
e Introduceg=x+y—->f=¢q-z +
5 4 12 ir
N of 0 _ dq "1 1
R Partial derivatives —=¢q¢, —=z, —=—=1
07 0q ox 0y
4
: 3
o Obtain ™ through chain rule (same for y)
of df O9q
" O0x 0g oOx

e [Irivial in this example, but important implications

s When an input is changed by A,
f changes by "A X gradient"

6 Gradients by example (1) Mastering model building

e Consider f(x,y,7) = (x +y) - z as a computational graph
that is too complicated to derive directly

e Perform the forward pass and back-propagation for

X=-2,y=5,z=-4 9
X
e Introduceg=x+y—->f=qg-z " >
5 -12 f
. of 0 _ 0q y "
R Partial derivatives —=¢q¢, —=z, —=—=1
07 0q ox 0y
4
/A
o Obtain ™ through chain rule (same for y)
of o o0q
" O0x 0g oOx

e [Irivial in this example, but important implications

s When an input is changed by A,
f changes by "A X gradient"

7 Gradients by example (2) Mastering model building

e During forward pass, "operation" f can already compute so-called local gradients of its output
07 07

. — and —
0x dy

e Upon back-propagation, global gradient is simply computed by means of back-propagation via multiplication

7 Gradients by example (2) Mastering model building

e During forward pass, "operation" f can already compute so-called local gradients of its output
07 07

. — and —
0x dy

e Upon back-propagation, global gradient is simply computed by means of back-propagation via multiplication

7 Gradients by example (2) Mastering model building

e During forward pass, "operation" f can already compute so-called local gradients of its output
07 07

. — and —
0x dy

e Upon back-propagation, global gradient is simply computed by means of back-propagation via multiplication

8 Activation functions Mastering model building

e Activation functions add non-linear behavior to a network layer

s Allows finding more complex inner representations (hidden features)
within fewer layers

activation

s But: need to control input space to prevent vanishing gradients!

e Examples

Sigmoid tanh
o(e) = s tanh(x)

= ¢ and many more ...
RelLU ELU

>0
]:I:l:gtg)(:(:(:)‘7 :zji) <{:i:i(:€333 .]-) j:i :;;E () ¥ =

-10 10

9 Vanishing gradients Mastering model building

e Example: sigmoid

0 . .
. Local gradient 60- = ¢’ yields asymptotically vanishing behavior Slngld
A 1
> o0(x) =o0(x)- (1 —o(x)) O-(ZC) - 14e— 7
~ Gradient vanishes for small and large x -10 ’ 10

s [wo possible solutions:

a) Manually enforce x € [—2,2] (keeps gradient above 0.1)

— Not trivial since x is usually scalar product W/ - x; + b, X

— See "Numerical insights”

b) Use different activation

9 Vanishing gradients Mastering model building

e Example: sigmoid

0 . .
. Local gradient 60- = ¢’ yields asymptotically vanishing behavior Slngld
A 1
> o0(x) =o0(x)- (1 —o(x)) 0'(113) - 14e— 7
~ Gradient vanishes for small and large x -10 ’ 10

s [wo possible solutions:

a) Manually enforce x € [—2,2] (keeps gradient above 0.1)

— Not trivial since x is usually scalar product W/ - x; + b, X

€---""===.7 0z

S ox

— See "Numerical insights" ok _ oL o2

f
(arbitrary function)

b) Use different activation

0z 6_L
y - a_y 0z
oL JL oz
0_)7_ 0z 0y
o Better: ReLU/ ELU / ...
s Gradient always present (in fact, 1) for x = 0 N
s RelLU: unit dead once x < 0 (but can be desired, see CNNs) ELU
> ()

m ELU: units can recover over time after x < 0, accelerated by o v <z

ae®—1) <0 - - i

10 Beyond FCNs: ResNet Mastering model building

e ImageNet (Large Scale Recognition) challenge

= |Image recognition challenge that was driving the advancement of ML research
s 1.3M training images, 0.1M test images, 1000(!) classes

Top-5 error
S 26%

20%
15% -
10% -

50/0

0%

2010 2011 2012 2013 2014 Human 2015 2016 2017
NEC-UIUC XRCE AlexNet ZFNet GoogleNet ResNet GooglLeNet
VGGNet -v4

e ResNet became the first architecture to beat human recognition performance (7 years ago)

s Residual learning — predict target & add additional layers to learn residual differences

— — —
s f(X) =% +6(%) X
s Benefits convergence and fast gradient [l /’\ e >,
propagation through deep NNs! :
- - - 4 - -
f(x) < o(X) < o X 0E (RN R R (e (R i
0 Many layers

from "Deep learning in Physics Research", Erdmann et al.

https://www.worldscientific.com/worldscibooks/10.1142/12294#t=aboutBook

11 Beyond FCNs: DenseNet Mastering model building

e DenselNet

m Pass on layer outputs as additional inputs to all subsequent layers

s Less weights required to reach equal performance compared to ResNet

npVt Xo
i, 26
- x| — —o—HarDNet
~con Q
N S 20 T ~o—HarDNet Cosine
= % - ——DenseNet
L 7 5 24 .
g Re 5 —4—DenseNet Cosine
H;] S 23 | —-ResNet
! “co 3 2
Re - -
22
H, . (Z%
T\ nv o
v;\?ﬁﬁe - g 21 L
\ ‘ Laye’ 20 | | | | | | |
T 0 10 20 30 40 50 60 70 80

Parameter Size (M)

from arXiv:1909.00948

https://arxiv.org/pdf/1909.00948

12 Beyond FCNs: Ensemble learning Mastering model building

e [he predictive power of multiple networks can be combined

NN 1

OP

(avg,max)

e Benefits

s Performance usually improved (many Kaggle challenges won this way)

m Less prone to fluctuations in input data, that a single NN might have picked up

e Variants

a) Ensemble can be trained as one, with different initial weights per NN
b) Same as a) plus use different subsets of data

13 Beyond FCNs: Multi-purpose networks Mastering model building

e A network can serve multiple tasks

= Common base layers

s Specific "heads" per output objective A
s Multiple objectives to be connected through loss function
> A balances importance of A and B to overall loss
objective B

m Countless variants

~ E.g. for >2 tasks, add several common bases

e Allows performing several tasks at once while profiting from
m Single training process
= Joined learning of inner representations important to both tasks

s Constructive mutual influence
~ Updates propagated back to common base from A can improve B in next forward pass

~ Effectively, more ground truth information is used

e Used in real-life applications (e.g. self-driving vehicles)

13 Beyond FCNs: Multi-purpose networks Mastering model building

e A network can serve multiple tasks

= Common base layers common base

~—~1§: - 1 .
® [[® [®
- Z N\ Z N

Multi-Task Learning “

@ objective B

reg reg | reg

Decoder Trunk Decoder Trunk Fully Connected

T T |

Im‘ 3 N m- ' o

'r. L1 RO F:1 ON:t
i uaiaiie - W:7.8 AP:0.1 I
VS: 20.3 MPH Sk 1

D AUTO_HIG

P00 BLINDED
DOO RAINING B
00 FIRE_SPRAY

2. Numerical insights & considerations

Numerical domains Mastering model building

Physics inputs features ———>
(e.g. values between -200, 700)

—> C(lassification outputs

(values between 0 and 1)

Categorical flag —» ———— Regression output
(e.g. values os {0, 1, 2}) (e.g. values between 0, 300)

o Questions

What happens when large input features are fed into the network?

What happens during back-propagation when large outputs are expected?

Numerical domains Mastering model building

Physics inputs features ———>
(e.g. values between -200, 700)

—> C(lassification outputs

(values between 0 and 1)

Categorical flag —» ———— Regression output
(e.g. values os {0, 1, 2}) (e.g. values between 0, 300)

o Questions

s What happens when large input features are fed into the network?
> Inputs to activations might fall into regimes with vanishing gradient / dead units!

s What happens during back-propagation when large outputs are expected?

Numerical domains

Physics inputs features ———>
(e.g. values between -200, 700)

Categorical fag —— >
(e.g. values os {0, 1, 2})

o Questions

What happens when large input features are fed into the network?
> Inputs to activations might fall into regimes with vanishing gradient / dead units!

