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Block 1: Introduction & Visualisation
1) Overview of concepts
2) Feature Visualisation as a tool

Outline of this course
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Block 2: Attention & Reaction
1) Class Activation Maps (CAM)
2) Saliency
3) From sensitivity to attribtion

Block 3: Further concepts for introspection

Wrap-up & summary

In total: ca. 1/3 lecture, 2/3 hands-on



Our setup for the hands-on tutorials
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The tutorials provide examples of neural 
network introspection written in Python, using 
the Keras* library and TensorFlow tensor
ordering convention. We will also use 
additional toolkits such as tf-keras-vis.** 

*Keras provides a high level API to create deep 
neural networks and train them using numerical 
tensor libraries (backends) such as TensorFlow, 
CNTK or Theano.

Credit: A. Boucaud
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** https://keisen.github.io/tf-keras-vis-docs/index.html#



You can start a binder image here:
https://mybinder.org/v2/gh/csheneka/introspection-tutorial/HEAD
Please start with: visualisation_3D-21cmPIE-Net.ipynb

OR via google Colab here: https://colab.research.google.com for path
https://github.com/csheneka/introspection-tutorial

Extra data: https://cloud.hs.uni-hamburg.de/s/gYWW4PQG2b57XK3
(larger file version)
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For our hands-on tutorial on
Introspection of neural networks:
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https://mybinder.org/v2/gh/csheneka/introspection-tutorial/HEAD
https://github.com/csheneka/introspection-tutorial/blob/main/visualisation_3D-21cmPIE-Net.ipynb
https://colab.research.google.com/
https://github.com/csheneka/introspection-tutorial
https://cloud.hs.uni-hamburg.de/s/gYWW4PQG2b57XK3
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Part 1: Why introspection
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Famous examples:
‘Clever Hans’ effect
(wrong cue – ‘overfitting’)
Over-confidence
(e.g. miss-classifying)

Need introspection to:
- Evaluate training data
- Debug, detect ‘anomalies’
- Understand and verify your model
- Understand predictions

Network models are data driven.

Hans am Tretbrett (1909)

Lapuschkin et al. 2019, arXiv: 1902.10178
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Part 1: Why introspection
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Famous examples:
‘Clever Hans’ effect
(wrong cue, ‘overfitting’)
Over-confidence
(e.g. miss-classifying)

Need introspection to:
- Evaluate training data
- Debug, detect ‘anomalies’
- Understand and verify your model
- Understand predictions

Network models are data driven.

Hans am Tretbrett (1909)

Lapuschkin et al. 2019, arXiv: 1902.10178



711./12.8.2022, C. Heneka,  DL Basic Concepts: Introspection

A Network
Model

Input
Data

Easily order(million) parameters
‘black box’?

prediction
‘the answer’

Part 1: Why introspection
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Part 1: Why introspection
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We do know: architecture (model), best-fitting parameters (weights/bias/filter)
+ how these change during training + reaction to data analyse

Neuron

Σ x+1x

W b

differentiable

A Network
Model

Input
Data

Easily order(million) parameters
‘black box’

prediction
‘the answer’
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Part 1: Why introspection
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To learn about the model and its reaction to data, one can:
- Visualise feature space [Block 1]
- Analyse attention & reaction (CAM, saliency) [Block 2]
- Be model-agnostic (SHAP, clustering) [Block 3]
- Many more: Put errors/probabilities, regularise, unsupervised … [Block 3]

… very active field of development!

A Network
Model

Input
Data

prediction
‘the answer’

Goal: Explainable & 
Interpretable AI}
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Part 1: Why introspection
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To learn about the model and its reaction to data, one can:
- Visualise feature space [Block 1]
- Analyse attention & reaction (CAM, saliency) [Block 2]
- Be model-agnostic (e.g. SHAP) [Block 3]
- Many more: Put errors/probabilities, regularise, unsupervised … [Block 3]

… active field of development!

