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Mastering model building2 Scope of "Mastering model building"

● Goals 
■ Extend your intuition on effective model building 
■ Learn practical concepts that guide through model optimization 
■ Fill your box of tools that help you identify the do's & don'ts 

● Contents 
■ Variants of and improvements in fully-connected networks 
■ Numerical insights & considerations 
■ Overtraining suppression and regularization 
■ Optimization techniques 
■ Technical insights to TensorFlow and Keras 

"Neural Network Building Blocks"  —  Dennis Noll

"Convolutional Neural Networks"  —  Judith Reindl

"Mastering model building"
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 1. Variants of and improvements in fully-connected networks (FCNs) 
  - Gradient calculation (recap), vanishing gradients, ResNet, ensemble learning, multi-purpose networks 

 2. Numerical insights & considerations 
  - Domains, feature & output scaling, batch normalization, SELU, categorical embedding, class imbalance 

 3. Techniques 1/2 & hands-on 
  - Keras functional API, custom Keras layer, computing gradients

Today 
14:30 - 16:00

Today 
16:30 - 18:00

Tomorrow 
09:00 - 10:30

 4. Regularization & overtraining suppression 
  - Overtraining & generalization, capacity & capability, regularization, dataset splitting 

 5. Model optimization 
  - Optimizer choices, class-importance, hyper-parameters, search strategies 

 6. Techniques 2/2 & hands-on 
  - Compute architecture, TensorFlow eager and graph, custom training loop, tensorboard

 7. Exercise introduction: Identifying Jets in Particle Collider Experiments 
  - Problem statement, input data & features, objective(s) 

 8. Hands-on! 
  - Classification task, implementing newly learned techniques, extension to multi-purpose network 

 9. Exercise summary and tips 
  - Example wrap-up, additional practical tips
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25"
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Mastering model building4 Before we start ...

● Ask questions! 
■ Feel free to interrupt as more people might have the exact same question that's worth discussing 
■ Learning to discuss ML topics is an important goal of this school 

● Time for hands-on parts is deliberately generous 
■ Technical insights and practical hands-on experience are essential for mastering ML 
■ You should be able to fully understand and digest presented concepts & code examples 
■ Best ideas emerge from just "playing around" 

● I have a particle-physicist's bias ... 
■ Chosen examples might reflect that 
■ I'll try to keep them as simple as possible



1. Variants of and improvements in fully-connected networks (FCNs)



Mastering model building6 Gradients by example (1)

● Consider  as a computational graph   
that is too complicated to derive directly 

● Perform the forward pass and back-propagation for                   
x = -2, y = 5, z = -4 

● Introduce  

● Partial derivatives  ,    ,     

● Obtain    through chain rule (same for y) 

■  

● Trivial in this example, but important implications 
■ When an input is changed by ∆,                                        

f changes by "∆ ⨉ gradient"

f(x, y, z) = (x + y) ⋅ z

q = x + y → f = q ⋅ z
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Mastering model building7 Gradients by example (2)

● During forward pass, "operation" f can already compute so-called local gradients of its output 

■  and  

● Upon back-propagation, global gradient is simply computed by means of back-propagation via multiplication
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Mastering model building8 Activation functions

● Activation functions add non-linear behavior to a network layer 
■ Allows finding more complex inner representations (hidden features)            

within fewer layers 

■ But: need to control input space to prevent vanishing gradients! 

● Examples

and many more ...

...

... ... ...ac
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Mastering model building9 Vanishing gradients

● Example: sigmoid 

■ Local gradient  yields asymptotically vanishing behavior 

▻  
▻ Gradient vanishes for small and large x 

■ Two possible solutions: 

a) Manually enforce  (keeps gradient above 0.1) 

﹣ Not trivial since  is usually scalar product  
﹣ See "Numerical insights" 

b) Use different activation 

● Better: ReLU/ ELU / ... 

■ Gradient always present (in fact, 1) for x ≥ 0 

■ ReLU:  unit dead once x < 0 (but can be desired, see CNNs) 

■ ELU:  units can recover over time after x < 0, accelerated by  

∂σ
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≡ σ′ 

σ′ (x) = σ(x) ⋅ (1 − σ(x))

x ∈ [−2,2]
x WT
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α
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Mastering model building10 Beyond FCNs: ResNet

● ImageNet (Large Scale Recognition) challenge 
■ Image recognition challenge that was driving the advancement of ML research 
■ 1.3M training images, 0.1M test images, 1000(!) classes 

● ResNet became the first architecture to beat human recognition performance (7 years ago) 

■ Residual learning → predict target & add additional layers to learn residual differences 

■  
■ Benefits convergence and fast gradient                                                                                                                         

propagation through deep NNs!

f( ⃗x ) = ⃗x + δ( ⃗x )

from "Deep learning in Physics Research", Erdmann et al.

Many layers

https://www.worldscientific.com/worldscibooks/10.1142/12294#t=aboutBook


Mastering model building

● DenseNet 
■ Pass on layer outputs as additional inputs to all subsequent layers 
■ Less weights required to reach equal performance compared to ResNet

11 Beyond FCNs: DenseNet

from arXiv:1909.00948

https://arxiv.org/pdf/1909.00948


Mastering model building

● The predictive power of multiple networks can be combined 

● Benefits 
■ Performance usually improved (many Kaggle challenges won this way) 
■ Less prone to fluctuations in input data, that a single NN might have picked up 

● Variants 
a) Ensemble can be trained as one, with different initial weights per NN 
b) Same as a) plus use different subsets of data 

12 Beyond FCNs: Ensemble learning

NN n

NN 1

NN 2

...

OP 
(avg,max) Output



Mastering model building13 Beyond FCNs: Multi-purpose networks

● A network can serve multiple tasks 
■ Common base layers 
■ Specific "heads" per output 
■ Multiple objectives to be connected through loss function 

▻  

▻  balances importance of A and B to overall loss 

■ Countless variants 
▻ E.g. for >2 tasks, add several common bases 

● Allows performing several tasks at once while profiting from 
■ Single training process 
■ Joined learning of inner representations important to both tasks 
■ Constructive mutual influence 

▻ Updates propagated back to common base from A can improve B in next forward pass 
▻ Effectively, more ground truth information is used 

● Used in real-life applications (e.g. self-driving vehicles)

L = LA + λ ⋅ LB
λ

...
... ...

... ...

... ...

common base

head A

head B

objective A

objective B
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2. Numerical insights & considerations



Mastering model building15 Numerical domains

● Questions 
■ What happens when large input features are fed into the network? 

▻ Inputs to activations might fall into regimes with vanishing gradient / dead units! 

■ What happens during back-propagation when large outputs are expected? 
▻ Weights are likely increased right-to-left, to reach large regression output 
▻ Weights are likely increased left-to-right, to bring inputs down to usable ranges

...
...

...
...

Regression output 
(e.g. values between 0, 300)

Classification outputs 
(values between 0 and 1)

Physics inputs features 
(e.g. values between -200, 700) }{

Categorical flag 
(e.g. values os {0, 1, 2})
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Mastering model building16 Numerical domains: Input

● Goal 
■ Transform "physics" input features such that their range fits the                                                                

numerical domain of the network (typically )                                                                                 
while preserving all corrections 

● Benefits 
■ Vanishing gradients less likely 
■ Speed-up due to homogeneous loss "landscape" 

● Simple "shift & scale" approach 

■ For each feature , apply  
▻ : mean 
▻ : √variance 

■ To be performed once for each feature before training                                                                                       
and needs to be applied to inputs before evaluation 

■ Hint: create initial layer with constant, non-trainable                                                                                                                                              
scaling parameters per feature to avoid having to remember                                                                                                        
those values

[−1,1]

f f → f′ =
f − μ

σμ
σ

...
...

...
...

Physics inputs features 
(e.g. values between -200, 700) {



Mastering model building17 Categorical feature embedding (1)

● Categorical flags constitute a common source of input features 
■ Example:    gender → {0, 1, 2, ...}   (flag) 

■ Not an example:  age     → [0, 99]     (simple integer-value input) 

■ Difference 
▻ Adjacency between two categorical values does not carry                                                                       

additional information: "0" is equally far apart from "1" than "2" 
▻ Adjacency between integer values does: age "50" is closer "49" than "10" 

→ Categorical flags require further treatment as numerical proximity matters to networks! 

● One-hot encoding 
■ Encode flags with (e.g.) three realizations through                                                                                               

three separate inputs, each being either 0 or 1 
▻ flag 0 → (1, 0, 0) 
▻ flag 1 → (0, 1, 0) 
▻ flag 2 → (0, 0, 1) 

■ Bit-like mixtures such as (0, 1, 1) can also work                                                                                                          
but rather use embedding layers which optimize this

...
...

...
...