What happens during back-propagation when large outputs are expected?
> Weights are likely increased right-to-left, to reach large regression output

~ Weights are likely increased left-to-right, to bring inputs down to usable ranges

Mastering model building

—> C(lassification outputs

(values between 0 and 1)

—— > Regression output
(e.g. values between 0, 300)

Numerical domains

Physics inputs features ——
(e.g. values between -200, 700)

Categorical fag —— >
(e.g. values os {0, 1, 2})

o Questions

What happens when large input features are fed into the network?
> Inputs to activations might fall into regimes with vanishing gradient / dead units!

What happens during back-propagation when large outputs are expected?
> Weights are likely increased right-to-left, to reach large regression output

~ Weights are likely increased left-to-right, to bring inputs down to usable ranges

Mastering model building

—> C(lassification outputs

(values between 0 and 1)

—— > Regression output
(e.g. values between 0, 300)

Numerical domains

Physics inputs features ——
(e.g. values between -200, 700)

Categorical fag ——»
(e.g. values os {0, 1, 2})

o Questions

What happens when large input features are fed into the network?
> Inputs to activations might fall into regimes with vanishing gradient / dead units!

What happens during back-propagation when large outputs are expected?
> Weights are likely increased right-to-left, to reach large regression output

~ Weights are likely increased left-to-right, to bring inputs down to usable ranges

Mastering model building

—> C(lassification outputs

(values between 0 and 1)

—— > Regression output
(e.g. values between 0, 300)

Numerical domains Mastering model building

Physics inputs features —— —> (lassification outputs

KBTI

(e.g. values between -200, 700) """ y "‘V QN (values between 0 and 1)
2

05
AN SN

3 {0
Categorical flag —» ——— Regression output

(e.g. values os {0, 1, 2}) (e.g. values between 0, 300)

e Questions
s What happens when large input features are fed into the network?
> Inputs to activations might fall into regimes with vanishing gradient / dead units!

s What happens during back-propagation when large outputs are expected?
> Weights are likely increased right-to-left, to reach large regression output
~ Weights are likely increased left-to-right, to bring inputs down to usable ranges

Numerical domains Mastering model building

Physics inputs features —— —> (lassification outputs

KBTI

(e.g. values between -200, 700) """ y "‘V QN (values between 0 and 1)
2

05
AN SN

3 {0
Categorical flag —» ——— Regression output

(e.g. values os {0, 1, 2}) (e.g. values between 0, 300)

e Questions
s What happens when large input features are fed into the network?
> Inputs to activations might fall into regimes with vanishing gradient / dead units!

s What happens during back-propagation when large outputs are expected?
> Weights are likely increased right-to-left, to reach large regression output
~ Weights are likely increased left-to-right, to bring inputs down to usable ranges

16 Numerical domains: Input Mastering model building

o Goal

s [ransform "physics" input features such that their range fits the

Physics inputs features

numerical domain of the network (typically [—1,1]) (e values between 200, 700)

while preserving all corrections

e Benefits

= Vanishing gradients less likely

m Speed-up due to homogeneous loss "landscape"

e Simple "shift & scale" approach
J—H

O

s For each feature f, apply f — f =
> [mean

~ o Jvariance

m [0 be performed once for each feature before training

and needs to be applied to inputs before evaluation

s Hint: create initial layer with constant, non-trainable

scaling parameters per feature to avoid having to remember
those values

17 Categorical feature embedding (1) Mastering model building

e C(ategorical flags constitute a common source of input features
s Example: gender = {0, 1, 2, ...} (flag)
= Not an example: age — [0, 99] (simple integer-value input)

s Difference

. . Categorical flag — —————
~ Adjacency between two categorical values does not carry (e values 03 0, 1, 2}

additional information: "0" is equally far apart from "1" than "2"

~ Adjacency between integer values does: age "50" is closer "49" than "10"

— Categorical flags require further treatment as numerical proximity matters to networks!

e One-hot encoding

s Encode flags with (e.g.) three realizations through

three separate inputs, each being either 0 or 1
>~ fagO—’(l, 0,0)
> flag 1 — (0, 1, 0)
> flag2 — (0, 0, 1)

s Bit-like mixtures such as (0, 1, 1) can also work

but rather use embedding layers which optimize this

18 Categorical feature embedding (2) Mastering model building

e Categorical flags constitute a common source of input features
s Example: gender = {0, 1, 2, ...} (flag)

= Not an example: age — [0, 99] (simple integer-value input)

Categorical flag = ————

(e.g. values os {0, 1, 2})

e Embedding layers

s Useful in case of two or more categorical features whose values form the full "vocabulary"

s Influenced by speech recognition where words are flags and inputs would be "sentence length x vocabulary length"
m |Insteac

1. Build random weight matrix shaped Nyocabulary X Nueight
. Given N input flags, lookup indices in vocabulary

. Select N,, weights from matrix per input flag index

. Construct Nf x N,, matrix

Gl B~ W DN

. Flatten it to (Nf e N,,) vector and use it as input

Weights Weights
dim 1 dim 2

Index

"How are you?"

Indices Select weights Flatten
[3, 1, 2] [[0.7, 0.4], [
-0.4, 0.3
0 0.9, -1.0]]

0.7, 0.4, -0.4, __
0.3, 0.9, -1.0]

-

19 Numerical domains: Output Mastering model building

o Goal

s [ransform "physics" output target such that the network prediction

remains in the network domain (typically [—1,1])

. —) Regression output
o Beneflts (e.g. values between 0, 300)

s Large weights do not propagate back into the network

s Similar to input feature scaling: loss landscape does not stretch

e Simple "shift & scale" approach for prediction & ground truth
[— U
o

s For each target t, apply t = ¢’ =
> J: mean

~ o Jvariance

g0t LELTI DL

s Need to retransform NN output to get actual physics output

> t'—>t=t-0+u

s Hint: create final layer with constant, non-trainable

scaling parameters per target to avoid having to remember
those values

L

20 Numerical domains: Network Mastering model building

e Caveats with large network weights

1. Volatile training steps in inhomogeneous losses
2. Higher chance of vanishing gradients (dep. in activation)

3. Network prone to so-called overtraining

~ Discussed in later today

e Input feature and regression target scaling mitigate large weights to some extent, but still needs consideration

— Batch normalization and self-normalizing networks

Dithicult loss landscape Vanishing gradients Overtraining

Feature Y

tanh
tanh(x)

Sigmoid

o(z) =

1+e—=

Feature X

21 Batch normalization Mastering model building

o Idea

s Provided that the batch size is sufficiently large, the input feature scaling

could be automatically evaluated and applied per batch!

s Moreover, this normalization can be added between all layers

(typically before activations)

C activation)

e Batch normalization

= During the first forward pass, compute mean p,and variance®S o, for each feature f

f—H
Apply the scaling as before, f = !
Of
= Introduce trainable parameters y; and [y that can adjust Minibatch: Aciations / 2t Lo \
. i L Features - mean and Std Dev \ @rmallze \ gcale and Shift \
dispersion and shift again, if deemed desirable during training ;777 1y, - Ap
. . BRSNS 2> R R TR
= /irand op are moving averages (fiy and 6;) - AR \ai=\/ﬁz:(A,--3/ . o (=) o
~ For the next forward pass, use a-averaged quantities ' {
A A A ﬁwlngAverage \
— Hf = Oyt (1 - O‘)ﬂf Hmov, = Otftmov, + (1 — @) i
A A _ A Omov; = QOmop, + (1 —)0

k--w)

s When just evaluating the network, use the last known averages

and do not move them

22 Self-normalizing networks Mastering model building

e [he mean and variance of layer activations can be intentionally constrained

m Either with batch normalization, or

s Scaled exponential linear units (SELU) activation 9-
e Numerical stability reached in a way similar to beam focussing o
with F and D quadrupole magnets Y 0
s (De)focussing in x(y) followed by (de)focussing in y(x), but when placed
in perfect distance(*), overall effect is focussing in both planes Y
e SELU -2 0 2
s Mean and variance per layer map to next layer such that they slightly x
alternate, but always remain in a defined region (proof)
s Require fine tuned(*) scaling parameters A and « o~ 16733
A =~ 1.0507
s Alternative to batch-normalization (feel free to test)
x ifz >0

SELU () =A{a(ew —1) ifz <0

https://arxiv.org/abs/1706.02515

23 Dealing with "missing" values Mastering model building

e In some scenarios, input features might be missing for some samples in your data

e Example

s Feeding four-momenta of leading 4 jets into network
s But, in some samples (events) there are only three jets

e Common approaches
m [rain separate networks with only existing features for these cases

> Only beneficial if many inputs are affected W 0 o 46 o o

QOE.SO 6o

nwer

~ Otherwise discouraged y %V
— Requires multiple trainings

— Each with fewer samples — less predictive power

m Better: Encode these cases with null values

~ Missing values constitute additional information on their own!
~ Actual null value definition depends on feature distribution

— Proximity to bulk of distribution would imply numerical relation! - T T~ ?)o
\ - ey \|

— At least ~ 30 from center u of distribution for networks to see gap

I Attention: consider skipping these samples when deriving parameters for input feature scaling

24 Imbalance of classes / output space Mastering model building

e
/ |
7y /
K
o
=
3
Class frequency for s Distribution of
classification o regression target
=
=
=
y
—

-0 -10 A0 10 1o

Class A Class B Class B Class D

e What will happen during training?