Visualise structure of weights (dense), filters (convolutional)
Example we will learn about with hands-on exercises: 
Filter and activation of CNN, (activation maximisation)
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Reminder: Convolutional Neural Networks
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Understand
High-level features

Low-level features
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Feature Visualisation
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How do weights/biases/filters look like?
How do networks ‘see’?
i.e. how do they learn representations?

Interpretability:
Are shapes, that we expect to be 
important, there?

filter
x

kernel Activation 1

Activation 2

Filter

Understand
High-level features

Low-level features Credit: A. Boucaud



13

Feature Visualisation layer by layer
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Visualisation of filters Visualisation of feature maps, or activation

Detect:
Shapes

Structures

Input as treated by model (filters)

Image Credit:
Renu Khandelwal

Towards Data Science
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Transposed Convolution: Feature ‘Deconvolution’
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Useful for:
- Segmentation, localisation, super-resolution through upsampling
- Relating input patterns to feature maps

Noh, Hong, Han 2015
arXiv: 1505.04366

Goal: Map intermediate features to input shape
Transposed Convolution consists of unpooling to 
create a larger, but sparse, activation map, that 
then is via ‘fractional’ convolution connects for 
every input activation multiple outputs. 

See Zeiler et al., 2013
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Transposed Convolution: Visualisation
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For visualisation we are interested in mapping what caused the highest 
activation in feature space:
- Model: transposed trained model (weights, filters)
- Upsample only highest activation
- Up to input space dimension

Noh, Hong, Han 2015
arXiv: 1505.04366

Suppression of background, specific representation, complexity

+ Further examples arXiv:1804.11191
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Activation Maximisation
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Useful to visualise both dense and convolutional networks parts.

An input pattern image x* is synthesized that maximises the activation of a feature,
i.e. that finds preferred input for a neuron, filter, or layer (deep dream):

for a pretrained model with parameters θ, and input x. 

Steps:
(1) Start with input noise image x0
(2) Calculate activation gradients via backpropagation at fixed θ
(3) Iteratively maximise the activation, until x* 

https://keisen.github.io/tf-keras-vis-docs/
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Summary Block 1: Introduction & Visualisation

ü Introspection important to verify and debug your model
ü Deep Learning is data-driven: need to understand data representation
ü Goal is interpretable  / explainable machine learning

ü Introspection is possible via visualisation of trained properties
- Visualisation of filter and feature maps
- Transposed Convolution upsamples and identifies ‘important’ input shapes
- Activation Maximisation finds shapes that a specific neuron/filter/layer is sensitive to
- and more: network inversion, network dissection, pruning, …

We can track feature hierarchy, representation learning in a probabilistic manner.
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Hands-on background: Visualisation of an ‘Astrophysical’ CNN

Lyα coupling

Recombination

cosmic reionisation
‘the last big phase transition’

cosmic dawn
‘first stars and galaxies’

Credits: Planck, ESA Credits: ESO

z 7101520

ionisedneutral

X-ray heatingradiative coupling 
to CMB

21-cm lightcone*
generated with 21cmFAST

*lightcone = 2D spatial + 
1D frequency information

blue = emission 
red / yellow = absorption
against the CMB

What is the cosmology at high redshifts? ‘gap’ between CMB and galaxy surveys
What properties do the very first stars and galaxies have?
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Best-performing: simple Conv3D architecture

Database of ~5000 lightcones
140x140x2350 pix, 1.4 Mpc resolution
Training (K80 GPU): ~20min/epoch, ~30 epochs

Neutsch, Heneka, Brüggen 2022, arXiv: 2201.07587

Task to infer astrophysical and cosmological key parameters
directly from intensity lightcones

Moving from 2D to full 3D convolution

Hands-on background: Visualisation of an ‘Astrophysical’ CNN



You can start a binder image here:
https://mybinder.org/v2/gh/csheneka/introspection-tutorial/HEAD
Please start with: visualisation_3D-21cmPIE-Net.ipynb

OR via google Colab here: https://colab.research.google.com for path
https://github.com/csheneka/introspection-tutorial