Categorical flag 
(e.g. values os {0, 1, 2})
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● Categorical flags constitute a common source of input features 
■ Example:    gender → {0, 1, 2, ...}   (flag) 

■ Not an example:  age     → [0, 99]     (simple integer-value input) 

● Embedding layers 
■ Useful in case of two or more categorical features whose values form the full "vocabulary" 
■ Influenced by speech recognition where words are flags and inputs would be "sentence length x vocabulary length" 
■ Instead 

1. Build random weight matrix shaped Nvocabulary x  Nweight 

2. Given Nf input flags, lookup indices in vocabulary 
3. Select Nw weights from matrix per input flag index 
4. Construct Nf x Nw matrix 
5. Flatten it to (Nf • Nw) vector and use it as input

...
...

...
...

Categorical flag 
(e.g. values os {0, 1, 2})

Index
Weights 
dim 1

Weights 
dim 2

0 0.1 0.3

1 -0.4 0.3

2 0.9 -1.0

3 0.7 0.4

Index Word

0 are

1 you

2 ok

3 how

   "How are you?" 

         Indices 
       [3, 1, 2]

Nv Nw

  Select weights 
 [[ 0.7,  0.4], 
  [-0.4,  0.3], 
  [ 0.9, -1.0]]

     Flatten 
[0.7, 0.4, -0.4, 
 0.3, 0.9, -1.0]

...
...

...
...
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● Goal 
■ Transform "physics" output target such that the network prediction                                                                

remains in the network domain (typically )                                                                                 

● Benefits 
■ Large weights do not propagate back into the network 
■ Similar to input feature scaling: loss landscape does not stretch  

● Simple "shift & scale" approach for prediction & ground truth 

■ For each target , apply  
▻ : mean 
▻ : √variance 

■ Need to retransform NN output to get actual physics output 

▻  

■ Hint: create final layer with constant, non-trainable                                                                                                                                              
scaling parameters per target to avoid having to remember                                                                                                        
those values

[−1,1]

t t → t′ =
t − μ

σμ
σ

t′ → t = t′ ⋅ σ + μ

...
...

...
...

Regression output 
(e.g. values between 0, 300)



Mastering model building20 Numerical domains: Network

● Caveats with large network weights 

1. Volatile training steps in inhomogeneous losses 

2. Higher chance of vanishing gradients (dep. in activation) 

3. Network prone to so-called overtraining 

▻ Discussed in later today 

● Input feature and regression target scaling mitigate large weights to some extent, but still needs consideration 

→ Batch normalization and self-normalizing networks

...
...

...
...

Difficult loss landscape Vanishing gradients
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Mastering model building21 Batch normalization

● Idea 
■ Provided that the batch size is sufficiently large, the input feature scaling                                                             

could be automatically evaluated and applied per batch! 

■ Moreover, this normalization can be added between all layers                                                                            
(typically before activations) 

● Batch normalization 
■ During the first forward pass, compute mean  and variance0.5  for each feature  

■ Apply the scaling as before,  

■ Introduce trainable parameters  and  that can adjust                                                                           
dispersion and shift again, if deemed desirable during training 

■  and  are moving averages (  and ) 

▻ For the next forward pass, use -averaged quantities 

﹣  

﹣  

■ When just evaluating the network, use the last known averages                                                                                    
and do not move them

μf σf f

f′ =
f − μf

σf

γf βf

μf σf ̂μf ̂σf

α
̂μf = α ̂μf + (1 − α) ̂μf

̂σf = α ̂σf + (1 − α) ̂σf

...

... ... ...ac
tiv

at
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n
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.



Mastering model building22 Self-normalizing networks

● The mean and variance of layer activations can be intentionally constrained 
■ Either with batch normalization, or  

■ Scaled exponential linear units (SELU) activation 

● Numerical stability reached in a way similar to beam focussing                                                                                                     
with F and D quadrupole magnets 
■ (De)focussing in x(y) followed by (de)focussing in y(x), but when placed                                                           

in perfect distance(*), overall effect is focussing in both planes 

● SELU 
■ Mean and variance per layer map to next layer such that they slightly                                                                  

alternate, but always remain in a defined region (proof) 

■ Require fine tuned(*) scaling parameters  and  

■ Alternative to batch-normalization (feel free to test)

λ α

https://arxiv.org/abs/1706.02515


Mastering model building23 Dealing with "missing" values

● In some scenarios, input features might be missing for some samples in your data 

● Example 
■ Feeding four-momenta of leading 4 jets into network 
■ But, in some samples (events) there are only three jets 

● Common approaches 
■ Train separate networks with only existing features for these cases 

▻ Only beneficial if many inputs are affected 
▻ Otherwise discouraged 
﹣ Requires multiple trainings 
﹣ Each with fewer samples → less predictive power 

■ Better: Encode these cases with null values 
▻ Missing values constitute additional information on their own! 
▻ Actual null value definition depends on feature distribution 
﹣ Proximity to bulk of distribution would imply numerical relation! 

→ At least   ̴3  from center  of distribution for networks to see gap 

❗ Attention: consider skipping these samples when deriving parameters for input feature scaling

σ μ



Mastering model building24 Imbalance of classes / output space

● What will happen during training? 
■ Networks will focus more on over-represented classes (regions) than on the unpopulated ones 
→ Not necessarily what you want 

● Possible approaches 
1. Down-sampling:  remove samples in over-represented classes (generally discouraged, esp. when statistics is an issue) 
2. Collocation:  let training batch consist of equal amount of classes (only complicates the definition of "epoch") 
3. Sample weights: loss functions support per-sample weights to control sample / class importance 
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Classification: weight samples of class  by c
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3. Techniques 1/2 & hands-on



Mastering model building26 Keras functional API

● Keras sequential model known from Dennis' lectures 

import tensorflow as tf 

model = tf.keras.models.Sequential() 
model.add(tf.keras.layers.Dense(128, input_dim=32)) 
model.add(tf.keras.layers.Dense(128)) 
model.add(tf.keras.layers.Dense(128)) 
model.add(tf.keras.layers.Dense(128)) 
model.add(tf.keras.layers.Softmax(2)) 
... 

● More freedom and options in functional API 

import tensorflow as tf 

x = tf.keras.Input(shape=(32,)) 
a1 = tf.keras.layers.Dense(128)(x) 
a2 = tf.keras.layers.Dense(128)(a1) 
a3 = tf.keras.layers.Dense(128)(a2) 
a4 = tf.keras.layers.Dense(128)(a3) 
y = tf.keras.layers.Dense(2, activation="softmax")(a4) 
model = tf.keras.Model(inputs=x, outputs=y)

documentation

documentation

https://keras.io/guides/sequential_model/
https://keras.io/guides/functional_api/


Mastering model building27 Writing custom layers

● Custom layers need to implement 5 methods 

import tensorflow as tf 

class FeatureScaling(tf.keras.layers.Layer): 

    def __init__(self, means, stddevs): 
        """ 
        Constructor. Stores arguments as instance members. 
        """ 
        super(FeatureScaling, self).__init__(trainable=False) 

        self.means = means 
        self.stddevs = stddevs 

    def get_config(self): 
        """ 
        Method that is required for model cloning and saving. It  
        should return a mapping of instance member names to the 
        actual members. 
        """ 
        return {"means": self.means, "stddevs": self.stddevs} 

    def compute_output_shape(self, input_shape): 
        """ 
        Method that, given an input shape, defines the shape of 
        the output tensor. This way, the entire model can be 
        built without actually calling it. 
        """ 
        return (input_shape[0], input_shape[1] * input_shape[2]) 

    
    def build(self, input_shape): 
        """ 
        Any variables defined by this layer should be 
        created inside this method. This helps Keras to 
        defer variable registration to the point where it 
        is needed the first time, and in particular not at 
        definition time. 
        """ 
        # nothing to do here as our feature scaling 
        # has no trainable parameters 

    def call(self, c_vectors): 
        """ 
        Payload of the layer that takes inputs and computes 
        the requested output whose shape should match what 
        is defined in compute_output_shape. 
        """ 
        ... implementation missing :) 
         
        return features 

documentation

https://keras.io/guides/making_new_layers_and_models_via_subclassing/


Mastering model building28 Hands-on!

● Quick introduction to gradients 

import tensorflow as tf 

@tf.function 
def example(): 
  a = tf.constant(2.) 
  b = 3 * a 
  return tf.gradients(a + b, [a, b], stop_gradients=[a, b]) 

example() 
# [4.0, 1.0] 

● Your tasks 
1. Gradients  (colab notebook, 15") 

a) Repeat the gradient computation to the right 

b) Play around with more complex computational graphs                                                                                      
and verify your results (e.g. sin, cos, exp, 2, ...) 

