Recurrent Neural Networks (RNNs)

Nikolai Hartmann

LMU Munich

August 11, 2022, ErUM-Data-Hub Deep Learning School

LMU

LUDWIG-
MAXIMILIANS-
UNIVERSITAT
MUNCHEN

1/32

Outline

® 0:00-10:30 Lecture
General introduction
The LSTM (long short term memory)
Model building with RNNs in keras
Hands-on: Understand RNN implementation
Advanced concepts
® 11:00-12:30 Hands-on

® Predict a sin curve

® Detect a cosmic ray signal in noisy radio wave data
® 14:30-16:30 Hands-on

® Continue with exercises

® Additional exercise on variable-length sequences

— —+ train an RNN classifier on the TopTagging dataset

2/32

Non-recurrent neural networks

Blackbox view: Fixed-size input, fixed-size output:

Input —> NN

— Output

Typically implemented as

a stack of layers:

Input —>{ NN;y

\ /

NN,

—> 0 @ @ —»

NNy

— OQutput

3/32

Recurrent neural networks

|Output{| | Output, |
) i

RNN

Y

A

A

| Inputy |

| Input, |

Operate on a sequence, passing-on a hidden state

Shared weights across the sequence
Usually thought of as a sequence in-time, but can be any ordered sequence

Usually trained with Backpropagation through time (BPTT)
(nothing special when using modern ML libraries)

RNN —> e e e —> RNN

Outputy
\

A

Inputy

4/32

That’s what’s meant by this diagram

Output;
A

’ often decomposed into
[: RNN P

A

Input;

RNN block has a feedback connection
— (part of) output fed back as input to the next element of the sequence

5/32

Example: predict the next word

Isengard

RNN — RNN —> RNN —> RNN —> RNN

! T T ! !

They're taking the hobbits to

® Don’t need to use output at every step
— here: feed in a several words
— use prediction after a few steps

® Don't need to feed input at every step
— here we do, but could also feed back in prediction
— let the model fantasize new text
® NB: need to represent words somehow
— learnable embedding of a list of possible words to a fixed-length vector
— alternative: go character by character

6/32

Different possibilities for inputs/outputs

one t_o one (ie to many many to of many t_o many many t_o mTy
U UL 1 ol DUl
t ot 1 t ot t tot ot
] W TR DR (A
1 t ttt t ot ot ot
1 | Jof DEd AL
[1]
® one-to-one ® many-to-one
— non-recurrent neural network — sequence input

® one-to-many — e.g. time series prediction, sequence classification

— sequence output ® many-to-many
— e.g. image captioning — sequence input and output
— e.g. machine translation

Not always strict distinction, e.g. many-to-many models may also act as many-to-one

7/32

The inside of the box
L

A

A A

[[
(3] ® & 2]

1 0 — > <

Neural Network Pointwise Vector
Layer Operation Transfer

i_it = tanh(Wyxn%; + Whhl_it_l + 5) = tanh(Wy[Z, Fbt—ﬂ + 5) [,] := concatenation

Concatenate Copy

® Simplemost example: concatenate input and state

Then fully connected layer with bias and activation function
— typically tanh for RNNs

® Qutput and updated state is the same

This is what you get with keras.layers.SimpleRNN

8/32

More general

—

hy = tanh(Wy[Z, he_1] + b)) 5 = o(Wyhy + by)

If output used as target y:

® Separate layer from hidden state to output
— hidden state needs to carry over information on past sequence

® Combination like this theoretically turing complete [4]

® keras implementation example (hidden state size 32, 1D target for each time step):

ron = tf.keras.Sequential ([
layers.SimpleRNN(32, return_sequences=True),
layers.Dense(1l, activation="sigmoid")

D

However: In practice struggles to learn long-range dependencies
(has a very short short-term-memory)

9/32

What have we learned so far?

Recurrent neural networks operate on sequences

The weights are shared across the sequence
— they are effectively trainable state-machines

Depending on the application can have sequences both as input and as output

Simplest recurrent cell consists of concatenation of (previous) hidden state with new input
that is then passed through fully connected NN layer

10/32

The Long Short Term Memory (LSTM)

Gate:

Introduced in 1997 by Hochreiter und Schmidhuber
Basic idea: make keeping a memory the default —®_
— called cell state C
— NN layers learn what to forget and what to add to the memory
Realized by gates:

® NN layers with sigmoid activation function

® Act as mask (numbers between 0 and 1) to be multiplied with a vector

— can gradually turn on/off certain features

LSTM until today the working horse for RNN architectures L c —

Neural Network ~ Pointwise Vector
Layer Operation Transfer

11/32

& ® ®

1 ¥ 1
A ﬂ"?-“” { A

C1 O — >

Neural Network ~ Pointwise Vector
Layer Operation ~ Transfer

Concatenate Copy

— let’s go through it step by step (using the illustrations from Christopher Olah’s blog [2])