24 Imbalance of classes / output space Mastering model building

Class frequency for Distribution of

classification regression target

Number of samples

-l -10 o Ao 10 1o

Class A Class B Class B Class D

e What will happen during training?

s Networks will focus more on over-represented classes (regions) than on the unpopulated ones

— Not necessarily what you want

e Possible approaches

1. Down-sampling: remove samples in over-represented classes (generally discouraged, esp. when statistics is an issue)

2. Collocation: et training batch consist of equal amount of classes (only complicates the definition of "epoch")

3. Sample weights: loss functions support per-sample weights to control sample / class importance

<N >classes

N Regression: bin distribution and weight as for classification
C

Classification: weight samples of class ¢ by

24 Imbalance of classes / output space Mastering model building

Class frequency for Distribution of

classification regression target

Number of samples

-l -10 o Ao 10 1o

Class A Class B Class B Class D

e What will happen during training?

s Networks will focus more on over-represented classes (regions) than on the unpopulated ones

— Not necessarily what you want ... or do you?

e Possible approaches

1. Down-sampling: remove samples in over-represented classes (generally discouraged, esp. when statistics is an issue)

2. Collocation: et training batch consist of equal amount of classes (only complicates the definition of "epoch")

3. Sample weights: loss functions support per-sample weights to control sample / class importance

<N >classes

N Regression: bin distribution and weight as for classification
C

Classification: weight samples of class ¢ by

3. Techniques 1/2 & hands-on

26 Keras functional API Mastering model building

e Keras sequential model known from Dennis' lectures

import tensorflow as tf

model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(128, input_dim=32))
model.add(tf.keras.layers.Dense(128)) }<:
model.add(tf.keras. layers.Dense(128))
model.add(tf.keras.layers.Dense(128)) documentation
model.add(tf.keras. layers.Softmax(2))

e More freedom and options in functional API

import tensorflow as tf P<i

x = tf.keras.Input(shape=(32,))

al = tf.keras.layers.Dense(128) (x) documentation
a2 = tf.keras.layers.Dense(128) (al)
a3 = tf.keras.layers.Dense(128) (a2)
a4 = tf.keras.layers.Dense(128) (a3)

y = tf.keras.layers.Dense(2, activation="softmax") (a4)
model = tf.keras.Model(inputs=x, outputs=y)

https://keras.io/guides/sequential_model/
https://keras.io/guides/functional_api/

27 Writing custom layers

Mastering model building

e Custom layers need to implement 5 methods

import tensorflow as tf

class FeatureScaling(tf.keras.layers.Layer):

def

def

def

__init_ (self, means, stddevs):

Constructor. Stores arguments as instance members.

super(FeatureScaling, self).__init__ (trainable=False)

self.means = means
self.stddevs = stddevs

get_config(self):

Method that 1is required for model cloning and saving. It
should return a mapping of instance member names to the
actual members.

return {"means": self.means, "stddevs": self.stddevs}

compute_output_shape(self, input_shape):

Method that, given an input shape, defines the shape of
the output tensor. This way, the entire model can be
built without actually calling 1it.

return (input_shape[@], input_shapel[l] * input_shapel2])

def

def

K

documentation

build(self, input_shape):

Any variables defined by this layer should be
created inside this method. This helps Keras to
defer variable registration to the point where 1it
is needed the first time, and 1in particular not at
definition time.

nothing to do here as our feature scaling

has no trainable parameters

call(self, c_vectors):

Payload of the layer that takes inputs and computes
the requested output whose shape should match what
is defined in compute_output_shape.

implementation missing :)

return features

https://keras.io/guides/making_new_layers_and_models_via_subclassing/

28 Hands-on! Mastering model building

e Quick introduction to gradients

import tensorflow as tf

@tf.function

def example():
a = tf.constant(2.) documentation

b =3 % a
return tf.gradients(a + b, [a, bl, stop_gradients=[a, bl)

example()
[4.0, 1.0]

e Your tasks
1. Gradients (colab notebook, 15")

a) Repeat the gradient computation to the right _D
X
b) Play around with more complex computational graphs -4 3
and verify your results (e.g. sin, cos, exp, 2, ...) . ¥)
> f
2. Keras' functional APl (colab notebook, 25") A

a) Build your own model

b) Write a custom layer that performs feature scaling Z

c) Extend your model to create a multi-purpose network

https://colab.research.google.com/drive/1SoVI2PovWFDvgU_zLiHZZrtatm7iX00O?usp=sharing
https://colab.research.google.com/drive/1PXmzMXsshUouBPoK2e8AP0JoHZHL04RG?usp=sharing
http://www.apple.com/uk
https://www.tensorflow.org/api_docs/python/tf/gradients

29 Schedule

Mastering model building

Today
14:30 - 16:00

Today
16:30 - 18:00

Tomorrow
09:00 - 10:30

20 1

30 1

40"

25 1

25 1

40"

10"

70 1

10”

. Variants of and improvements in fully-connected networks (FCNs) v/

- Gradient calculation (recap), vanishing gradients, ResNet, ensemble learning, multi-purpose networks

. Numerical insights & considerations v/

- Domains, feature & output scaling, batch normalization, SELU, categorical embedding, class imbalance

. Techniques 1/2 & hands-on v/

- Keras functional API, custom Keras layer, computing gradients

. Regularization & overtraining suppression

- Overtraining & generalization, capacity & capability, regularization, dataset splitting

. Model optimization

- Optimizer choices, class-importance, hyper-parameters, search strategies

. Techniques 2/2 & hands-on

- Compute architecture, TensorFlow eager and graph, custom training loop, tensorboard

. Exercise introduction: Identifying Jets in Particle Collider Experiments

- Problem statement, input data & features, objective(s)

. Hands-on!

- Classification task, implementing newly learned techniques, extension to multi-purpose network

. Exercise summary and tips

- Example wrap-up, additional practical tips

4. Regularization & overtraining suppression

31 Overtraining Mastering model building

TensorFlow playground

DATA FEATURES 4+ — 6 HIDDEN LAYERS OUTPUT
Which dataset do Which properties do Test loss 0.514
you want to use? you want to feed in? -
s & 4 & ity iy e Ty Training loss 0.507
8 neurons 8 neurons 8 neurons 8 neurons 8 neurons 8 neurons
X — —a
* D\ //”‘D D /’D Iy
”% \ // a% *
: / o ® RS o]
X : / o
2 SN R F / > D ~ He
Ratio of training to WO/ f | e o o °
4 v @ s} @
test data: 20% > | ';/f/ ,’ C sel WS A s
Y X1 , ,ﬁ{f‘:“:‘ : = ‘ | - ~ o 2 aa.‘ o ® °
: : 1 ” s © o © ~ @ @ ®
~, l ° P % o
Noise: 35 .2 | TAN | { ‘ o ~ 0 & . -
® ; = I' D \ D\ ‘D_-ll’l’ i __-.D - ¥ e 1
v f g i \\, ,’ A 5 00 U° oc
Batch size: 10 AN\] TR /,// AN N [j
X1X2 “ = i I3 = o~ , .
o & 3 i/ N T V% / SN
A ! WA . ')\ (l)
N N a4 il b b
in(X \ \‘\ v.\\ // ; n\\ // [‘ 241§ // M‘
il ||| e - o X o6 v I o s DN o % I 61 5 I
\ . { 4 \ \
| 1A/ ! | XIS Colors shows
.,Lq:{' X\ /] % ! | : _
: ‘f | | ‘- R data, neuron and F :
sin(X,) = | y I = VIRESS : 1 0 1
2 A= } I - - BN weight values.
‘ / / / ,
| J | // | ‘\\\
D | D 'D‘/’/ D D \\\\<D Show test data Discretize output

7

The outputs are
This is the output mixed with varying
from one neuron. weights, shown

Hnwvor tn con it s thAa thinlnAna

https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=gauss®Dataset=reg-plane&learningRate=0.01®ularizationRate=0&noise=35&networkShape=8,8,8,8,8,8&seed=0.46947&showTestData=false&discretize=false&percTrainData=20&x=true&y=true&xTimesY=true&xSquared=true&ySquared=true&cosX=false&sinX=true&cosY=false&sinY=true&collectStats=false&problem=classification&initZero=false&hideText=false

oY)
=
1o
=)
e
Ko,
O
@)
=
oY)
C
-
)
4+
(Vp)
Q)
=

Ining

31 Qvertra

TensorFlow playground

OUTPUT

6 HIDDEN LAYERS

-

FEATURES

DATA

Test loss 0.194

Which properties do

Which dataset do
you want to use?