2. Keras' functional API  (colab notebook, 25") 
a) Build your own model 

b) Write a custom layer that performs feature scaling 

c) Extend your model to create a multi-purpose network

x
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y •
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f
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-4
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q

1

3

-4

-4

-4

documentation

https://colab.research.google.com/drive/1SoVI2PovWFDvgU_zLiHZZrtatm7iX00O?usp=sharing
https://colab.research.google.com/drive/1PXmzMXsshUouBPoK2e8AP0JoHZHL04RG?usp=sharing
http://www.apple.com/uk
https://www.tensorflow.org/api_docs/python/tf/gradients


Mastering model building29 Schedule

 1. Variants of and improvements in fully-connected networks (FCNs) ✔ 
  - Gradient calculation (recap), vanishing gradients, ResNet, ensemble learning, multi-purpose networks 

 2. Numerical insights & considerations ✔ 
  - Domains, feature & output scaling, batch normalization, SELU, categorical embedding, class imbalance 

 3. Techniques 1/2 & hands-on ✔ 
  - Keras functional API, custom Keras layer, computing gradients

Today 
14:30 - 16:00

Today 
16:30 - 18:00

Tomorrow 
09:00 - 10:30

 4. Regularization & overtraining suppression 
  - Overtraining & generalization, capacity & capability, regularization, dataset splitting 

 5. Model optimization 
  - Optimizer choices, class-importance, hyper-parameters, search strategies 

 6. Techniques 2/2 & hands-on 
  - Compute architecture, TensorFlow eager and graph, custom training loop, tensorboard

 7. Exercise introduction: Identifying Jets in Particle Collider Experiments 
  - Problem statement, input data & features, objective(s) 

 8. Hands-on! 
  - Classification task, implementing newly learned techniques, extension to multi-purpose network 

 9. Exercise summary and tips 
  - Example wrap-up, additional practical tips

10"

10"

70"

25"

40"

25"

20"

40"

30"



4. Regularization & overtraining suppression
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TensorFlow playground

https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=gauss&regDataset=reg-plane&learningRate=0.01&regularizationRate=0&noise=35&networkShape=8,8,8,8,8,8&seed=0.46947&showTestData=false&discretize=false&percTrainData=20&x=true&y=true&xTimesY=true&xSquared=true&ySquared=true&cosX=false&sinX=true&cosY=false&sinY=true&collectStats=false&problem=classification&initZero=false&hideText=false
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Mastering model building32 Overtraining

● Network learns training data and fails to generalize to underlying truth (pdf) 

● Most evident reasons 

1. Insufficient training statistics 
▻ Training samples fail to represent truth with sufficient accuracy                                                                

(longer: there will always be noise, but with enough statistics, it becomes less likely                                                                            
that random outliers shift the appearance of the full sample distribution) 

▻ Allows networks to learn particular training samples                                                                               
(longer: besides global trends, networks have enough capacity to also focus                                                                                      
on local density fluctuations) 

2. Over-powered network (∼inverse of 1.) 
▻ High capacity allows network to model (remember) higher amount of density changes                                          

(longer: model complex enough for prediction (green line) to become extremely volatile / "zig-zagy") 

▻ Network potentially capable to focus on non-representative regions                                                                       
(longer: even a few outliers can cause the network to move the decision boundary, trying to include them)
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Mastering model building33 Model capacity & capability

● Consider a simple ground truth (pdf) and a polynomial fit 

● Which model would you pick? 

● Caveats 
■ "Appropriate" capacity hardly known 

■ Less capacity leads to less capability! 
▻ Complex-to-reconstruct hidden features require complex networks                                                                             

("complex network" = large, well-designed, or both) 
▻ See particle mass regression example! 

→ Always go with (reasonably) higher capacity. Don't sacrifice capability for overfitting suppression.

5.2 Deep Learning and Neural Networks

the backpropagation algorithm as before (Equation 5.13), the weight update rule is amended to

wi,t+1 = wi,t � h ·
1q

vi,t/(1 � bt
2) + e

·
mi,t

1 � bt
1

, (5.17)

with bt
1,2 decreasing over time and a small number e for numerical stability. If one imagines the

loss function as a high-dimensional surface, the ADAM update rule can be perceived as an object
descending along the surface with momentum and friction. The algorithm yields faster global
convergence [201] and is less sensitive to perturbations due to local minima.

Overtraining suppression
Overtraining occurs when the dataset used for training is an insufficient representation of the
underlying, general probability distributions, either due to a bias in the selection of examples,
or owing to a limited amount of statistics, while the capacity of the network is sufficiently large
to learn characteristic, but non-representative features. Sophisticated applications require net-
works to find complex inner representations in data and hence, rely on an appropriate model
that involves a considerable amount of free parameters. This trade-off situation is illustrated in
Fig. 5.4. The neural networks developed in this analysis employ two methods for overtraining
suppression, which are described in the following two paragraphs.
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f (x) = pol(1) f (x) = pol(3) f (x) = pol(8)
Underfitting Appropriate capacity Overfitting

y(x) = pol1(x) y(x) = pol3(x) y(x) = pol8(x)
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Figure 5.4: Illustration of model capacity, under- and overfitting. Given a set of examples (xi,
yi), a model with too few parameters is an insufficient representation of the data (left), while
a too complex model is prone to fluctuations, might not generalize, and requires measures for
suppressing overtraining (right). While a model with an appropriate capacity (center) appears
reasonable, it might not be able to find complex inner representations of the input data.

In overfitting scenarios such as depicted in Fig. 5.4, weights of trained networks tend to take
on large values, both positive and negative, to compensate for local fluctuations in a statistically
non-representative input space. In order to retain the network’s size and thus, its ability to
model complex representations, the loss function can be extended to penalize large weights
during training. This method, called L2 regularization, adds a term

L2 = l Â
i

w2
i (5.18)

to the loss function, which is mediated by a hyperparameter l. Therefore, the training procedure
minimizes the objective function defined by the task to be accomplished, while simultaneously
avoiding excessively large weights. Bias weights are usually excluded in this approach.

Another approach for overtraining suppression is random unit dropout. It prevents networks
from developing a too strong reliance on particular units during training but rather distribute
the dependence among a statistically reliable amount of units. Given a customizable dropout
rate r 2 [0, 1), unit outputs are randomly set to zero during training with a probability of r. As

71
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Mastering model building34 Overtraining suppression: Regularization

● 1st scenario: overtraining 
■ Small number of weights become large 

▻  (example) 
▻ Should be avoided 

● 2nd scenario: volatile ground truth 
■ Network should remain capable to model that 

▻ Some weights need to be large 

● Goal: "Don't depend on few, large weights to model volatile behavior,                                                                                   
    but rather allow network to increase multiple weights moderately if dictated by training data" 

● Approach: regularization losses       or      

■  is a free parameter that should mediate between regularization and main loss 

■ We usually pick  

▻ Gradients    still depend on , better feedback for updating 's 
▻ Small penalty for , very high for 

y(x) = 2.1 + 3.9x4 − 4.6x6 + 4.4x7 + . . .

L1 =
weights

∑
i

|ω | L2 =
weights

∑
i

ω2

λ
L2

∂L2/∂ω ω ω
ω < 1 ω > 1
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● 1st scenario: overtraining 
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● 2nd scenario: volatile ground truth 
■ Network should remain capable to model that 

▻ Some weights need to be large 

● Goal: "Don't depend on few, large weights to model volatile behavior,                                                                                   
    but rather allow network to increase multiple weights moderately if dictated by training data" 

● Approach: regularization losses       or      

■  is a free parameter that should mediate between regularization and main loss 

■ We usually pick  

▻ Gradients    still depend on , better feedback for updating 's 
▻ Small penalty for , very high for 

y(x) = 2.1 + 3.9x4 − 4.6x6 + 4.4x7 + . . .

L1 =
weights

∑
i

|ω | L2 =
weights

∑
i

ω2

λ
L2

∂L2/∂ω ω ω
ω < 1 ω > 1

5.2 Deep Learning and Neural Networks

the backpropagation algorithm as before (Equation 5.13), the weight update rule is amended to

wi,t+1 = wi,t � h ·
1q

vi,t/(1 � bt
2) + e

·
mi,t

1 � bt
1

, (5.17)

with bt
1,2 decreasing over time and a small number e for numerical stability. If one imagines the

loss function as a high-dimensional surface, the ADAM update rule can be perceived as an object
descending along the surface with momentum and friction. The algorithm yields faster global
convergence [201] and is less sensitive to perturbations due to local minima.

Overtraining suppression
Overtraining occurs when the dataset used for training is an insufficient representation of the
underlying, general probability distributions, either due to a bias in the selection of examples,
or owing to a limited amount of statistics, while the capacity of the network is sufficiently large
to learn characteristic, but non-representative features. Sophisticated applications require net-
works to find complex inner representations in data and hence, rely on an appropriate model
that involves a considerable amount of free parameters. This trade-off situation is illustrated in
Fig. 5.4. The neural networks developed in this analysis employ two methods for overtraining
suppression, which are described in the following two paragraphs.

x

y

x

y

x

y

f (x) = pol(1) f (x) = pol(3) f (x) = pol(8)
Underfitting Appropriate capacity Overfitting

y(x) = pol1(x) y(x) = pol3(x) y(x) = pol8(x)

x x x

y y y

Figure 5.4: Illustration of model capacity, under- and overfitting. Given a set of examples (xi,
yi), a model with too few parameters is an insufficient representation of the data (left), while
a too complex model is prone to fluctuations, might not generalize, and requires measures for
suppressing overtraining (right). While a model with an appropriate capacity (center) appears
reasonable, it might not be able to find complex inner representations of the input data.