12/32

Tt

fi

The forget gate - decide what to forget

fe=0Wpg-[ht—1,2¢] + by)

1 0 — >

Neural Network Pointwise Vector

Layer Operation Transfer ~ _oncatenate Copy

13/32

The input gate - decide what to add

ir =0 (Wi-[hi—1, 2] + bi)

X ét :tal’lh(WC'[ht_l,.’L’t] + bC)

A

1 O — >

Neural Network Pointwise Vector

Layer Operation Transfer ~ _oncatenate Copy

14/32

Update the cell state

X
ftT i Cy = fr x Cy1 +iy % G,

1 O — >

Neural Network Pointwise Vector

Layer Operation Transfer ~ _oncatenate Copy

15/32

hy—y

The

output gate - decide what to output

he &
‘ﬂg’ o =0 (Wo [he—1,2¢] + bo)
o . ht = oy * tanh (C})
>

A

1 O — >

Neural Network Pointwise Vector

Layer Operation Transfer ~ _oncatenate Copy

16/32

Gated Recurrent Units - GRU

2zt =0 (W, - [hi—1,24])
re =0 (Wr : [ht—lth])
iLt = tanh (W - [ry * hy_1, x4])

hy = (1 — 2¢) % he—q + 2 % By

Tt

® modification of LSTM without separate cell state (just a single hidden state)
® |ess parameters and operations than LSTM

— 2 instead of 3 gates
® in practice shown to have comparable performance

17/32

Model building with RNINs in keras

https://keras.io/guides/working_with_rnns/

Included as layers: SimpleRNN, LSTM, GRU

Default mode: Take sequence input, output single vector
For sequence output, pass return_sequences=True
Dense layers will operate on the last dimension

— can be on top of sequences (with shared weights)

Use TimeDistributed wrapper for other layers

18/32

https://keras.io/guides/working_with_rnns/

Stack RNN layers

import tensorflow as tf

from tensorflow.keras.layers import (
Dense, LSTM

)

model = tf.keras.Sequential([
Dense (128, activation="relu"),
LSTM(128, return_sequences=True),
LSTM(128),
Dense(l, activation="sigmoid"),

D

batch_size, sequence_length, n_features

model.build((None, None, 4))

Dense,
LSTM, LSTMy —> © ® @ —» LS‘T’MZ
LS'T'M1 LS'T'M1 —> 000 —> LS'T'M1
De:se1 DerTse1 DerTse1

* * [X N)
(] []

19/32

Combine sequence with fixed length input

import temsorflow as tf
from tensorflow.keras.layers import (
Dense, LSTM, Input, Concatenate
)
def build_model(input_dim_fixed, input_dim_sequence):
input_fixed = Input((input_dim_fixed,))
h_fixed = Dense(128, activation="relu") (input_fixed)
input_sequence = Input((None, input_dim_sequence))
h_sequence = LSTM(128) (input_sequence)
h = Concatenate() ([h_sequence, h_fixed])
out = Dense(l, activation="sigmoid") (h)
return tf.keras.Model (
inputs=[input_fixed, input_sequence],
outputs=_[out]

mput_2 ‘ InputLayer Istm. | LSTM
input: l output: input: l output:
, None, 5 , None, 5
[(None, None, 5)] (None, None, 5) IC deme 1 | Dense
N 5 128
[(one, None, 5)] (None, 128) input: | output: input: | output:
input_1 ‘ InputLayer dense | Dense |~ [(None, 128), (None, 128)] (None, 256)
25 3
input: l output: input: l output: (None, 256) (None, 1)
[(None, 10)] (None, 10)
[(None, 10)] (None, 128)

20/32

Example application: 7 identification at ATLAS

Shared Shared

Tracks dense H dense H LSTM H LSTM N
erge

Shared Shared g 10'g A MMM Aas AMaatananenane
Clusters | H B H LSTM H LSTM Dense H Dense H Dense -% E ATLAS Simulation Preliminary]
8 1
e [pesse | pense || pense 2 10° E
_,,;; []
£ 10t E
® Use LSTM on sequence of tracks/clusters A] E
[oeeees BDT (1-prong)]

— order by transverse momentum 1oL Woring pois (1-pong)

. . . E —— RNN(3-prong)

— encode variable length into fixed length i

. . . L = Working points (3-prong
— allows inclusion of low-level variables gl)

® Greatly improved performance True 7, efficiency
(previous classifiers used only high level variables)

IATL-PHYS-PUB-2019-033

21/32

http://cds.cern.ch/record/2688062/files/ATL-PHYS-PUB-2019-033.pdf

Hands-on Exercises

https://github.com/nikoladze/deep-learning-rnn-tutorial

— start with understand_rnns.ipynb

22/32

https://github.com/nikoladze/deep-learning-rnn-tutorial
https://github.com/nikoladze/deep-learning-rnn-tutorial/understand_rnns.ipynb