Extra data: https://cloud.hs.uni-hamburg.de/s/gYWW4PQG2b57XK3
(larger file version)
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For our hands-on tutorial on
Introspection of neural networks:
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Hands-on: Visualisation of an ‘Astrophysical’ CNN

https://mybinder.org/v2/gh/csheneka/introspection-tutorial/HEAD
https://github.com/csheneka/introspection-tutorial/blob/main/visualisation_3D-21cmPIE-Net.ipynb
https://colab.research.google.com/
https://github.com/csheneka/introspection-tutorial
https://cloud.hs.uni-hamburg.de/s/gYWW4PQG2b57XK3
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Visualisation of an ‘Astrophysical’ CNN

Hands-on: Visualisation of filters layer by layer

A) Raw filters (spatial dim):
example from  Gillet et al. 2019, 
arXiv:1805.02699 

Question: Could we do 
something with the 
filters, knowing the 
variation in 2D (spatial) 
is very different from 
the +1D temporal 
dimension?
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Visualisation of an ‘Astrophysical’ CNN

Hands-on: Visualisation of filters layer by layer

A) Raw filters (spatial dim):
example from  Gillet et al. 2019, 
arXiv:1805.02699 

B) Average in redshift (temporal) direction:
Note the filters for ‘slow transitions’ and 
fluctuations (example our code)

Question: Could we do 
something with the 
filters, knowing the 
variation in 2D (spatial) 
is very different from 
the +1D temporal 
dimension?
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Hands-on: Visualisation of feature maps, or activation, layer by layer

Visualisation of an ‘Astrophysical’ CNN

Question: How do the 
activations look like in 
the first layer?
How later on?
What do they tell?
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Hands-on: Visualisation of feature maps, or activation, layer by layer

Visualisation of an ‘Astrophysical’ CNN

reflects typical fluctuation scales
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Hands-on: Visualisation of feature maps, or activation, layer by layer

Visualisation of an ‘Astrophysical’ CNN

Importance of different redshifts, points in time example from  Gillet et al. 2019, arXiv:1805.02699 
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Part 2: Attention & Reaction
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To learn about the model and its reaction to data, one can:
- Visualise feature space [Block 1]
- Analyse attention & reaction (CAM, saliency) [Block 2]
- Be Model-agnostic (e.g. SHAP) [Block 3]
- Many more: Put errors/probabilities, regularise, unsupervised … [Block 3]

… active field of development!

Analyse the attention over input for the prediction
i.e. sensitivity or attribution of the prediction to input

Example we will learn about with hands-on exercises: 
CAM, saliency map Lapuschkin et al. 2019, arXiv: 1902.10178
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Discriminative localisation with CAM

CAM = Class Activation Map

Specific architecture:
GAP* output of the last convolutional layer before dense layers.

Credits: Yasuhiro Kubota, tf-keras-vis* Global Average Pooling

CAM = (Weighted) sum of GAP weights and activations of last CNN layer,
upsampled via interpolation to input data shape

11./12.8.2022, C. Heneka,  DL Basic Concepts: Introspection
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Discriminative localisation with CAM

Credits: Yasuhiro Kubota, tf-keras-vis

arXiv: 2201.07587

CAM = (Weighted) sum of GAP weights and activations of last CNN layer,
upsampled via interpolation to input data shape
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<latexit sha1_base64="3ZCQIAD0VNBA8oN4Q8EZhFzt6m0=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaLUKGEpCh2WXTjsoJ9QBvCZDpph04mYWYilJCNv+LGhSJu/Qx3/o2TNgttPXAvh3PuZeYeP2ZUKtv+Nkpr6xubW+Xtys7u3v6BeXjUlVEiMOngiEWi7yNJGOWko6hipB8LgkKfkZ4/vc393iMRkkb8Qc1i4oZozGlAMVJa8syTWuA5dTisW1beYeClTqOZXXhm1bbsOeAqcQpSBQXanvk1HEU4CQlXmCEpB44dKzdFQlHMSFYZJpLECE/RmAw05Sgk0k3nB2TwXCsjGERCF1dwrv7eSFEo5Sz09WSI1EQue7n4nzdIVNB0U8rjRBGOFw8FCYMqgnkacEQFwYrNNEFYUP1XiCdIIKx0ZhUdgrN88irpNiznyrLvL6utmyKOMjgFZ6AGHHANWuAOtEEHYJCBZ/AK3own48V4Nz4WoyWj2DkGf2B8/gDQh5NY</latexit>