In overfitting scenarios such as depicted in Fig. 5.4, weights of trained networks tend to take
on large values, both positive and negative, to compensate for local fluctuations in a statistically
non-representative input space. In order to retain the network’s size and thus, its ability to
model complex representations, the loss function can be extended to penalize large weights
during training. This method, called L2 regularization, adds a term

L2 = l Â
i

w2
i (5.18)

to the loss function, which is mediated by a hyperparameter l. Therefore, the training procedure
minimizes the objective function defined by the task to be accomplished, while simultaneously
avoiding excessively large weights. Bias weights are usually excluded in this approach.

Another approach for overtraining suppression is random unit dropout. It prevents networks
from developing a too strong reliance on particular units during training but rather distribute
the dependence among a statistically reliable amount of units. Given a customizable dropout
rate r 2 [0, 1), unit outputs are randomly set to zero during training with a probability of r. As
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works to find complex inner representations in data and hence, rely on an appropriate model
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In overfitting scenarios such as depicted in Fig. 5.4, weights of trained networks tend to take
on large values, both positive and negative, to compensate for local fluctuations in a statistically
non-representative input space. In order to retain the network’s size and thus, its ability to
model complex representations, the loss function can be extended to penalize large weights
during training. This method, called L2 regularization, adds a term
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to the loss function, which is mediated by a hyperparameter l. Therefore, the training procedure
minimizes the objective function defined by the task to be accomplished, while simultaneously
avoiding excessively large weights. Bias weights are usually excluded in this approach.

Another approach for overtraining suppression is random unit dropout. It prevents networks
from developing a too strong reliance on particular units during training but rather distribute
the dependence among a statistically reliable amount of units. Given a customizable dropout
rate r 2 [0, 1), unit outputs are randomly set to zero during training with a probability of r. As
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Mastering model building35 Overtraining suppression: Dropout

● 1st scenario: overtraining 
■ Small number of weights become large 

■ Also, other weights adapt to that 

▻ E.g. when , then , and , and ... 
▻ Fine tuning problem among weights 

● Goal: "Introduce slightly stochastic behavior to the learning process                                                                                                  
    to reduce weights' reliance on one another" 

● Approach: random unit dropout 

■ Only applied during training 

■ During the forward pass of step , randomly pick units                                                                                                   
with a dropout probability  that are not considered 

■ However, input to each unit in the next layer scaled down 
▻ Scale back up by  ✓ 

■ Repeat in next step , picking different units 

● Typical dropout rates between 10% and 50% 

● Side note: SELU activation requires "AlphaDropout" (preserves , )

ω1 ≫ 1 ω2 ≪ 1 ω3 ≈ 0

i
p

1/(1 − p)
i + 1

μ σ2

5.2 Deep Learning and Neural Networks

the backpropagation algorithm as before (Equation 5.13), the weight update rule is amended to
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loss function as a high-dimensional surface, the ADAM update rule can be perceived as an object
descending along the surface with momentum and friction. The algorithm yields faster global
convergence [201] and is less sensitive to perturbations due to local minima.

Overtraining suppression
Overtraining occurs when the dataset used for training is an insufficient representation of the
underlying, general probability distributions, either due to a bias in the selection of examples,
or owing to a limited amount of statistics, while the capacity of the network is sufficiently large
to learn characteristic, but non-representative features. Sophisticated applications require net-
works to find complex inner representations in data and hence, rely on an appropriate model
that involves a considerable amount of free parameters. This trade-off situation is illustrated in
Fig. 5.4. The neural networks developed in this analysis employ two methods for overtraining
suppression, which are described in the following two paragraphs.
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Figure 5.4: Illustration of model capacity, under- and overfitting. Given a set of examples (xi,
yi), a model with too few parameters is an insufficient representation of the data (left), while
a too complex model is prone to fluctuations, might not generalize, and requires measures for
suppressing overtraining (right). While a model with an appropriate capacity (center) appears
reasonable, it might not be able to find complex inner representations of the input data.

In overfitting scenarios such as depicted in Fig. 5.4, weights of trained networks tend to take
on large values, both positive and negative, to compensate for local fluctuations in a statistically
non-representative input space. In order to retain the network’s size and thus, its ability to
model complex representations, the loss function can be extended to penalize large weights
during training. This method, called L2 regularization, adds a term

L2 = l Â
i

w2
i (5.18)

to the loss function, which is mediated by a hyperparameter l. Therefore, the training procedure
minimizes the objective function defined by the task to be accomplished, while simultaneously
avoiding excessively large weights. Bias weights are usually excluded in this approach.

Another approach for overtraining suppression is random unit dropout. It prevents networks
from developing a too strong reliance on particular units during training but rather distribute
the dependence among a statistically reliable amount of units. Given a customizable dropout
rate r 2 [0, 1), unit outputs are randomly set to zero during training with a probability of r. As
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or owing to a limited amount of statistics, while the capacity of the network is sufficiently large
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that involves a considerable amount of free parameters. This trade-off situation is illustrated in
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In overfitting scenarios such as depicted in Fig. 5.4, weights of trained networks tend to take
on large values, both positive and negative, to compensate for local fluctuations in a statistically
non-representative input space. In order to retain the network’s size and thus, its ability to
model complex representations, the loss function can be extended to penalize large weights
during training. This method, called L2 regularization, adds a term
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to the loss function, which is mediated by a hyperparameter l. Therefore, the training procedure
minimizes the objective function defined by the task to be accomplished, while simultaneously
avoiding excessively large weights. Bias weights are usually excluded in this approach.

Another approach for overtraining suppression is random unit dropout. It prevents networks
from developing a too strong reliance on particular units during training but rather distribute
the dependence among a statistically reliable amount of units. Given a customizable dropout
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Mastering model building36 Overtraining suppression: miscellaneous techniques

● More, representative data 
■ Presumably not trivial 

● Ensemble training 
■ Averaging or "majority votes" across multiple networks 

● Data augmentation 
■ Artificially extend your dataset exploiting known symmetries 
■ Highly non-trivial as underlying pdf's should be preserved 

● Noise injection 
■ Smears input feature pdf's but choice non-trivial too 
■ Trade-off: overtraining vs. loss in performance 

● Fewer parameters, yet shared across network 
■ Requires change in architecture 
→ See CNN lectures 

● Early stopping 
■ Monitor generalization error and stop training at threshold 
→ Next slides

Low-hanging-🍇?

NN n

NN 1

NN 2

..

OP OutputM✗ 

M✓✓ 

M✗✗ 

M✗✗ 

M(✓) 

M✓✓✓ 



Mastering model building37 Generalization error & overtraining detection

● Suppose you split your data first into a "training set" and an independent "validation set" 

■ Perform training with former 

■ Every  batches / after each epoch / ..., check loss or other metrics on latter 

▻ A soon as metrics diverge above level of statistical fluctuations, overtraining occurred 

● What now? 
■ Difference between metrics define generalization error 

■ Decide whether error is acceptable, and if not, stop the training and save the best* model 

● Side note: to save resources, you can also stop the training early in case no improvement happened for some time

n

from "Deep learning in Physics Research", Erdmann et al.

https://www.worldscientific.com/worldscibooks/10.1142/12294#t=aboutBook


Mastering model building38 ML "code of conduct": independent datasets

● "training" ↔ "validation" ↔ "test" 

■ Divide your data into three, fully independent datasets 

■ training 
▻ Samples used for weight optimization through back-propagation 

■ validation 
▻ Samples used during training for immediate validation &                                                                                        

possibly hyper-parameter optimization (e.g. architecture itself, see later) 

■ test 
▻ After information content of training and validation set has been                                                               

exploited, all results are to be reported on independent test set 
▻ Decouples your results from potential overestimation due to overtraining 

● Practicalities 
■ Split randomly once, or repeatedly but deterministic 

▻ Avoids test samples being randomly used at any given time 
■ Think about splitting fractions 

▻ All sets should be statistically significant, define fractions case-by-base 
■ In low stat. scenarios, consider a second training with reversed splits 

▻ Requires dedicated treatment ... also, why stop at two?
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Mastering model building39 k-fold cross validation

● Variant 1: Reconsider the split into training and validation sets 
■ If statistics is an issue, you can incorporate the validation set into the training 
■ Example: 

▻ Split into 5 folds à 10% 
▻ Perform training on 4 folds, validate with remaining fold 
▻ Perform 5 trainings in total 
▻ Final model consists of ensemble of networks 

✓ Exploited all non-test samples 

✓ Increased overtraining robustness 

● Variant 2: Reconsider the split into test and {training,validation} set 

■ If statistics is an even bigger issue, extend folds to test set 
■ Example: 

▻ Split all samples into k=10 folds à 10% 
▻ Perform trainings on k-1 folds (1 for validation), retain remaining fold 
▻ Perform k trainings in total 
▻ For results, evaluate samples with network of opposite k-1th fold 
▻ For samples not seen during training, random / ensemble / sub-ensembling 

✓ Exploited all samples 

☞ Potential implications when real data involved
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Mastering model building40 Let's revisit the initial example

Note: No regularization, no dropout
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Mastering model building41 Hands on!