Training loss 0.022

you want to feed in?

8 neurons 8 neurons 8 neurons 8 neurons 8 neurons

8 neurons

3

go)
S
wn
mne
o ° 3
5 ®©
b o >
w & £
O © O
O @ O
O T =

_~——
— -
N ST
ZEWN T A
\7 \

G000

DGB:BEB

X X . NA\ NA\
< c =
w wn
@)
~— Ll
D ® o e
= O — o
£ & L m
© To) O Z
bl ™ N b
O ®© . M |
* o D @ (s .
”- as* O ©
r 9 =z m

Discretize output

Show test data

[

c\

o)
.mn
>3
aao
2R~
S S ©
3
O ¢ B
Q2 Xg
~ & =
<
S
(SRR
o
o ©
en
< o
=
» O
» E
< §
<

hhwr tha thinlb-nAane

Hnver tn coe it

https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=gauss®Dataset=reg-plane&learningRate=0.01®ularizationRate=0&noise=35&networkShape=8,8,8,8,8,8&seed=0.46947&showTestData=false&discretize=false&percTrainData=20&x=true&y=true&xTimesY=true&xSquared=true&ySquared=true&cosX=false&sinX=true&cosY=false&sinY=true&collectStats=false&problem=classification&initZero=false&hideText=false

32 Overtraining Mastering model building

o Network learns training data and fails to generalize to underlying truth (pdf)

>_
_ Y o / True (optimal) line of
e Most evident reasons 2 e e o)~ class separation
1. Insufficient training statistics R o
o _ _ o o A Network prediction
~ Training samples fail to represent truth with sufficient accuracy 5

(longer: there will always be noise, but with enough statistics, it becomes less likely

that random outliers shift the appearance of the full sample distribution)

> Allows networks to learn particular training samples

(longer: besides global trends, networks have enough capacity to also focus

on local density fluctuations)

Feature X

Model Training
capacity statistics

32 Overtraining Mastering model building

o Network learns training data and fails to generalize to underlying truth (pdf)

>_
Y o True (optimal) line of
Most evident =)°
e Most evident reasons £ e . - Class separation
.. .. L | e °
1. Insufficient training statistics)@ o
o _ _ o ® e A Network prediction
~ Training samples fail to represent truth with sufficient accuracy 5
(longer: there will always be noise, but with enough statistics, it becomes less likely
that random outliers shift the appearance of the full sample distribution)
> Allows networks to learn particular training samples
(longer: besides global trends, networks have enough capacity to also focus
on local density fluctuations)
2. Over-powered network (~inverse of 1.) Feature X

> High capacity allows network to model (remember) higher amount of density changes

(longer: model complex enough for prediction (green line) to become extremely volatile / "zig-zagy")

> Network potentially capable to focus on non-representative regions

(longer: even a few outliers can cause the network to move the decision boundary, trying to include them)

Model Training
capacity statistics

33 Model capacity & capability Mastering model building

e Consider a simple ground truth (pdf) and a polynomial fit

Underfitting Appropriate capacity Overfitting
y(x) = pol; (x) y(x) = pols(x) y(x) = polg(x)
@
too low capacity — y ol v y — high capacity
"truth" "truth" "truth"
X X X

e Which model would you pick?

33 Model capacity & capability Mastering model building

e Consider a simple ground truth (pdf) and a polynomial fit

Underfitting Appropriate capacity Overfitting
y(x) = pol; (x) y(x) = pols(x) y(x) = polg(x)
@
too low capacity — y ol v y — high capacity
"truth" "truth" "truth"
X X X

e Which model would you pick? Q

33 Model capacity & capability Mastering model building

e Consider a simple ground truth (pdf) and a polynomial fit

Underfitting Appropriate capacity Overfitting
y(x) = pol; (x) y(x) = pols(x) y(x) = polg(x)
@
too low capacity — y ol v y — high capacity
"truth" "truth" "truth"
X X X

e Which model would you pick? @ Training

statistics

e Caveats
"Appropriate" capacity hardly known
m Less capacity leads to less capability!

~ Complex-to-reconstruct hidden features require complex networks Mode Model

("complex network" = large, well-designed, or both) capacity capability

> See particle mass regression example!

— Always go with (reasonably) higher capacity. Don't sacrifice capability for overfitting suppression.

34 Qvertraining suppression: Regularization Mastering model building

e 1st scenario: overtraining -
Overfitting

= Small number of weights become large
> y(x)=2.1+4+39x%—4.6x°+4.4x" + ... (example)
> Should be avoided

y(x) = polg(x)

Feature Y

Yy
e 2n scenario: volatile ground truth
s Network should remain capable to model that "truth’
> Some weights need to be large X Feature X

e Goal: "Don't depend on few, large weights to model volatile behavior,

but rather allow network to increase multiple weights moderately if dictated by training data"

34 Qvertraining suppression: Regularization Mastering model building

e 1st scenario: overtraining -
Overfitting

= Small number of weights become large
> y(x)=2.1+4+39x%—4.6x°+4.4x" + ... (example)
> Should be avoided

y(x) = polg(x)

Feature Y

Yy
e 2n scenario: volatile ground truth
s Network should remain capable to model that "truth’
> Some weights need to be large X Feature X

e Goal: "Don't depend on few, large weights to model volatile behavior,

but rather allow network to increase multiple weights moderately if dictated by training data"

34 Qvertraining suppression: Regularization Mastering model building

e 1st scenario: overtraining -
Overfitting

= Small number of weights become large
> y(x)=2.1+4+39x%—4.6x°+4.4x" + ... (example)
> Should be avoided

y(x) = polg(x)

Feature Y

Yy
e 2n scenario: volatile ground truth
s Network should remain capable to model that "truth”
> Some weights need to be large X Feature X

e Goal: "Don't depend on few, large weights to model volatile behavior,

but rather allow network to increase multiple weights moderately if dictated by training data"

L weighss weig its N Added to main loss, e.g.
o Approach: regularization losses L; = Z lw| or L,= Z O ——
; ; Ltotal — “pred. vs. truth +4- L1,2
m A is a free parameter that should mediate between regularization and main loss |
2.0
s We usually pick L, |
. 15 | i
> Gradients dL,/0w still depend on w, better feedback for updating w's \‘ig\] j..-;;/'
L 0 /;
~ Small penalty for w < 1, very high for @ > 1 N E y
_\ 0.5 | >

1.5 1.0 0.5 | 0.5 1.0 & T &

35 Overtraining suppression: Dropout

Mastering model building

e 1st scenario:

overtraining

= Small number of weights become large

s Also, other weights adapt to that

> E.g. when ;> 1, then w, < 1, and w; = 0, and ...

> Fine tuning problem among weights

e Goal: "Introo

to req

uce slightly stochastic behavior to the learning process

uce weights' reliance on one another"

Overtitting

y(x) = polg(x)

"truth"

Feature Y

Feature X

https://www.worldscientific.com/worldscibooks/10.1142/12294#t=aboutBook

35 Overtraining suppression: Dropout Mastering model building

e 1st scenario: overtrainin .
5 Overtitting

= Small number of weights become large

Feature Y

y(x) = polg(x)
s Also, other weights adapt to that

> E.g. when ;> 1, then w, < 1, and w; = 0, and ...

> Fine tuning problem among weights /
e Goal: "Introduce slightly stochastic behavior to the learning process “truth?
to reduce weights' reliance on one another" X Feature X
e Approach: random unit dropout
s Only applied during training
s During the forward pass of step i, randomly pick units Overall Architecture
architecture for training step i

with a dropout probability p that are not considered
s However, input to each unit in the next layer scaled down

> Scale back up by 1/(1 —p) ¥
s Repeat in next step i + 1, picking different units

@
S O
@

e Typical dropout rates between 10% and 50%

from "Deep learning in Physics Research", Erdmann et al.

o Side note: SELU activation requires "AlphaDropout" (preserves y, ¢°)

https://www.worldscientific.com/worldscibooks/10.1142/12294#t=aboutBook

36 Overtraining suppression: miscellaneous techniques Mastering model building

Low-hanging-é&7?

