
Recurrent Neural Networks (RNNs)

Nikolai Hartmann

LMU Munich

August 11, 2022, ErUM-Data-Hub Deep Learning School

1 / 32

Outline

• 9:00-10:30 Lecture
• General introduction
• The LSTM (long short term memory)
• Model building with RNNs in keras
• Hands-on: Understand RNN implementation
• Advanced concepts

• 11:00-12:30 Hands-on
• Predict a sin curve
• Detect a cosmic ray signal in noisy radio wave data

• 14:30-16:30 Hands-on
• Continue with exercises
• Additional exercise on variable-length sequences

→ + train an RNN classifier on the TopTagging dataset

2 / 32

Non-recurrent neural networks

Blackbox view: Fixed-size input, fixed-size output:

NNInput Output

Typically implemented as a stack of layers:

NN1Input NN2 NNN Output

3 / 32

Recurrent neural networks

RNN

Input1

Output1

RNN

Input2

Output2

RNN

InputN

OutputN

• Operate on a sequence, passing-on a hidden state
• Shared weights across the sequence
• Usually thought of as a sequence in-time, but can be any ordered sequence
• Usually trained with Backpropagation through time (BPTT)

(nothing special when using modern ML libraries)

4 / 32

That’s what’s meant by this diagram

RNN

Inputi

Outputi

RNN

Inputi

Outputi

NN
often decomposed into

RNN block has a feedback connection
→ (part of) output fed back as input to the next element of the sequence

5 / 32

Example: predict the next word

RNN

They're

RNN RNN RNN

taking the hobbits

RNN

to

Isengard

• Don’t need to use output at every step
→ here: feed in a several words
→ use prediction after a few steps

• Don’t need to feed input at every step
→ here we do, but could also feed back in prediction
→ let the model fantasize new text

• NB: need to represent words somehow
→ learnable embedding of a list of possible words to a fixed-length vector
→ alternative: go character by character

6 / 32

Different possibilities for inputs/outputs

[1]

• one-to-one
→ non-recurrent neural network

• one-to-many
→ sequence output
→ e.g. image captioning

• many-to-one
→ sequence input
→ e.g. time series prediction, sequence classification

• many-to-many
→ sequence input and output
→ e.g. machine translation

Not always strict distinction, e.g. many-to-many models may also act as many-to-one

7 / 32

The inside of the box

[2]

h⃗t = tanh(Wxhx⃗t +Whhh⃗t−1 + b⃗) = tanh(Wh[x⃗t, h⃗t−1] + b⃗) [,] := concatenation

• Simplemost example: concatenate input and state
• Then fully connected layer with bias and activation function

→ typically tanh for RNNs
• Output and updated state is the same
• This is what you get with keras.layers.SimpleRNN

8 / 32

More general

h⃗t = tanh(Wh[x⃗t, h⃗t−1] + b⃗h) y⃗t = σ(Wyh⃗t + b⃗y)

If output used as target y:

• Separate layer from hidden state to output
→ hidden state needs to carry over information on past sequence

• Combination like this theoretically turing complete [4]

• keras implementation example (hidden state size 32, 1D target for each time step):

rnn = tf.keras.Sequential([

layers.SimpleRNN(32, return_sequences=True),

layers.Dense(1, activation="sigmoid")

])

However: In practice struggles to learn long-range dependencies
(has a very short short-term-memory)

9 / 32

What have we learned so far?

• Recurrent neural networks operate on sequences

• The weights are shared across the sequence
→ they are effectively trainable state-machines

• Depending on the application can have sequences both as input and as output

• Simplest recurrent cell consists of concatenation of (previous) hidden state with new input
that is then passed through fully connected NN layer

10 / 32

The Long Short Term Memory (LSTM)

• Introduced in 1997 by Hochreiter und Schmidhuber
• Basic idea: make keeping a memory the default

→ called cell state C
→ NN layers learn what to forget and what to add to the memory

• Realized by gates:
• NN layers with sigmoid activation function
• Act as mask (numbers between 0 and 1) to be multiplied with a vector

→ can gradually turn on/off certain features

• LSTM until today the working horse for RNN architectures

Gate:

11 / 32

→ let’s go through it step by step (using the illustrations from Christopher Olah’s blog [2])

12 / 32

The forget gate - decide what to forget

13 / 32

The input gate - decide what to add

14 / 32

Update the cell state

15 / 32

The output gate - decide what to output

16 / 32

Gated Recurrent Units - GRU

• modification of LSTM without separate cell state (just a single hidden state)
• less parameters and operations than LSTM

→ 2 instead of 3 gates
• in practice shown to have comparable performance

17 / 32

Model building with RNNs in keras

https://keras.io/guides/working_with_rnns/

• Included as layers: SimpleRNN , LSTM , GRU

• Default mode: Take sequence input, output single vector

• For sequence output, pass return_sequences=True

• Dense layers will operate on the last dimension
→ can be on top of sequences (with shared weights)

• Use TimeDistributed wrapper for other layers

18 / 32

https://keras.io/guides/working_with_rnns/

Stack RNN layers

import tensorflow as tf

from tensorflow.keras.layers import (

Dense, LSTM

)

model = tf.keras.Sequential([

Dense(128, activation="relu"),

LSTM(128, return_sequences=True),

LSTM(128),

Dense(1, activation="sigmoid"),

])

batch_size, sequence_length, n_features

model.build((None, None, 4))