(f1, .., f128)

<latexit sha1_base64="nFftQvuifaL86bPFpeAz6WtgkDk=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaLUKGEpCh2WXTjsoJ9QBvCZDpph04mYWZiKaEbf8WNC0Xc+hnu/BsnbRbaeuBeDufcy8w9fsyoVLb9bRTW1jc2t4rbpZ3dvf0D8/CoLaNEYNLCEYtE10eSMMpJS1HFSDcWBIU+Ix1/fJv5nUciJI34g5rGxA3RkNOAYqS05JknlYnnVGG/allZhxMvdWr12YVnlm3LngOuEicnZZCj6Zlf/UGEk5BwhRmSsufYsXJTJBTFjMxK/USSGOExGpKephyFRLrp/IAZPNfKAAaR0MUVnKu/N1IUSjkNfT0ZIjWSy14m/uf1EhXU3ZTyOFGE48VDQcKgimCWBhxQQbBiU00QFlT/FeIREggrnVlJh+Asn7xK2jXLubLs+8ty4yaPowhOwRmoAAdcgwa4A03QAhjMwDN4BW/Gk/FivBsfi9GCke8cgz8wPn8ABfqTeg==</latexit>

(w1, .., w128)

<latexit sha1_base64="8RbbTIIgrFUjUeHrxOfH+iHmLb0=">AAACH3icbZDLSsNAFIYnXmu9RV26GSyCIISkeFsW3bgqFewF2hAm00k7dDIJMxNLCX0TN76KGxeKiLu+jdM0UG39YeDnO+dw5vx+zKhUtj0xVlbX1jc2C1vF7Z3dvX3z4LAho0RgUscRi0TLR5IwykldUcVIKxYEhT4jTX9wN603n4iQNOKPahQTN0Q9TgOKkdLIM6+GngM7ioZEwkDbczj0ynNQ1sCyrAxX57jqmSXbsjPBZePkpgRy1Tzzu9ONcBISrjBDUrYdO1ZuioSimJFxsZNIEiM8QD3S1pYjvchNs/vG8FSTLgwioR9XMKO/J1IUSjkKfd0ZItWXi7Up/K/WTlRw46aUx4kiHM8WBQmDKoLTsGCXCoIVG2mDsKD6rxD3kUBY6UiLOgRn8eRl0yhbzqVlP1yUKrd5HAVwDE7AGXDANaiAe1ADdYDBM3gF7+DDeDHejE/ja9a6YuQzR+CPjMkPpWefAw==</latexit>

w1 ⇥ f1 + w2 ⇥ f2 + ...+ wN ⇥ fN + up-sample = CAM 
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Saliency Maps
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Gradient-based approach to localisation
“Most important input features (pixels) cause the highest gradient”
Flexible wrt architecture
Map ranks importance 

Principle: Backpropagation to input (training uses backpropagation to 1st layer)
Credits: Yasuhiro Kubota, tf-keras-vis