X

vvy

XX

XX

(v)

vvvy

More, representative data

s Presumably not trivial

Ensemble training

s Averaging or "majority votes" across multiple networks

Data augmentation }@ﬁ
s Artificially extend your dataset exploiting known symmetries)3
s Highly non-trivial as underlying pdf's should be preserved i_;-

2&

Noise injection

s Smears input feature pdf's but choice non-trivial too

s [rade-off: overtraining vs. loss in performance

Fewer parameters, yet shared across network

O
. . . 1
s Requires change in architecture J— O Jo—2
— See CNN lectures L o |\
n O :
Early stopping Input Conv Pool Conv Pool FC Output

s Monitor generalization error and stop training at threshold
— Next slides

37 Generalization error & overtraining detection Mastering model building

e Suppose you split your data first into a "training set" and an independent " .

s Perform training with former

s Every n batches / after each epoch / ..., check loss or other metrics on latter
A

loss

generalizati<1‘ error (;ertraining
training set
)

tI‘aining iterations from "Deep learning in Physics Research", Erdmann et al.

~ A soon as metrics diverge above level of statistical fluctuations, overtraining occurred

e What now?
s Difference between metrics define generalization error

s Decide whether error is acceptable, and if not, stop the training and save the best* model

e Side note: to save resources, you can also stop the training early in case no improvement happened for some time

https://www.worldscientific.com/worldscibooks/10.1142/12294#t=aboutBook

38 ML "code of conduct": independent datasets Mastering model building

e '"training" & "validation" < "test"

= Divide your data into three, fully independent datasets
= training
~ Samples used for weight optimization through back-propagation

s validation

~ Samples used during training for immediate validation &
possibly hyper-parameter optimization (e.g. architecture itself, see later)

m test [Full set]

~ After information content of training and validation set has been

exploited, all results are to be reported on independent test set

~ Decouples your results from potential overestimation due to overtraining

N\

50%
50%

40% 10%

v v v

[Test set] [Training set] [Validation set]

(example numbers)

38 ML "code of conduct": independent datasets Mastering model building

e '"training" & "validation" < "test"

= Divide your data into three, fully independent datasets
= training
~ Samples used for weight optimization through back-propagation

s validation

~ Samples used during training for immediate validation &
possibly hyper-parameter optimization (e.g. architecture itself, see later)

m test [Full set]

~ After information content of training and validation set has been

exploited, all results are to be reported on independent test set

~ Decouples your results from potential overestimation due to overtraining

N\

e Practicalities =0%
s Split randomly once, or repeatedly but deterministic

> Avoids test samples being randomly used at any given time N ’%\

= [hink about splitting fractions E
~ All sets should be statistically significant, define fractions case-by-base O O ;:3)

s In low stat. scenarios, consider a second training with reversed splits Il 436 13/) j%‘
&

> Requires dedicated treatment ... also, Why stop at two? [Test set] [Training set] {Validation set]

39 k-fold cross validation Mastering model building

e Variant 1: Reconsider the split into training and validation sets

m [f statistics is an issue, you can incorporate the validation set into the training m
D

s Example: e
~ Split into 5 folds a 10% \ =

. . . _ 40% 10% Q

~ Perform training on 4 folds, validate with remaining fold ‘ ; S

~ Perform 5 trainings in total [Traming set] [Validation Set] 2

~ Final model consists of ensemble of networks

v Exploited all non-test samples

v Increased overtraining robustness

Validation Training
Fold Fold
g
re 2nd Performance ,
-
=
2 3rd Performance3 L. performance
O .-
© = =) Performance,
> 4th Performance 4 =
N
5th Performance s

39 k-fold cross validation Mastering model building

e Variant 1: Reconsider the split into training and validation sets

m |f statistics is an issue, you can incorporate the validation set into the training m

s Example: —é
>~ Split into 5 folds a 10% \ =
~ Perform training on 4 folds, validate with remaining fold 43% 13% Tqé-
~ Perform 5 trainings in total [Tra].mng set] [Validation ot | X
~ Final model consists of ensemble of networks =

v Exploited all non-test samples

v Increased overtraining robustness

e Variant 2: Reconsider the split into test and {training,validation} set [ol set]

m |f statistics is an even bigger issue, extend folds to test set

s Example:
~ Split all samples into k=10 folds a 10% m
= Perform trainings on k-1 folds (1 for validation), retain remaining fold -é
~ Perform k trainings in total =
> For results, evaluate samples with network of opposite k-1th fold \ =
~ For samples not seen during training, random / ensemble / sub-ensembling 53% 53% §

v EXplOited all samples [Test set] [{Training, Validation} set]

= Potential implications when real data involved that's where it gets tricky |

oY)
=
1o
=)
e
Ko,
=
@)
=
oY)
C
-
)
4+
(Vp)
Q)
=

lal example

NIt

40 Let's revisit the

OUTPUT

6 HIDDEN LAYERS

-

FEATURES

DATA

Test loss 0.194

Which properties do

Which dataset do
you want to use?

Training loss 0.022

you want to feed in?

8 neurons 8 neurons 8 neurons 8 neurons 8 neurons

8 neurons

3

go)
S
wn
mne
o ° 3
5 ®©
b O >
w & £
O © O
O @ O
O T =

_——
— -
N ST
ZEWN T A
\7 \

DGB:BEB

x x 1 ((
< c =
w wn
O
~— Ll
D ® o e
—— b
c O o
£ & . W
© To) O Z
+ © ™M N L
S R N ? o
()] -
* o 0 @ [.
”- © s* O ©
r 9 =z m

Discretize output

Show test data

o)
.mn
>3
T T 3
2R~
S = 9
i
S 85
L X9
~ & =
5 €
S8
S 3
S ©
o
< O
o=
® S
@ &
< 8
A

hhwr tha thinlb-nAane

Hnver tn coe it

Note: No regularization, no dropout

oY)
=
1o
=)
e
)
O
@)
=
oY)
C
-
)
4+
(Vp)
Q)
=

lal example

NIt

40 Let's revisit the

Test loss 0.194

7))
o
i
<C
—
pd
(NN |
()
—
I
O

Which properties do

FEATURES

Which dataset do
you want to use?

DATA

Training loss 0.022

you want to feed in?

8 neurons 8 neurons 8 neurons 8 neurons 8 neurons

8 neurons

wn
4
O -
_\ :
o
o
>
o
®
N
P 15
> O
) %
.t
(O — o
= -
©
oF g 3
o - +—
cC
55> 2
c 5 © =
w o > @)
O Snt -
< i N
O © O
O @ O
O T =

'l.

\ -
™ 'l\l = -ﬂ\\
" - 4\
/ // i ’,r- T ——
. “ - -~ S

S —

IEUDDDGB

N

5 o -)
e e = <
V- e .b\l.‘ N R - -
“ -
l
R et — ‘
/ R LT e l...l.ﬂ.lll, e Lt
/ I\:\\“l\ = ml ’”’ "’,-’

= - ,II l’l'.”.

The outputs are
mixed with varying
weights, shown

/
‘ /
o=

This is the output
from one neuron

X X . NA\ NA\
< c =
w wn
O
Lo Ll
D ® o e
= = — o
£ & L L
© To) O Z
bl %) N i
O ®© . .M |
* o 0 % [.
" @ O O ©
r 9 =z m

hhws thAa thinl-nAanea

Hnver tn coe it

Note: No regularization, no dropout

41 Hands on! Mastering model building

e lasks

1. Open playground.tensorflow.org
2. Pick the dataset and create a network that visibly overtrains
3. Play around with the settings (except for the "data") to make the overtraining as drastic as possible

4. Step by step, start changing network parameters to suppress overtraining while
> preserving a reasonable loss

> maintaining a quick training process

5. Now, change some "data" settings. Increase the statistics ("ratio of training to test data") and perform
two trainings with low and high noise settings. Are they susceptible to overtraining?