● Tasks 

1. Open playground.tensorflow.org 

2. Pick the          dataset and create a network that visibly overtrains 

3. Play around with the settings (except for the "data") to make the overtraining as drastic as possible 

4. Step by step, start changing network parameters to suppress overtraining while 

▻ preserving a reasonable loss 

▻ maintaining a quick training process 

5. Now, change some "data" settings. Increase the statistics ("ratio of training to test data") and perform 
two trainings with low and high noise settings. Are they susceptible to overtraining? 

6. Change the data set and play.

http://playground.tensorflow.org/#activation=tanh&regularization=L2&batchSize=10&dataset=gauss&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=25&networkShape=8,8,8,8,8,8&seed=0.88798&showTestData=false&discretize=false&percTrainData=20&x=true&y=true&xTimesY=true&xSquared=true&ySquared=true&cosX=false&sinX=true&cosY=false&sinY=true&collectStats=false&problem=classification&initZero=false&hideText=false


5. Model optimization



Mastering model building43 Network training & loss minimization

ω2

ω1

L(ω1, ω2)

Imagine you're on a hike 
as dense fog rolls in ... 

● Vision below ∼ 1m 

■ You only see the                    
ground below you 

● You want to get to the hut                       
in the valley 

● You want to get there fast! 
■ It's getting dark 

● Your phone can measure the 
elevation & slope at your loc. 
■ Battery is dying 

● What's your plan?



Mastering model building43 Network training & loss minimization

ω2

ω1

L(ω1, ω2)

Imagine you're on a hike 
as dense fog rolls in ... 

● Vision below ∼ 1m 

■ You only see the                    
ground below you 

● You want to get to the hut                       
in the valley 

● You want to get there fast! 
■ It's getting dark 

● Your phone can measure the 
elevation & slope at your loc. 
■ Battery is dying 

● What's your plan?

ML: find weights  and  of a model  that minimize the loss  given data  and truth ω1 ω2 f L( f(x |ω1, ω2), y) x y

Imagine you're on a hike 
as dense fog rolls in ... 

● How to get down to the hut? 
1. Measure local gradient 
2. Walk in direction of steepest  

for slope for 1min 
3. Repeat 

→ Gradient descent! 

● But what if 
■ your battery won't hold? 
■ you walk into a small well? 
■ you feel like you run in 

circles?



Mastering model building44 Weight update rule & optimization improvements

● From Dennis' lecture 

● How to find the global minimum faster and avoid local minima? 

■ Several techniques available that amend the update rule 
■ Influenced by the scenario of a moving object on a slope, introducing: 

▻ Adaptive learning rate per parameter  
▻ Momentum, to overcome local minima and fluctuations 
▻ Friction, to reduce momentum step-wise

ω

Update rule 

ωt+1 = ωt − α ⋅
∂L
∂ωt

from "Deep learning in Physics Research", Erdmann et al.

L(ω)

ω

learning rate gradient

https://www.worldscientific.com/worldscibooks/10.1142/12294#t=aboutBook
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Mastering model building45 Adaptive & momentum learning in 5 steps

1. Standard update of particular weight  from  

■  

2. Adagrad: Remember all past gradients and adapt  

■         and            

3. RMSprob: Scale down or "decay" sum of past gradients by  

■  

4. Momentum: Stabilize the direction, maintaining previous "velocity" 

■  

5. Adam: Combine  of RMSprob and  of momentum 

■       with

ω t → t + 1

ωt+1 = ωt − α ⋅
∂L
∂ωt

→ Δωt = − α ⋅
∂L
∂ωt

α → αt

νt =
t

∑
τ=1 ( ∂L

∂ωτ )
2

αt =
α

νt + ϵ

β

νt = β ⋅ νt−1 + (1 − β) ⋅ ( ∂L
∂ωt )

2

Δωt = vt = β ⋅ vt−1 − (1 − β) ⋅ α ⋅
∂L
∂ωt

(∇L)2 ∇L

Δωt = vt = − α
mt

νt + ϵ

from "Deep learning in Physics Research", Erdmann et al.

νt =
1

1 − βt
β ⋅ νt−1 + (1 − β) ⋅ ( ∂L

∂ωt )
2

❗

❗

mt =
1

1 − γt [γ ⋅ mt−1 + (1 − γ) ⋅
∂L
∂ωt ]

https://www.worldscientific.com/worldscibooks/10.1142/12294#t=aboutBook
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Mastering model building46 Learning rate decay

● Even with Adam, the final optimization steps can circle around the true minimum ("overshooting") 
→ Detectable via noise after seemingly converging 

● Adjust the base learning rate  

■ Over time 
▻ Step wise according to some schedule 
▻ Exponential decay (e.g. multiply by every  steps) 

■ After reaching plateau 
▻ Detect by keeping history of last  losses 
▻ Multiply  by , repeat  times

α

ρ = 0.9 n

n
α ρ = 0.5 k

from "Deep learning in Physics Research", Erdmann et al.

https://www.worldscientific.com/worldscibooks/10.1142/12294#t=aboutBook


Mastering model building47 Class / output-space importance

● Which type of result do intend to extract and publish? 
■ Some central measurement of observable plus uncertainties 

■ Theory / model exclusion intervals ( ) 
■ Significance of measurement over some background-only hypothesis 
■ ... 

● ... did you tell your network? 
■ Or: Is your loss ±100% correlated to your result quantity? 

■ Often not the case 

▻ Neural network metrics are just proxies, entangled with assumptions! 
▻ Make sure it's a good one, or define an optimization process (brute-force scans) 
▻ Especially true if complex measurement techniques are employed after your ML algo. 
▻ Example

CL

...
...

...
...

Paper
Sed ut perspiciatis, unde omnis iste natus error sit voluptatem 
accusantium doloremque 
laudantium, totam                                               

em aperiam eaque ipsa, qu 
ae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt, 
explicabo. Nemo

Network Binning of output Results: Limits



Mastering model building48 Class / output-space importance: example

● Real-life example: Search for HH production 

■ ML application: Signal vs. Background separation 

■ Loss 
▻ Cross entropy with equal weight / importance 

for all S and B events 
▻ Assumption! 

■ Test 
▻ Vary the relative weight of B to S 
▻ Compute upper exclusion limit (brute force)

S 5 times more important than B

S and B equally important

B 5 times more important than S

B 50 times more important than S

5 Durchführung and Results
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Figure 5.17: Upper limits at kl=1 for 15 different background weights. It shows a clear trend
towards higher background weights causing less background contamination in the signal cate-
gories ggf and vbf.
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Mastering model building49 Hyper-parameters

● Large list of hyper-parameters to optimize (here, for FCNs) 

■ Architecture 
▻ Number of layers,  
▻ Number of units per layer,  
▻ Activation,  
▻ Discrete choices 
﹣ Dense/residual/classic 
﹣ Weight initialization 
﹣ Batch normalization 

■ Optimizer 
▻ Learning rate + decay, ,   
▻ Algorithm and its parameters (Adam: , ) 

■ Training 
▻ Batch size,  
▻ Splitting fractions, ,  
▻ Cross validation folds,  
▻ Regularization factor,  
▻ Dropout rate, 

nl
nu

σ(x)

α ρ
β γ

b
ftrain fvalid

k
λ

p
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How to approach them? 

1⃣  Some have well-tested defaults 
▻ E.g. Adam parameters 

2⃣  Some can be grouped (divide & conquer) 
▻ E.g. batch size & learning rate 

3⃣  Some do not depend in each other 
▻ Optimize one after another 

4⃣  Hyper-parameter search for the remainder 
▻ "hyper-opt" 



Mastering model building50 Hyper-parameter optimization: Grid & random search

● Assume you have  hyper-parameters with  possible settings each 

■  trainings 
■ Even more when considering ensemble learning, k-fold cross validation, ... 