(1) For fixed model parameters θ, obtain for input space x the NN prediction p(x,θ)
(2) Calculate the gradient map (same shape as input): <latexit sha1_base64="mPqpMPPE6c0nECXh+nGmtIw6o9I=">AAACI3icbVDLSgMxFM3Ud32NunQTLEIFKTOiKEKh6Malon1ApwyZNNOGZh4kd6RlnH9x46+4caGIGxf+i+kD1NYDFw7n3Jvce7xYcAWW9Wnk5uYXFpeWV/Kra+sbm+bWdk1FiaSsSiMRyYZHFBM8ZFXgIFgjlowEnmB1r3c59Ov3TCoehXcwiFkrIJ2Q+5wS0JJrnt/iMnZ8SWjqxEQCJwLHxf6hA10G5CD7UfsZdi54p/Pgpv1y37Uy1yxYJWsEPEvsCSmgCa5d891pRzQJWAhUEKWathVDKx2+TwXL8k6iWExoj3RYU9OQBEy10tGNGd7XShv7kdQVAh6pvydSEig1CDzdGRDoqmlvKP7nNRPwz1opD+MEWEjHH/mJwBDhYWC4zSWjIAaaECq53hXTLtGBgY41r0Owp0+eJbWjkn1Ssm6OC5WLSRzLaBftoSKy0SmqoCt0jaqIokf0jF7Rm/FkvBjvxse4NWdMZnbQHxhf36ZGpFA=</latexit>

S =
@p(x, ✓)

@x

�����
x=x0
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From sensitivity to attribution
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Improvements of sensitivity, 
e.g. to reduce noise and achieve better localisation:

- SmoothGrad: add noise to input for ensemble of maps,
average map of attention

- CAM: different algorithms for calculation of class activation
(GradCAM vs. ScoreCAM, ++)

Integrated Gradients (Sundararajan, Taly, Yan 2017 arXiv:1703.01365)

Credits: Yasuhiro Kubota, tf-keras-visAttribution methods should satisfy
Sensitivity and Implementation Invariance
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From sensitivity to attribution
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Attribution methods should satisfy
Sensitivity and Implementation Invariance

Attribution = How predictions are formed

Example methods: 
Integrated Gradients, Layer-wise relevance propagation (LRP),
Pixel perturbation analysis

General idea:
Rank input by its relevance for the prediction,
Backward mapping & conservation principle

<latexit sha1_base64="34F7spd4b4NCsm6qmzHR+hZO6/I=">AAACDnicbZDLSsNAFIYn9VbrLerSzWAptAglEUU3QtGNyyr2Am0Mk+mknXZyYWYilJAncOOruHGhiFvX7nwbJ2kW2vrDwM93zuHM+Z2QUSEN41srLC2vrK4V10sbm1vbO/ruXlsEEcekhQMW8K6DBGHUJy1JJSPdkBPkOYx0nMlVWu88EC5o4N/JaUgsDw196lKMpEK2XumLyLMpvLXpfVxltQRewAyNFRqn6MisJbZeNupGJrhozNyUQa6mrX/1BwGOPOJLzJAQPdMIpRUjLilmJCn1I0FChCdoSHrK+sgjwoqzcxJYUWQA3YCr50uY0d8TMfKEmHqO6vSQHIn5Wgr/q/Ui6Z5bMfXDSBIfzxa5EYMygGk2cEA5wZJNlUGYU/VXiEeIIyxVgiUVgjl/8qJpH9fN07pxc1JuXOZxFMEBOARVYIIz0ADXoAlaAINH8AxewZv2pL1o79rHrLWg5TP74I+0zx+WHZqI</latexit>X

i

R(l)
i =

X

j

R(l+1)
j l = layer, neurons I,j
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Layer-wise relevance propagation (LRP)
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The Principle is based on Taylor decomposition & 
can in principle be applied to any architecture.

- Perform a standard forward pass for predictions
- Then: Propagate the model output backward, 

layer-wise, using decomposition as:

- Final product: Relevance heatmap of input shape

activation Samek et al. 2015 arXiv:1509.06321
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Summary Block 2: Attention

ü Introspection is possible via sensitivity analyses and localisation
- Class Activation Maps upsample last CNN-layer to input data shape
- Saliency is a gradient-based approach to rank importance of input pixels

ü Introspection is possible by analysing how predictions are formed – attribution
- Importance of sensitivity and implementation invariance
- Example of layer-wise relevance propagation for input-shaped relevance heatmaps

Go beyond visualization with both sensitivity and attribution to understand
the input – model – prediction relations
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Hands-on: Attention of an ‘Astrophysical’ CNN