6. Change the data set and play.

http://playground.tensorflow.org/#activation=tanh®ularization=L2&batchSize=10&dataset=gauss®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=25&networkShape=8,8,8,8,8,8&seed=0.88798&showTestData=false&discretize=false&percTrainData=20&x=true&y=true&xTimesY=true&xSquared=true&ySquared=true&cosX=false&sinX=true&cosY=false&sinY=true&collectStats=false&problem=classification&initZero=false&hideText=false

5. Model optimization

43 Network training & loss minimization Mastering model building

ﬂmagine you're on a hike

as dense fog rolls in ...

e Vision below ~ 1m
s You only see the

ground below you

e You want to get to the hut
in the valley

You want to get there fast!

m It's getting dark

Your phone can measure the

elevation & slope at your loc.
s Battery is dying I}

What's your plan?

43 Network training & loss minimization Mastering model building

magine vou're on a /zike
gine'y

as dense fog rolls in ...

e How to get down to the hut?
1. Measure local gradient

2. Walk in direction of steepest
for slope for 1min
3. Repeat

— Gradient descent!

(@) @)

e But what if
= your battery won't hold?
= you walk into a small well?

= you feel like you run in

circles?

ML: find weights w; and @, of a model f that minimize the loss L(f(x|w, ®,),y) given data x and truth y

44 Weight update rule & optimization improvements Mastering model building

e From Dennis' lecture

. Update rule
oL oL
L W Wi = W — Q-
P aa)t
from "Deep learning in Physics Research", Erdmann et al. X : W W \
W '3
t+1

learning rate gradient

https://www.worldscientific.com/worldscibooks/10.1142/12294#t=aboutBook

44 Weight update rule & optimization improvements Mastering model building

e From Dennis' lecture

4 Update rule
oL
/ Wi = W — Q- 3
e T : a)t
from "Deep learning in Physics Research", Erdmann et al. X . W W / \
[
Wit | .
learning rate gradient

L(w)

e How to find the global minimum faster and avoid local minima?

s Several techniques available that amend the update rule
s Influenced by the scenario of a moving object on a slope, introducing:

~ Adaptive learning rate per parameter @

~ Momentum, to overcome local minima and fluctuations

Plateau
~ Friction, to reduce momentum step-wise

Local minimum .
minimum

https://www.worldscientific.com/worldscibooks/10.1142/12294#t=aboutBook

45 Adaptive & momentum learning in 5 steps Mastering model building

1. Standard update of particular weight w from ¢t — r+ 1
oL oL

w4 =0,—a-— = Aw,=—a —
0w, 0w,

from "Deep learning in Physics Research", Erdmann et al.

https://www.worldscientific.com/worldscibooks/10.1142/12294#t=aboutBook

oY)
=
1o
=)
e
Ko,
=
@)
E
oY)
C
-
)
4+
(Vp)
Q)
=

5 steps

Ing In

ive & momentum learni

45 Adapt

from "Deep learning in Physics Research", Erdmann et al.

|_|

\—) ~
RS
O °
E
S |
2
g ~
23
S 4
©

3 1

oL
/1))

Wi =

1. Standard update of part
n W — &

a
U, + €

and

2

oL
0w,

(

3
S
4
O
(qV]
-
(qV]
-
c
(qV]
Vp
4
c
9
o,
Qv
.~
ol
4
(Vg
(qV]
O
(U
-
)
O
&
)
&
),
o

i
=1

2. Adagrad
Uy

https://www.worldscientific.com/worldscibooks/10.1142/12294#t=aboutBook

45 Adaptive & momentum learning in 5 steps Mastering model building

1. Standard update of particular weight w from ¢t — r+ 1
oL oL

w4 =0,—a-— = Aw,=—a —
0w, 0w,

from "Deep learning in Physics Research", Erdmann et al.

2. Adagrad: Remember all past gradients and adapt a — «,
2

A
oL 04
=Y (L) ad g
T:l aa)T \/;l‘ + €

3. RMSprob: Scale down or "decay" sum of past gradients by f
2

oL
. u=py g+ A =p) o
[

https://www.worldscientific.com/worldscibooks/10.1142/12294#t=aboutBook

45 Adaptive & momentum learning in 5 steps Mastering model building

1. Standard update of particular weight w from ¢t — r+ 1
oL oL

w4 =0,—a-— = Aw,=—a —
0w, 0w,

from "Deep learning in Physics Research", Erdmann et al.

2. Adagrad: Remember all past gradients and adapt a — «,

2
~ [oL
_ U= Z — and a, = -
=1 aa)T \/Ft T €
3. RMSprob: Scale down or "decay" sum of past gradients by f
2

oL

Cy=pv+U =P —
0w,

4. Momentum: Stabilize the direction, maintaining previous "velocity"

! oL
Aw,=v,=0-v, i —(1=p)-a-—

. dw,

https://www.worldscientific.com/worldscibooks/10.1142/12294#t=aboutBook

45 Adaptive & momentum learning in 5 steps Mastering model building

1. Standard update of particular weight w from ¢t — r+ 1
oL oL

w4 =0,—a-— = Aw,=—a —
0w, 0w,

from "Deep learning in Physics Research", Erdmann et al.

2. Adagrad: Remember all past gradients and adapt a — «,

2
~ [oL
_ U= Z — and a, = -
=1 aa)T \/Ft T €
3. RMSprob: Scale down or "decay" sum of past gradients by f
2

oL

Cy=pv+U =P —
0w,

4. Momentum: Stabilize the direction, maintaining previous "velocity"

! oL
Aw,=v,=0-v, i —(1=p)-a-—

. dw,

5. Adam: Combine (VL)? of RMSprob and VL of momentum

! m, .
Aw,=v,= —« with
- NZR))
- - 2
: F(l—p) = L g ra-p [Z
m. = -m — - —_— U, = - U — . —_—
T Vo Y o, T t—1 o,

https://www.worldscientific.com/worldscibooks/10.1142/12294#t=aboutBook

45 Adaptive & momentum learning in 5 steps Mastering model building

1. Standard update of particular weight w from ¢t — r+ 1
oL oL

w4 =0,—a-— = Aw,=—a —
0w, 0w,

from "Deep learning in Physics Research", Erdmann et al.

2. Adagrad: Remember all past gradients and adapt a — «,

2
~ [oL
_ U= Z — and a, = -
=1 aa)T \/Ft T €
3. RMSprob: Scale down or "decay" sum of past gradients by f
2

oL

Cy=pv+U =P —
0w,

4. Momentum: Stabilize the direction, maintaining previous "velocity"

! oL
Aw,=v,=0-v, i —(1=p)-a-—

. dw,

5. Adam: Combine (VL)? of RMSprob and VL of momentum

! m, .
Aw,=v,= —« with
- NZR))
- - 2
: F(l—p) = L g ra-p [Z
m. = -m — - —_— U, = - U — . —_—
T Vo Y o, T t—1 o,

https://www.worldscientific.com/worldscibooks/10.1142/12294#t=aboutBook

46 Learning rate decay Mastering model building

e Even with Adam, the final optimization steps can circle around the true minimum ("overshooting")
— Detectable via noise after seemingly converging

too large « too small ¢

too large

11
() Q H"") |
) ' D411 calil

L.oss

large

moderate
)

training steps

from "Deep learning in Physics Research", Erdmann et al.

Learning rate

e Adjust the base learning rate 010 - » =

m QOver time

S
(=
o

~ Step wise according to some schedule

S
(=
o

learning rate

~ Exponential decay (e.g. multiply by p = 0.9every n steps)

<o
o
s

o
o
N

s After reaching plateau

~ Detect by keeping history of last n losses 000 -

20 40 60 80 100

~ Multiply a by p = 0.5, repeat k times epoch

https://www.worldscientific.com/worldscibooks/10.1142/12294#t=aboutBook

47 Class / output-space importance Mastering model building

e Which type of result do intend to extract and publish?
s Some central measurement of observable plus uncertainties

s Theory / model exclusion intervals (CL)
= Significance of measurement over some background-only hypothesis

e ... did you tell your network?
m Or: Is your loss £100% correlated to your result quantity?

s Often not the case
> Neural network metrics are just proxies, entangled with assumptions!