● Grid search 
■ Iterate brute-force through the grid of points 
→ Highly-resource intensive 
→ Risk of wasting resources on unimportant parameter choices 
→ Chance of hitting the best parameters limited by grid granularity 

● Random search 
■ Define continuous ranges rather than fixed grid (if possible) 

■ Sample  points and randomly search for best performance  

→ Less resources as  is usually  

→ Given that  is still sufficiently large, better chance of finding good points 

→ Can we define a somewhat "informed" search?

np = 6 nc = 5
nnp

c = 15625

r
r ≪ nnp

c
r
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Mastering model building51 Hyper-parameter optimization: Sequential search

● Many packages available, scikit-optimize (skopt), hyperopt 
● From the skopt documentation: 

hyper-parameters x
loss after training with choice of x

optimal hyper-parameters x

yes
yes
yes

https://scikit-optimize.github.io/stable/
http://hyperopt.github.io/hyperopt/


Mastering model building52 Hyper-parameter optimization: Sequential search

● Driven by Bayesian optimization 
■ Fit of an arbitrary, potentially non-differentiable function 
■ Iterative procedure 

▻ Few starting points (observations) are required 
▻ Bayesian process predicts most likely function 

approximation plus an uncertainty 
▻ Suggest next point of observation at parameter                  

with highest uncertainty 
▻ Cycle 
▻ After sufficient sampling, stop and identify  minimizing  

● Practical workflow 
■ Perform an initial coarse grid or random search 

■ Feed pairs of {loss, hyper-parameters} == ( , x) into 
Bayesian optimizer 

■ Get back predictions of best next hyper-parameters to test 
and perform new training 

■ Cycle

x

x f

f(x)

time



6. Techniques 2/2 & hands-on



Mastering model building54 TensorFlow internals: Computational graphs

● Consider the computation  
■ Can be visualized in graph form 

■  and  are inputs to the graph,  is the output 
■ Inputs, outputs and intermediate results ( ) are denoted by edges 
■ Operations (+ "Add", ⨉ "MatMul") are box-shaped nodes 

● Every neural network can be described as a directed, acyclic graph (DAG) 

● Why is that helpful? 
■ Clear definition of forward-pass based on symbolic operation instructions 
■ Identification of values (weights, output of operations, etc) being used                                                                

multiple times 

■ Clear definition of backward-propagation 
■ Use graph theory to optimize processing (e.g. merging of nodes) (advanced) 
❗ Identify independent subgraphs for efficient, parallel processing

c = W ⋅ x + b

W, x b c
W ⋅ x

3 Experimental Setup

The computation of a graph is initiated when the numerical result of one or more operations
is requested, whereby TENSORFLOW automatically determines the subgraph to process. Here,
three types of tensors are distinguished, namely “placeholders”, “constants”, and “variables”.
Placeholders usually mark the entry point for external information, such as input features for
neural network evaluation, and must be provided manually. Variables and constants are ini-
tialized with a-priori values, whereas only variables can be subject to updates during graph
processing and usually describe the trainable parameters of a machine learning model. Applied
to the example introduced above, C is a function of x, given the variable tensors q = (W, b), such
that C = C(x|q).

Similar to this rather elementary graph, large machine learning models often consist of com-
positions of vector and matrix operations whose computational performance can be optimized
substantially using vectorization techniques. Modern graphics processing units (GPUs) exhibit
highly parallel architectures, often equipped with thousands of processing cores that operate
far more efficient for vectorized algorithms. Therefore, TENSORFLOW provides a “device place-
ment” mechanism to distribute the actual computation of a virtual graph across physical de-
vices, e.g. CPUs and GPUs, which is illustrated in Fig. 3.11 (right). After placing operations on
particular devices, their execution is scheduled depending on the graph structure, and tensor
states are transferred between them if necessary. Internally, GPU instruction sets are accessed
through the CUDA parallel computing platform [169].

import tensorflow as tf

b = tf.Variable(tf.zeros([100])) # 100-d vector, init to zeroes
W = tf.Variable(tf.random_uniform([784,100],-1,1)) # 784x100 matrix w/rnd vals
x = tf.placeholder(name="x") # Placeholder for input
relu = tf.nn.relu(tf.matmul(W, x) + b) # Relu(Wx+b)
C = [...] # Cost computed as a function

# of Relu

s = tf.Session()
for step in xrange(0, 10):

input = ...construct 100-D input array ... # Create 100-d vector for input
result = s.run(C, feed_dict={x: input}) # Fetch cost, feeding x=input
print step, result

Figure 1: Example TensorFlow code fragment

W

b

x

MatMul

Add

Figure 2: Corresponding computation graph for Figure 1

Category Examples
Element-wise mathematical operations Add, Sub, Mul, Div, Exp, Log, Greater, Less, Equal, ...
Array operations Concat, Slice, Split, Constant, Rank, Shape, Shuffle, ...
Matrix operations MatMul, MatrixInverse, MatrixDeterminant, ...
Stateful operations Variable, Assign, AssignAdd, ...
Neural-net building blocks SoftMax, Sigmoid, ReLU, Convolution2D, MaxPool, ...
Checkpointing operations Save, Restore
Queue and synchronization operations Enqueue, Dequeue, MutexAcquire, MutexRelease, ...
Control flow operations Merge, Switch, Enter, Leave, NextIteration

Table 1: Example TensorFlow operation types

by the session interface is Run, which takes a set of out-
put names that need to be computed, as well as an op-
tional set of tensors to be fed into the graph in place of
certain outputs of nodes. Using the arguments to Run,
the TensorFlow implementation can compute the transi-
tive closure of all nodes that must be executed in order
to compute the outputs that were requested, and can then

arrange to execute the appropriate nodes in an order that
respects their dependencies (as described in more detail
in 3.1). Most of our uses of TensorFlow set up a Session
with a graph once, and then execute the full graph or a
few distinct subgraphs thousands or millions of times via
Run calls.

3
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Figure 3: Single machine and distributed system structure

input and output tensors for each graph node, along with
estimates of the computation time required for each node
when presented with its input tensors. This cost model is
either statically estimated based on heuristics associated
with different operation types, or is measured based on
an actual set of placement decisions for earlier execu-
tions of the graph.

The placement algorithm first runs a simulated execu-
tion of the graph. The simulation is described below and
ends up picking a device for each node in the graph using
greedy heuristics. The node to device placement gener-
ated by this simulation is also used as the placement for
the real execution.

The placement algorithm starts with the sources of the
computation graph, and simulates the activity on each
device in the system as it progresses. For each node that
is reached in this traversal, the set of feasible devices is
considered (a device may not be feasible if the device
does not provide a kernel that implements the particular
operation). For nodes with multiple feasible devices, the
placement algorithm uses a greedy heuristic that exam-
ines the effects on the completion time of the node of
placing the node on each possible device. This heuristic
takes into account the estimated or measured execution
time of the operation on that kind of device from the cost
model, and also includes the costs of any communica-
tion that would be introduced in order to transmit inputs
to this node from other devices to the considered device.
The device where the node’s operation would finish the
soonest is selected as the device for that operation, and
the placement process then continues onwards to make
placement decisions for other nodes in the graph, includ-
ing downstream nodes that are now ready for their own
simulated execution. Section 4.3 describes some exten-
sions that allow users to provide hints and partial con-
straints to guide the placement algorithm. The placement
algorithm is an area of ongoing development within the
system.

3.2.2 Cross-Device Communication

Once the node placement has been computed, the graph
is partitioned into a set of subgraphs, one per device. Any
cross-device edge from x to y is removed and replaced
by an edge from x to a new Send node in x’s subgraph
and an edge from a corresponding Receive node to y in
y’s subgraph. See Figure 4 for an example of this graph
transformation.

Figure 4: Before & after insertion of Send/Receive nodes

At runtime, the implementations of the Send and Re-
ceive nodes coordinate to transfer data across devices.
This allows us to isolate all communication inside Send
and Receive implementations, which simplifies the rest
of the runtime.

When we insert Send and Receive nodes, we canoni-
calize all users of a particular tensor on a particular de-
vice to use a single Receive node, rather than one Re-
ceive node per downstream user on a particular device.
This ensures that the data for the needed tensor is only
transmitted once between a source device ! destination
device pair, and that memory for the tensor on the desti-
nation device is only allocated once, rather than multiple
times (e.g., see nodes b and c in Figure 4)

By handling communication in this manner, we also
allow the scheduling of individual nodes of the graph
on different devices to be decentralized into the work-
ers: the Send and Receive nodes impart the necessary

5

Figure 3.11: Left: Example of a directed computational graph in TENSORFLOW [167] (image
slightly altered). Nodes are represented by operations, whereas edges are denoted by tensors.
Right: Placement of operations on different devices for performance optimization purposes,
requiring the exchange of tensor data between them [90].

3.4.4 Luigi
LUIGI is a Python software package that provides a scalable design pattern for structuring large
and complex workflows of arbitrary workloads [170]. Initially developed at Spotify, it became a
community-driven, open-source project and is successfully deployed in both commercial and
scientific applications. To include remote resources available in the context of high-energy
physics research, LUIGI was extended along the development of this analysis. The concepts and
capabilities of this extension are discussed in detail in Section 5.1. The following paragraphs
introduce the fundamental building blocks of the LUIGI package.