Input1 Input2 InputN

Output

LSTM1

Dense1
 Dense1
 Dense1

LSTM1
 LSTM1

LSTM2
 LSTM2
 LSTM2

Dense2

19 / 32

Combine sequence with fixed length input

import tensorflow as tf
from tensorflow.keras.layers import (

Dense, LSTM, Input, Concatenate
)
def build_model(input_dim_fixed, input_dim_sequence):

input_fixed = Input((input_dim_fixed,))
h_fixed = Dense(128, activation="relu")(input_fixed)
input_sequence = Input((None, input_dim_sequence))
h_sequence = LSTM(128)(input_sequence)
h = Concatenate()([h_sequence, h_fixed])
out = Dense(1, activation="sigmoid")(h)
return tf.keras.Model(

inputs=[input_fixed, input_sequence],
outputs=[out]

)

20 / 32

Example application: τ identification at ATLAS

Tracks LSTM LSTM

Clusters LSTM LSTM

Dense Dense Dense

Dense Dense Dense

High-level
variables

⊕

Shared
dense

Shared
dense

Shared
dense

Shared
dense

Merge

• Use LSTM on sequence of tracks/clusters
→ order by transverse momentum
→ encode variable length into fixed length
→ allows inclusion of low-level variables

• Greatly improved performance
(previous classifiers used only high level variables)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 efficiency
had­vis

τTrue

1

10

210

3
10

410

 r
e

je
c
ti
o

n
h
a
d
­v

is
τ

F
a

k
e

ATLAS Simulation Preliminary

RNN (1­prong)

BDT (1­prong)

Working points (1­prong)

RNN (3­prong)

BDT (3­prong)

Working points (3­prong)

1ATL-PHYS-PUB-2019-033
21 / 32

http://cds.cern.ch/record/2688062/files/ATL-PHYS-PUB-2019-033.pdf

Hands-on Exercises

https://github.com/nikoladze/deep-learning-rnn-tutorial

→ start with understand rnns.ipynb

22 / 32

https://github.com/nikoladze/deep-learning-rnn-tutorial
https://github.com/nikoladze/deep-learning-rnn-tutorial/understand_rnns.ipynb

Bi-Directional RNNs

• prediction can depend on elements further in sequence
• have one RNN block going forward in sequence and one backward
• combine outputs of both
• useful if outputs at each time step depend on whole sequence
• keras : can wrap any RNN layer to be bi-directional

→ e.g. layers.Bidirectional(layers.LSTM(32, return_sequences=True))

1https://colah.github.io/posts/2015-09-NN-Types-FP
23 / 32

https://colah.github.io/posts/2015-09-NN-Types-FP/

Note: without return_sequences=True you get this:

RNN

(forward)

Input1 Input2 InputN Input1 Input(N-1) InputN

Output

RNN

(forward)

RNN

(forward)

RNN

(backward)

RNN

(backward)

RNN

(backward)

24 / 32

Recursive Neural Networks

• Generalizes the concept of RNN to directed acyclic graphs
(RNNs are then the special case of a linear chain)

• Need to process graph in a defined order
→ from leave nodes to root nodes

• Example on the left: follow jet clustering sequence

• Possible update rule for fixed number of child nodes:
concatenate N child vectors with node input, e.g. N-ary Tree-LSTM

• For trees/graphs with variable number of children:
sum over child vectors, e.g. Child-Sum Tree-LSTM

1QCD-Aware Recursive Neural Networks for Jet Physics, arXiv:1702.00748
25 / 32

https://arxiv.org/abs/1702.00748

Encoder-Decoder RNNs

Input1

Output1

Input2

Output2

InputN

OutputN

RNN2 RNN2 RNN2

RNN1
 RNN1
 RNN1

? ?

• Used for delayed many-to-many models

• Prominent use-case: Machine Translation

• Need to decide what to feed as input to the decoder
→ 0? Previous Output? Encoded state? Both?

• In practice struggles for long output sequences

26 / 32

Attention mechanisms

• Have each element of decoder sequence attend to elements from encoder sequence

• Possible implementation: score from dot product of each encoder, decoder step pair

• Precursor of transformers - Attention is all you need

1https://distill.pub/2016/augmented-rnns
27 / 32

https://distill.pub/2016/augmented-rnns

Example for machine translation

1https://distill.pub/2016/augmented-rnns
28 / 32

https://distill.pub/2016/augmented-rnns

RNNs vs Pointcloud and Graph models

• There is a trend to work with models of unordered sets
• Pointclouds/Deep sets
• Graphs
• Transformers

• Sometimes motivated by data (e.g., no sensible ordering, graph structure)
• Sometimes just by computational advantages (RNNs inherently sequential)

→ Transformers for language models

If you have ordered sequences and it’s computationally doable, RNNs are still the way to go!

29 / 32

References

• [1] A. Karpathy, The Unreasonable Effectiveness of Recurrent Neural Networks
http://karpathy.github.io/2015/05/21/rnn-effectiveness

• [2] C. Olah, Understanding LSTM networks
https://colah.github.io/posts/2015-08-Understanding-LSTMs

• [3] Uwe Klemradt’s lecture on ErUM-Data Hub Train-the-trainer workshop
https://indico.scc.kit.edu/event/2645/contributions/9861/attachments/

4962/7494/Lecture_RNN_final.pdf
• [4] I. Goodfellow et al., Deep Learning
https://www.deeplearningbook.org

30 / 32

http://karpathy.github.io/2015/05/21/rnn-effectiveness
https://colah.github.io/posts/2015-08-Understanding-LSTMs
https://indico.scc.kit.edu/event/2645/contributions/9861/attachments/4962/7494/Lecture_RNN_final.pdf
https://indico.scc.kit.edu/event/2645/contributions/9861/attachments/4962/7494/Lecture_RNN_final.pdf
https://www.deeplearningbook.org

Hands-on Exercises

https://github.com/nikoladze/deep-learning-rnn-tutorial

31 / 32

https://github.com/nikoladze/deep-learning-rnn-tutorial