Bi-Directional RNNs

()

@

prediction can depend on elements further in sequence

have one RNN block going forward in sequence and one backward
combine outputs of both

useful if outputs at each time step depend on whole sequence
keras : can wrap any RNN layer to be bi-directional

— e.g. layers.Bidirectional (layers.LSTM(32, return_sequences=True))

https://colah.github.io/posts/2015-09-NN-Types-FP
23/32

https://colah.github.io/posts/2015-09-NN-Types-FP/

Note: without return_sequences=True you get this:

RNN |,/ RNN |, ¢ ¢ ¢ —» RNN RNN « o e e <«— RNN « | RNN
(forward) (forward) (forward) (backward) (backward) (backward)
| Inputy | | Input, | | Inputy | [Inputy | Inputevn| | Inputy |

24/32

Classifier

Jet embedding

(L)

AN

]’hJ‘CV(tJ)

BTN,
i/ ek
!
. !
A
v S
:
Vi Vo o VN;

Recursive Neural Networks

® Generalizes the concept of RNN to directed acyclic graphs
(RNNs are then the special case of a linear chain)

® Need to process graph in a defined order
— from leave nodes to root nodes

® Example on the left: follow jet clustering sequence

® Possible update rule for fixed number of child nodes:
concatenate N child vectors with node input, e.g. N-ary Tree-LSTM

® For trees/graphs with variable number of children:
sum over child vectors, e.g. Child-Sum Tree-LSTM

LQCD-Aware Recursive Neural Networks for Jet Physics, arXiv:1702.00748

25/32

https://arxiv.org/abs/1702.00748

Encoder-Decoder RNNs

Output1 @

—> © 0 0 —»

RNN; [—»]

RNN;

—> © 0 0 —»

RNN, {—»{ RNN,
?
RNN

Used for delayed many-to-many models

Prominent use-case: Machine Translation

Need to decide what to feed as input to the decoder

— 07 Previous Output? Encoded state? Both?

In practice struggles for long output sequences

RNN,

T

26/32

Attention mechanisms

The attending RNN generates a

query describing what it wants
to focus on.

e query to produce a score, describing

how well it matches the query. The
scores are fed into a softmax to
create the attention distribution.

® Have each element of decoder sequence attend to elements from encoder sequence
® Possible implementation: score from dot product of each encoder, decoder step pair
® Precursor of transformers - Attention is all you need

'\ @'\ '\ @'\ Each item is dot producted with the

Lhttps://distill.pub/2016 /augmented-rnns

27/32

https://distill.pub/2016/augmented-rnns

Example for machine translation

accord sur la zone ECOanIqUE@UerEGan a

G - C B B BB L

AaA(_.A|ﬁ|A%A|(_.A‘._)A‘ﬁAEA._,A|ﬁ‘A(_,A(_,A|(_.A‘
] 1 1 I 1 T T I 1 T
i 1992 . <end=>

the agreement on the European Economic Area was signed in August

Lhttps://distill.pub/2016 /augmented-rnns

28/32

https://distill.pub/2016/augmented-rnns

RNNs vs Pointcloud and Graph models

® There is a trend to work with models of unordered sets
® Pointclouds/Deep sets
® Graphs
® Transformers
® Sometimes motivated by data (e.g., no sensible ordering, graph structure)
® Sometimes just by computational advantages (RNNs inherently sequential)
— Transformers for language models

If you have ordered sequences and it's computationally doable, RNNs are still the way to go!

29/32

References

[1] A. Karpathy, The Unreasonable Effectiveness of Recurrent Neural Networks
http://karpathy.github.i0/2015/05/21/rnn-effectiveness

[2] C. Olah, Understanding LSTM networks
https://colah.github.io/posts/2015-08-Understanding-LSTMs

[3] Uwe Klemradt's lecture on ErUM-Data Hub Train-the-trainer workshop
https://indico.scc.kit.edu/event/2645/contributions/9861/attachments/
4962/7494/Lecture_RNN_final.pdf

[4] I. Goodfellow et al., Deep Learning

https://www.deeplearningbook.org

30/32

http://karpathy.github.io/2015/05/21/rnn-effectiveness
https://colah.github.io/posts/2015-08-Understanding-LSTMs
https://indico.scc.kit.edu/event/2645/contributions/9861/attachments/4962/7494/Lecture_RNN_final.pdf
https://indico.scc.kit.edu/event/2645/contributions/9861/attachments/4962/7494/Lecture_RNN_final.pdf
https://www.deeplearningbook.org

Hands-on Exercises

https://github.com/nikoladze/deep-learning-rnn-tutorial

31/32

https://github.com/nikoladze/deep-learning-rnn-tutorial