Using LUIGI, an arbitrary workload, i.e., the elementary unit in an overarching workflow, is
described as a “task”. The purpose of a task is to produce a customizable set of outputs, denoted
by so-called “targets”. While targets usually represent local or remote files, they can, in princi-
ple, describe any type of stateful resource (e.g. a database entry). The sole core functionality
of a target is to check and report its own existence. Therefore, a task is considered “complete”,
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Mastering model building55 TensorFlow internals: Compute architecture

● Computing architecture 

● TensorFlow: eager execution (instantly return results) 

import tensorflow as tf 

x = tf.constant([1.0, 2.0, 3.0]) 
W = tf.constant([[0.5, 1.5, 0.8], [0.0, 2.1, 0.6]]) 
b = tf.constant([5.0, 5.0]) 

prod = W @ x  # @ -> matmul 
c = prod + b 

print(prod) 
print(c)

High-level interface (Python) Low-level library (C++) Devices (CPU,GPU,...)

while developing, intermediate results 
can help debugging

in production, we are usually 
not interested in intermediate results

Question: how to tell TensorFlow?
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● Functions decorated by tf.function become templates for graphs 
import tensorflow as tf 

x = tf.constant([1.0, 2.0, 3.0]) 
W = tf.constant([[0.5, 1.5, 0.8], [0.0, 2.1, 0.6]]) 
b = tf.constant([5.0, 5.0]) 

@tf.function 
def my_operation(W, x, b): 
    prod = W @ x  # @ -> matmul 
    print(prod) 
    return prod + b 

c = my_operation(W, x, b) 
print(c) 

● More technical insights 
■ tf.function converts any python code (for and while loops, if conditions, ...) to a graph and executes it in C++ 
■ Decorated functions are polymorphic → accept input tensor of any shape and type 
■ A new graph is built every time yet unseen {shape, type} combinations of the parameters are used 

▻ Calling   my_operation(W, x, b)   once will also   print(prod)   (but only showing a symbolic tensor) 

▻ Calling   my_operation(W, x, b)   a second time won't! Graph is already built so no need to call it again.

→ Inputs and output clearly defined → create graph! 
→ Intermediate objects neither transferred to Python interpreter 
    nor between devices!

High-level interface Low-level library (C+ Devices 

3 Experimental Setup

The computation of a graph is initiated when the numerical result of one or more operations
is requested, whereby TENSORFLOW automatically determines the subgraph to process. Here,
three types of tensors are distinguished, namely “placeholders”, “constants”, and “variables”.
Placeholders usually mark the entry point for external information, such as input features for
neural network evaluation, and must be provided manually. Variables and constants are ini-
tialized with a-priori values, whereas only variables can be subject to updates during graph
processing and usually describe the trainable parameters of a machine learning model. Applied
to the example introduced above, C is a function of x, given the variable tensors q = (W, b), such
that C = C(x|q).

Similar to this rather elementary graph, large machine learning models often consist of com-
positions of vector and matrix operations whose computational performance can be optimized
substantially using vectorization techniques. Modern graphics processing units (GPUs) exhibit
highly parallel architectures, often equipped with thousands of processing cores that operate
far more efficient for vectorized algorithms. Therefore, TENSORFLOW provides a “device place-
ment” mechanism to distribute the actual computation of a virtual graph across physical de-
vices, e.g. CPUs and GPUs, which is illustrated in Fig. 3.11 (right). After placing operations on
particular devices, their execution is scheduled depending on the graph structure, and tensor
states are transferred between them if necessary. Internally, GPU instruction sets are accessed
through the CUDA parallel computing platform [169].

import tensorflow as tf

b = tf.Variable(tf.zeros([100])) # 100-d vector, init to zeroes
W = tf.Variable(tf.random_uniform([784,100],-1,1)) # 784x100 matrix w/rnd vals
x = tf.placeholder(name="x") # Placeholder for input
relu = tf.nn.relu(tf.matmul(W, x) + b) # Relu(Wx+b)
C = [...] # Cost computed as a function

# of Relu

s = tf.Session()
for step in xrange(0, 10):

input = ...construct 100-D input array ... # Create 100-d vector for input
result = s.run(C, feed_dict={x: input}) # Fetch cost, feeding x=input
print step, result

Figure 1: Example TensorFlow code fragment

W

b

x

MatMul

Add

Figure 2: Corresponding computation graph for Figure 1

Category Examples
Element-wise mathematical operations Add, Sub, Mul, Div, Exp, Log, Greater, Less, Equal, ...
Array operations Concat, Slice, Split, Constant, Rank, Shape, Shuffle, ...
Matrix operations MatMul, MatrixInverse, MatrixDeterminant, ...
Stateful operations Variable, Assign, AssignAdd, ...
Neural-net building blocks SoftMax, Sigmoid, ReLU, Convolution2D, MaxPool, ...
Checkpointing operations Save, Restore
Queue and synchronization operations Enqueue, Dequeue, MutexAcquire, MutexRelease, ...
Control flow operations Merge, Switch, Enter, Leave, NextIteration

Table 1: Example TensorFlow operation types

by the session interface is Run, which takes a set of out-
put names that need to be computed, as well as an op-
tional set of tensors to be fed into the graph in place of
certain outputs of nodes. Using the arguments to Run,
the TensorFlow implementation can compute the transi-
tive closure of all nodes that must be executed in order
to compute the outputs that were requested, and can then

arrange to execute the appropriate nodes in an order that
respects their dependencies (as described in more detail
in 3.1). Most of our uses of TensorFlow set up a Session
with a graph once, and then execute the full graph or a
few distinct subgraphs thousands or millions of times via
Run calls.
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Figure 3: Single machine and distributed system structure

input and output tensors for each graph node, along with
estimates of the computation time required for each node
when presented with its input tensors. This cost model is
either statically estimated based on heuristics associated
with different operation types, or is measured based on
an actual set of placement decisions for earlier execu-
tions of the graph.

The placement algorithm first runs a simulated execu-
tion of the graph. The simulation is described below and
ends up picking a device for each node in the graph using
greedy heuristics. The node to device placement gener-
ated by this simulation is also used as the placement for
the real execution.

The placement algorithm starts with the sources of the
computation graph, and simulates the activity on each
device in the system as it progresses. For each node that
is reached in this traversal, the set of feasible devices is
considered (a device may not be feasible if the device
does not provide a kernel that implements the particular
operation). For nodes with multiple feasible devices, the
placement algorithm uses a greedy heuristic that exam-
ines the effects on the completion time of the node of
placing the node on each possible device. This heuristic
takes into account the estimated or measured execution
time of the operation on that kind of device from the cost
model, and also includes the costs of any communica-
tion that would be introduced in order to transmit inputs
to this node from other devices to the considered device.
The device where the node’s operation would finish the
soonest is selected as the device for that operation, and
the placement process then continues onwards to make
placement decisions for other nodes in the graph, includ-
ing downstream nodes that are now ready for their own
simulated execution. Section 4.3 describes some exten-
sions that allow users to provide hints and partial con-
straints to guide the placement algorithm. The placement
algorithm is an area of ongoing development within the
system.

3.2.2 Cross-Device Communication

Once the node placement has been computed, the graph
is partitioned into a set of subgraphs, one per device. Any
cross-device edge from x to y is removed and replaced
by an edge from x to a new Send node in x’s subgraph
and an edge from a corresponding Receive node to y in
y’s subgraph. See Figure 4 for an example of this graph
transformation.

Figure 4: Before & after insertion of Send/Receive nodes

At runtime, the implementations of the Send and Re-
ceive nodes coordinate to transfer data across devices.
This allows us to isolate all communication inside Send
and Receive implementations, which simplifies the rest
of the runtime.

When we insert Send and Receive nodes, we canoni-
calize all users of a particular tensor on a particular de-
vice to use a single Receive node, rather than one Re-
ceive node per downstream user on a particular device.
This ensures that the data for the needed tensor is only
transmitted once between a source device ! destination
device pair, and that memory for the tensor on the desti-
nation device is only allocated once, rather than multiple
times (e.g., see nodes b and c in Figure 4)

By handling communication in this manner, we also
allow the scheduling of individual nodes of the graph
on different devices to be decentralized into the work-
ers: the Send and Receive nodes impart the necessary

5

Figure 3.11: Left: Example of a directed computational graph in TENSORFLOW [167] (image
slightly altered). Nodes are represented by operations, whereas edges are denoted by tensors.
Right: Placement of operations on different devices for performance optimization purposes,
requiring the exchange of tensor data between them [90].

3.4.4 Luigi
LUIGI is a Python software package that provides a scalable design pattern for structuring large
and complex workflows of arbitrary workloads [170]. Initially developed at Spotify, it became a
community-driven, open-source project and is successfully deployed in both commercial and
scientific applications. To include remote resources available in the context of high-energy
physics research, LUIGI was extended along the development of this analysis. The concepts and
capabilities of this extension are discussed in detail in Section 5.1. The following paragraphs
introduce the fundamental building blocks of the LUIGI package.