This exercise will create and analyse saliency maps for the trained 3D-21cmPIE-Net here:

https://github.com/stef-neu/3D-21cmPIE-Net/blob/main/paper_plots/saliency_maps.py
This uses tf_keras_vis.saliency

We will also briefly compare saliency maps with CAM generated as well with tf_keras_vis

(a github with a pedagogical walk-through as a jupyter-notebook of this will follow)

https://github.com/stef-neu/3D-21cmPIE-Net/blob/main/paper_plots/saliency_maps.py
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Hands-on: Attention of an ‘Astrophysical’ CNN

Hands-on: Creation of saliency maps and their analysis

A) Simulations (no noise)
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Question: What do you notice, 
which areas spatially and 
temporally are important?
How does attention shift with the 
inclusion of noise?



37

Hands-on: Attention of an ‘Astrophysical’ CNN

Hands-on: Creation of saliency maps and their analysis

B) Mock data (incl. noise)
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Question: What do you notice, 
which areas spatially and 
temporally are important?
How does attention shift with the 
inclusion of noise?
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Part 3: Model-agnostic
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To learn about the model and its reaction to data, one can:
- Visualise feature space [Block 1]
- Analyse attention & reaction (CAM, saliency) [Block 2]
- Be Model-agnostic (e.g. SHAP) [Block 3]
- Many more: Put errors/probabilities, regularise, unsupervised … [Block 3]

… active field of development!

Only take into account relation input to output

Example we will learn about with hands-on exercises: 
SHAP
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Part 3: Model-agnostic
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Only take into account relation input & predictions for attribution.

Examples: 
- SHAP values
- LIME 
- QII

SHAP = SHapley Additive exPlanations

Idea: 
Show importance of feature on predictions 
(without any information on predictive quality).
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SHAP
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SHAP = SHapley Additive exPlanations
Approach from Game Theory

Idea: 
Assign to each input feature a value. 
A larger value indicates higher importance 
for the output prediction.

Do so via optimal credit allocation of
possible ‘coalitions’.

Villaescusa-Navarro et al. 2022 arXiv:2201.02202
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Part 3: Further concepts
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To learn about the model and its reaction to data, one can:
- Visualise feature space [Block 1]
- Analyse attention & reaction (CAM, saliency) [Block 2]
- Model-agnostic (e.g. SHAP) [Block 3]
- Many more: Put errors/probabilities, regularise, unsupervised … [Block 3]

… active field of research & development!
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Part 3: Further concepts
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Some concepts interesting for introspection worth to be highlighted:

- Bottlenecks (e.g. in variational autoencoders): 
Disentanglement & physical interpretation

- Generative methods for reconstruction errors

- Regulatory terms & reaction

- Uncertainty estimation ‘I do not know’ ‘Not sure’
error on predictions
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Part 3: Further concepts
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Some concepts interesting for introspection worth to be highlighted:

- Bottlenecks (e.g. in variational autoencoders): 
Disentanglement & physical interpretation

- Generative methods for reconstruction errors

- Regulatory terms & reaction

- Uncertainty estimation ‘I do not know’ ‘Not sure’
error on predictions

Epistemic (systematic)
uncertainty on learner

Aleatoric (statistical)
inherent randomness

arXiv:2201.07587
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Hands-on Part 3: Further concepts

Very brief exercise planned using SHAP
(https://shap.readthedocs.io/en/latest/index.html) 

Plus bonus if time permits: Playing e.g. with deep dream

https://shap.readthedocs.io/en/latest/index.html


Summary of this lecture
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1) We learned that Introspection important to verify and debug your model,

together with understanding your data and predictions.

2) Visualisation helps to learn more about the trained model;

we can track to hierarchy of features in network models. 

3) Sensitivity and attribution relate predictions to input, 

enable discriminative localisation.

4) A zoo of methods waits to be used and developed for introspection!

Credits: Yasuhiro Kubota, tf-keras-vis
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