> Make sure it's a good one, or define an optimization process (brute-force scans)
~ Especially true if complex measurement techniques are employed after your ML algo.
>

Example

Network Binning of output Results: Limits

0.15F
0.10

0.05F

0.00

48 Class / output-space importance: example Mastering model building

1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1
CMS - == Median expected
Work in progress B 68% expected

=== 95% expected

e Real-life example: Search for HH production

s ML application: Signal vs. Background separation
m Loss
~ Cross entropy with equal weight / importance

for all S and B events

> Assumption!
m lest

> Vary the relative weight of B to S

> Compute upper exclusion limit (brute force)

Lower is better

I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1
20 40 60 80 100 120 140 160

95% CL limit on o(pp — HH (incl.)) / o

heory

48 Class / output-space importance: example Mastering model building

1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1
CMS - == Median expected
Work in progress B 68% expected

=== 95% expected

weight 0.1
Expected 54.2

e Real-life example: Search for HH production Focna 150
s ML application: Signal vs. Background separation weight 0.5
«pocted 34

m Loss p. _

~ Cross entropy with equal weight / importance CARE Initial choice)
for all S and B events weight 2

Expected 24.6

> Assumption!

weight 3
| TESt Expected 26.4 B
~ Vary the relative weight of B to S weight 4

Expected 23.0

> Compute upper exclusion limit (brute force) "
weight
Expected 21.4

Best result

weight 7
Expected 21.9

weight 10
Expected 21.9

| Lower is better
weight 60

Expected 23.1

I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1
20 40 60 80 100 120 140 160

95% CL limit on o(pp — HH (incl.)) / o

heory

49 Hyper-parameters Mastering model building

e Large list of hyper-parameters to optimize (here, for FCNs)

s Architecture

> Number of layers, n,

> Number of units per layer, n,
> Activation, o(x)

> Discrete choices

— Dense/residual /classic

— Weight initialization

— Batch normalization
s Optimizer
~ Learning rate + decay, «a, p

> Algorithm and its parameters (Adam: £, y)

= [raining

~ Batch size, b
Splitting fractions, f., .., foaid
Cross validation folds, &

Regularization factor, A

v vV V. ¥

Dropout rate, p

49 Hyper-parameters Mastering model building

e Large list of hyper-parameters to optimize (here, for FCNs)

s Architecture

> Number of layers, n, How to approach them?

> Number of units per layer, n,

> Activation, o(x
(%) L Some have well-tested defaults

~ Discrete choices
> E.g. Adam parameters

— Dense/residual /classic
— Weight initialization

_ Batch normalization 4 Some can be grouped (divide & conquer)

~ E.g. batch size & learning rate

s Optimizer
> Learning rate + decay, a, p &) Some do not depend in each other
> Algorithm and its parameters (Adam: £, y) ~ Optimize one after another

= lraining

~ Batch size. b L) Hyper-parameter search for the remainder

Splitting fractions, f., .., foaid
Cross validation folds, &

> "hyper-opt"

Regularization factor, A

v vV V. ¥

Dropout rate, p

Hyper-parameter optimization: Grid & random search Mastering model building

e Assume you have n, = 6 hyper-parameters with n, = 5 possible settings each

s 1,7 = 15625 trainings

. . L ri rch
s Even more when considering ensemble learning, k-fold cross validation, ... %
*é‘ o o o
e Grid search :
m [terate brute-force through the grid of points ; o o '
— Highly-resource intensive E
— Risk of wasting resources on unimportant parameter choices _ES o ° o
" " . n C ‘
— Chance of hitting the best parameters limited by grid granularity > Important parameter

50 Hyper-parameter optimization: Grid & random search Mastering model building

e Assume you have n, = 6 hyper-parameters with n, = 5 possible settings each

s 1,7 = 15625 trainings

o . s ri rch
s Even more when considering ensemble learning, k-fold cross validation, ... %
@ |
‘g O O @)
e Grid search &
m [terate brute-force through the grid of points ; ® ® ®
— Highly-resource intensive =
— Risk of wasting resources on unimportant parameter choices E‘ o e e
-
>

— Chance of hitting the best parameters limited by grid granularity Important parameter

Random Search

¢ Random search \’\/‘/
s Define continuous ranges rather than fixed grid (if possible)

g
v
s Sample r points and randomly search for best performance = O
— Less resources as r is usually <« n o o ?
. L. . o . € o
— Given that r is still sufficiently large, better chance of finding good points s °
O | o ©
= O
. _ E O
— Can we define a somewhat "informed" search? <)

Important parameter

51 Hyper-parameter optimization: Sequential search Mastering model building

e Many packages available, scikit-optimize (skopt), hyperopt
e From the skopt documentation:

Problem statement

, , , loss after training with choice of x
We are interested in solving |

hyper-parameters x
*

r* = argmin f(x)
£Z
L, optimal hyper-parameters x

under the constraints that

e fisa black box for which no closed form is known (nor its gradients); ——— vyes
o fisexpensive to evaluate; —> Yes
e and evaluations of y = f(a) may be noisy. ——> yes

Disclaimer. If you do not have these constraints, then there is certainly a better optimization
algorithm than Bayesian optimization.

https://scikit-optimize.github.io/stable/
http://hyperopt.github.io/hyperopt/

52 Hyper-parameter optimization: Sequential search Mastering model building

x* = -0.3552, f(x*) = -1.0079

= = TFue (unknown)
1.0 A - e X)
e Driven by Bayesian optimization I\ & e
! \
. 9
s Fit of an arbitrary, potentially non-differentiable function 0.5 - LN
. N ¥ \‘\
s lterative procedure - SN Yoo o
. . . . g 0.0 - --\-....-u’__/'*\ f \\ S ”/--\:__
> Few starting points (observations) are required v W\ -
n N
. . . . ! ot
~ Bayesian process predicts most likely function o5 '$‘ I
]
approximation plus an uncertainty \’é'
\
. . —1.0 - *®
~ Suggest next point of observation at parameter x
. . . -20 -15 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
with highest uncertainty »
> Cycle 101 - @ et ey pom I
A'F - e e . 0.5 - o":*‘\ 0.02 - _J\
~ After sufficient sampling, stop and identify x minimizing f | |___ VA pr
0.0 ===== FEW =~ \ | g®TTC
Vil Al
-0.5 = '
] —1.0 A —o- g;t:vations] 00 - L,\ } ﬂ
e Practical workflow = 5 & : : = 0
. . . . i 0.025 A
s Perform an initial coarse grid or random search - oo L
0.5 A R ’
n Feed pairs of {loss, hyper-parameters} == (f(x), x) into oo | SRR N
" A -0.5 - O h '
Bayesian optimizer o e | /\
' 0.000 -
G b k d : .F b h -2 -1 0 1 2 -2 -1 0 1 2
s Get back predictions of best next hyper-parameters to test
1.0 A A
and perform new training os- Y. § 004
.- 1 \\ } ’ “:\ ——s
| CyC|e :.: \\\\‘\ ,’:" \‘f’! 0.02 -
—0.5 - *1',
time 4ol t |

6. Techniques 2/2 & hands-on

54 TensorFlow internals: Computational graphs Mastering model building

e Consider the computationc = W-x+b

s Can be visualized in graph form

: . (Add)
m W,x and b are inputs to the graph, c is the output T
s Inputs, outputs and intermediate results (W - x) are denoted by edges (MatMul)
s Operations (+ "Add", X "MatMul") are box-shaped nodes
e Every neural network can be described as a directed, acyclic graph (DAG) -
e Why is that helpful?
m Clear definition of forward-pass based on symbolic operation instructions
s l|dentification of values (weights, output of operations, etc) being used
multiple times -
m Clear definition of backward-propagation

s Use graph theory to optimize processing (e.g. merging of nodes) (advanced)

ssssss

|dentify independent subgraphs for efficient, parallel processing

— “Nstrided s...

55 TensorFlow internals: Compute architecture Mastering model building

e Computing architecture

High-level interface (Python) Low-level library (C++) Devices (CPU,GPU,...)

e TensorFlow: eager execution (instantly return results)

import tensorflow as tf
while developing, intermediate results

x = tf.constant([1.0, 2.0, 3.0]) helo debugoi
W = tf.constant([[0.5, 1.5, 0.8], [0.0, 2.1, 0.6]]) N P eeTe
b = tf.constant([5.0, 5.0]) :

in production, we are usually
prod = W@ x # @ —> matmul not interested in intermediate results
Cc = prod + Db
pr%nt(prod) Question: how to tell TensorFlow?
print(c)

_ J

56 TensorFlow internals: tf. function Mastering model building

e Functions decorated by tf.function become templates for graphs
import tensorflow as tf %D
| (_Add)
x = tf.constant([1.0, 2.0, 3.0]) T
W = tf.constant([[0.5, 1.5, 0.8], [0.0, 2.1, 0.6]]) @K(M tMul)
b = tf.constant([5.0, 5.0]) A

. function — Inputs and output clearly defined — create graph! @V{ ‘}@

my_operation(W, x, b): — Intermediate objects neither transferred to Python interpreter

prod =W @ x # @ —> matmul _
print(prod) nor between devices!

return prod + b

High-level interface

c = my_operation(W, x, b)
print(c)

e More technical insights

« tf.function converts any python code (for and while loops, if conditions, ...) to a graph and executes it in C++

m Decorated functions are polymorphic = accept input tensor of any shape and type
s A new graph is built every time yet unseen {shape, type} combinations of the parameters are used

~ Calling my_operation(W, x, b) once will also print(prod) (but only showing a symbolic tensor)

~ Calling my_operation(W, x, b) a second time won't! Graph is already built so no need to call it again.