Using LUIGI, an arbitrary workload, i.e., the elementary unit in an overarching workflow, is
described as a “task”. The purpose of a task is to produce a customizable set of outputs, denoted
by so-called “targets”. While targets usually represent local or remote files, they can, in princi-
ple, describe any type of stateful resource (e.g. a database entry). The sole core functionality
of a target is to check and report its own existence. Therefore, a task is considered “complete”,
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Mastering model building57 TensorFlow gradient tape

● From a previous example: local gradients ,  are already computed in the forward pass 

● In TensorFlow, this can be instructed through a tf.GradientTape 

# guard all execution with a gradient tape 
with tf.GradientTape() as tape: 
    # get predictions 
    predictions = model(inputs, training=True) 

    # compute the loss losses 
    loss_value = loss(labels, predictions) 

    # get and propagate gradients 
    gradients = tape.gradient(loss_value, model.trainable_variables) 
    optimizer.apply_gradients(zip(gradients, model.trainable_variables))
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● Access to live insights of your training(s) metrics via your browser



Mastering model building59 Hands-on!

● Regression task 

■ You are given randomly generated particle four-vectors 
▻ They are generated on-the-fly, so no need for dataset splitting 
▻ You can choose the basis (E, px, py, pz) or (E, pT, η, φ) 

■ The network should be trained to reconstruct the particle mass 
▻ "Simple" relativistic computation for us 
▻ Potentially hard for the network 
﹣ Build four squares 
﹣ Subtract correctly from one another 
﹣ Extract the square root 

■ Colab notebook 
▻ Complete and optimize the training

q = (E, px, py, pz)T

m = E2 − p2

pzpyE

m

px

q = (E, px, py, pz)T

https://colab.research.google.com/drive/1qssiZVmuNayzooVtWMusHdJy19m_eo6-?usp=sharing
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 1. Variants of and improvements in fully-connected networks (FCNs) ✔ 
  - Gradient calculation (recap), vanishing gradients, ResNet, ensemble learning, multi-purpose networks 

 2. Numerical insights & considerations ✔ 
  - Domains, feature & output scaling, batch normalization, SELU, categorical embedding, class imbalance 

 3. Techniques 1/2 & hands-on ✔ 
  - Keras functional API, custom Keras layer, computing gradients

Yesterday 
14:30 - 16:00

Yesterday 
16:30 - 18:00

Today 
09:00 - 10:30

 4. Regularization & overtraining suppression ✔ 
  - Overtraining & generalization, capacity & capability, regularization, dataset splitting 

 5. Model optimization ✔ 
  - Optimizer choices, class-importance, hyper-parameters, search strategies 

 6. Techniques 2/2 & hands-on ✔ 
  - Compute architecture, TensorFlow eager and graph, custom training loop, tensorboard

 7. Exercise introduction: Identifying Jets in Particle Collider Experiments 
  - Problem statement, input data & features, objective(s) 

 8. Hands-on! 
  - Classification task, implementing newly learned techniques, extension to multi-purpose network 

 9. Exercise summary and tips 
  - Example wrap-up, additional practical tips

10"
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70"

25"

40"

25"

20"
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30"



7. Exercise introduction: 
Identifying Jets in Particle Collider Experiments



Mastering model building62 Top quark and Higgs physics at the LHC

● Heaviest particle known to date (comparable to a tungsten atom) 

● Exact knowledge of mass gives insights to electroweak vacuum stability 

● High mass causes sizable strength of Higgs-top coupling 

■ Example: "ttH" production 

● Decay virtually exclusively into b quark and W boson 

● Quarks form collimated jets of (many) stable particles in the detector 

● Up to eight jets measurable! 

■ Clear identification of all jets of top decays desirable

2.2 The tt̄H Process at Hadron Colliders

Under the assumption that the Higgs boson decay occurs perpendicular to the direction of its
motion, the spatial angle between the two jets in the observer’s reference frame at typical mo-
menta of pH = 100 GeV amounts to f ⇡ 103�. Therefore, one can estimate that in the majority
of cases the two jets exhibit a sufficiently large spatial separation, allowing for their resolved
measurement and identification based on features of displaced secondary vertices.

Signal processes in which the Higgs boson decays into particles other than a pair of bottom
quarks, such as H ! W+W� and H ! t+t�, are taken into account in the following. Despite
their minor expected yield due to smaller branching ratios and different final-state signature,
events of those processes can potentially pass phase space selection criteria and contribute to
the total number of tt̄H signal events.

Moreover, the decay of the tt̄ system is considered in the single-lepton and dilepton decay
channels (cf. Section 2.2.3). A corresponding leading-order Feynman diagram is presented in
Fig. 2.9a. It should be noted that more diagrams exist to describe tt̄H production. An example
is the production of a pair of top quarks (cf. Section 2.2.3) where one top quark emits a Higgs
boson. Similarly to generic tt̄ production, gluon-initiated processes have the largest contribution
to the total tt̄H cross section at

p
s = 13 TeV [33].
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Figure 2.9: Feynman diagrams showing tt̄H (H ! bb̄) (a) and tt̄+bb̄ production (b) in the
single-lepton and dilepton tt̄ decay channels. Their final state is identical and despite differ-
ent spin and color charge relations, the event topology is quite similar. It should be noted that
more possible diagrams exist for both processes.

In total, the measurable final state consists of six jets and an isolated lepton in the single-lepton,
and four jets and two isolated leptons with opposite charge in the dilepton channel, respectively.
In both cases, four jets are supposed to originate from b-hadron decays and a significant amount
of missing transverse energy is expected due to the non-detectable neutrinos. Given the high
combinatorial complexity due the number of jets and the typical detector resolution of jet ob-
servables, the full reconstruction of the event is rather challenging. The net cross section is

stt̄H,bb̄,SL+DL = stt̄H · BRH!bb̄ · BRtt̄,SL+DL = 98.4 +6.9
�9.9 fb, (2.50)

which corresponds to ⇠ 3500 produced events in the dataset recorded by the CMS detector in
2016 with an integrated luminosity of 35.9 fb�1.
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Mastering model building63 (Boosted) Top quark decays

High top quark momentum leads to all decay products 
being collimated in a single, large jet ("fat jet")



Mastering model building64 Exercise objective

1. Classification task 
■ Given four-momenta of up to 200 measured particles, distinguish between jets originating from top quarks (signal)             

or lighter quarks / gluons (background), so-called QCD jets 

2. Extension: top quark energy regression in a multi-purpose network 
■ Extend the network to perform a regression task simultaneously 

■ Predict the true energy of the initial top quark for signal jets
...

... ...

... ...

... ...



Mastering model building65 Input data & features

● Input features 
■ 1.8M jets in 20 "train" files, 8 "valid" files, and 8 "test" files 
■ Per jet, you are given the four-vectors of up to 200 of its constituents                                                               

▻ Total of up to 800 values per jet 
▻ Note that jets might have less constituents❗ 

■ To spare you the trouble of working with uneven (so-called jagged) arrays,                       these "missing" 
constituents vectors are padded with zeros 

● Training targets 
■ Per jet, you are provided 2 different training targets: 

▻ A flag that marks the true origin of the jet 
﹣ 1 for jets from top quark decays 
﹣ 0 for light jets from QCD events 

■ The true four-vector of the initial particle (only for top quarks)



8. Hands-on!



Mastering model building67 Hands-on!

● Colab notebook 

■ Divided into 6 parts, with a lot of refreshers for easier starting point later on 
1. TensorFlow refresher 
2. Refresher of NN terminology 
3. The tutorial dataset 
4. Minimal training and evaluation workflow 
5. Advanced training loop 
6. (opt) Multi-purpose network 

■ Work through it 
■ Complete missing blocks 
■ Perform your first trainings 
■ Improve upon it 
❗ Ask questions and discuss

https://colab.research.google.com/drive/1VVpm3X5u8_N1Fv19Ca_icDEaIYPn9UAC?usp=sharing


9. Exercise summary and tips



Mastering model building69 Additional practical tips

● While prototyping new networks, use a "lab book" 
■ Manually via actual pen & paper, markdown file, spreadsheets, ... 
■ Change one thing at a time and log finding 
■ Automated (e.g. for hyper-opt.) via tensorboard, comet.ml, wandb.ai, mlflow.org, ... 
→ You are part of the learning process! And things can get very complex very quickly 

● Know your data 
■ Maintain a script to create input feature plots (1d, 2d), means & variances, correlations, obtain class statistics, ... 
→ Key to avoid various issues down the road upfront 

● Monitor your training 
■ To improve your network's performance, you need to understand what it does 
■ Vanishing gradients? Overtraining? Dead units? Stuck in local minimum? Optimization process too slow? ... 
→ Saves you a lot of time and helps making the guessing process more educated 

● Discuss with others 
■ Profit from experience of fellow colleagues and vice versa 
■ Exchange new ideas and papers you found 
■ ... 
→ Helps to stay ahead of the "game"! 

https://www.comet.com
https://wandb.ai
https://mlflow.org