Mastering model building

57 TensorFlow gradient tape

| 07 07 .
From a previous example: local gradients FWEe are already computed in the forward pass
X 0y

e In TensorFlow, this can be instructed through a tf.GradientTape

qguard all execution with a gradient tape

with tf.GradientTape() as tape:
get predictions - y=fix|w)
=True)

predictions = model(inputs, training

compute the loss losses __________________————————“"__’ L=L(,y)
loss_value = loss(labels, predictions) Y

get and propagate gradients /%
tape.gradient(loss_value, model.trainable_variables)

gradients =
optimizer.apply _gradients(zip(gradients, model.trainable_variables))—— back-propagation

58 tensorboard Mastering model building

e Access to live insights of your training(s) metrics via your browser

TensorBoard SCALARS IMAGES AUDIO GRAPHS DISTRIBUTIONS HISTOGRAMS EMBEDDINGS TEXT

' 4
Write a regex to create a tag group X gradient_norm
loss 3
Show data download links
Ignore outliers in chart scaling I loss | loss/kl_penalty
Tooltip sorting method: default - 300 “ | 120
200 8.00
Smoothing 100 4.00
O 0.6 C 0.00 0.00
0.000 40.00 80.00 120.0 160.0 200.0 240.0 0.000 40.00 80.00 120.0 160.0 200.0 240.0
Horizontal Axis S S —
L — L Jd —
STEP RELATIVE WALL | loss/p_log_lik
0.00
Runs
-100
Write a regex to filter runs
-200
() n_samples_1/20170530_141631
-300 .
() n_samples_5/20170530_141605 ”

0.000 40.00 80.00 120.0 160.0 200.0 240.0

TOGGLE ALL RUNS

log parameter 2

50 Hands-on! Mastering model building

e Regression task

= You are given randomly generated particle four-vectors

> They are generated on-the-fly, so no need for dataset splitting
> You can choose the basis (E, px, py, pz) or (E, pt, 1, ¢)

s [he network should be trained to reconstruct the particle mass
> "Simple" relativistic computation for us

~ Potentially hard for the network
— Build four squares
— Subtract correctly from one another

— Extract the square root

m Colab notebook
~ Complete and optimize the training

https://colab.research.google.com/drive/1qssiZVmuNayzooVtWMusHdJy19m_eo6-?usp=sharing

60 Schedule

Mastering model building

Yesterday
14:30 - 16:00

Yesterday
16:30 - 18:00

Today
09:00 - 10:30

20 1

30 1

40"

2II

2II

40"

10"

70 1

10”

. Variants of and improvements in fully-connected networks (FCNs) v/

- Gradient calculation (recap), vanishing gradients, ResNet, ensemble learning, multi-purpose networks

. Numerical insights & considerations v/

- Domains, feature & output scaling, batch normalization, SELU, categorical embedding, class imbalance

. Techniques 1/2 & hands-on v/

- Keras functional API, custom Keras layer, computing gradients

. Regularization & overtraining suppression v/

- Overtraining & generalization, capacity & capability, regularization, dataset splitting

. Model optimization v

- Optimizer choices, class-importance, hyper-parameters, search strategies

. Techniques 2/2 & hands-on v/

- Compute architecture, TensorFlow eager and graph, custom training loop, tensorboard

. Exercise introduction: Identifying Jets in Particle Collider Experiments

- Problem statement, input data & features, objective(s)

. Hands-on!

- Classification task, implementing newly learned techniques, extension to multi-purpose network

. Exercise summary and tips

- Example wrap-up, additional practical tips

7. Exercise introduction:

ldentifving Jets in Particle Collider Experimen

62 Top quark and Higgs physics at the LHC Mastering model building

182
180
178

e Heaviest particle known to date (comparable to a tungsten atom) 176

>

Q
e Exact knowledge of mass gives insights to electroweak vacuum stability o
2172
e High mass causes sizable strength of Higgs-top coupling B
s Example: "ttH" production 168

166

164
120 122 124 126 128 130 132

e Decay virtually exclusively into b quark and W boson

e Quarks form collimated jets of (many) stable particles in the detector

e Up to eight jets measurablel

s Clear identification of all jets of top decays desirable

62 Top quark and Higgs physics at the LHC Mastering model building

182
180
178

e Heaviest particle known to date (comparable to a tungsten atom) 176

>
Q
e Exact knowledge of mass gives insights to electroweak vacuum stability o
2172
e High mass causes sizable strength of Higgs-top coupling B
s Example: "ttH" production 168
b 166
q,v
164
t 120 122 124 126 128 130 132
g W™ IF My [GeV]
QQQQQQAK - ’
8 ; b
Q000Q0¢ -
7 4%
7
b)

e Decay virtually exclusively into b quark and W boson

e Quarks form collimated jets of (many) stable particles in the detector

e Up to eight jets measurablel

s Clear identification of all jets of top decays desirable

63 (Boosted) Top quark decays Mastering model building

Low top
momentum

Resolved
region

High top quark momentum leads to all decay products

being collimated in a single, large jet ("fat jet")

64 Exercise objective Mastering model building

1. Classification task

s Given four-momenta of up to 200 measured particles, distinguish between jets originating from top quarks (signal)
or lighter quarks / gluons (background), so-called QCD jets

QCD

2. Extension: top quark energy regression in a multi-purpose network

s Extend the network to perform a regression task simultaneously

s Predict the true energy of the initial top quark for signal jets

65 Input data & features Mastering model building

e Input features °%,

m 1.8M jets in 20 "train" files, 8 "valid" files, and 8 "test" files \ e,
m Per jet, you are given the four-vectors of up to 200 of its constituents Wxﬁ-“\\ Ve

~ Total of up to 800 values per jet R S
Top ’ .\ o’

> Note that jets might have less constituents !

s To spare you the trouble of working with uneven (so-called jagged) arrays, o
constituents vectors are padded with zeros S

m Per jet, you are provided 2 different training targets: T et ey
~ A flag that marks the true origin of the jet QCD
— 1 for jets from top quark decays \-
— 0 for light jets from QCD events I0T0000 055 |-
s The true four-vector of the initial particle (only for top quarks)

8. Hands-on!

67 Hands-on! Mastering model building

e Colab notebook

s Divided into 6 parts, with a lot of refreshers for easier starting point later on

1. TensorFlow refresher

2. Refresher of NN terminology

3. The tutorial dataset

4. Minimal training and evaluation workflow

5. Advanced training loop Top < beee

6. (opt) Multi-purpose network
. Work through it s
s Complete missing blocks fo o
m Perform your first trainings \'f':- ,:.. -
s Improve upon it "A.“» e e
I Ask questions and discuss QCD e e

https://colab.research.google.com/drive/1VVpm3X5u8_N1Fv19Ca_icDEaIYPn9UAC?usp=sharing

0. Exercise summary and tips

69 Additional practical tipS Mastering model building

e While prototyping new networks, use a "lab book"

s Manually via actual pen & paper, markdown file, spreadsheets, ...

s Change one thing at a time and log finding

s Automated (e.g. for hyper-opt.) via tensorboard, comet.ml, wandb.ai, mlflow.org, ...
— You are part of the learning process! And things can get very complex very quickly

e Know your data

= Maintain a script to create input feature plots (1d, 2d), means & variances, correlations, obtain class statistics, ...
— Key to avoid various issues down the road upfront

e Monitor your training

= [o improve your network's performance, you need to understand what it does
= Vanishing gradients? Overtraining? Dead units? Stuck in local minimum? Optimization process too slow? ...
— Saves you a lot of time and helps making the guessing process more educated

e Discuss with others

s Profit from experience of fellow colleagues and vice versa

s Exchange new ideas and papers you found

— Helps to stay ahead of the "game"!

https://www.comet.com
https://wandb.ai
https://mlflow.org

