Normalizing Flows

— Active Training Course “Advanced Deep Learning” —

Claudius Krause

Institute for Theoretical Physics, University of Heidelberg

November 30, 2022
UNIVERSITAT
HEIDELBERG

Claudius.Krause@thphys.uni-heidelberg.de

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 1/40



Further Ressources

[ If you have questions, please interrupt me and ask! j
(This lecture is based on: )
= “Modern Machine Learning for LHC Physicists",
S$S52022 lecture notes of Heidelberg University, arXiv: 2211.01421
= "“Physics 694, Advanced Topics in HEP",
Spring 2021 lecture notes of Rutgers University,
https://www.physics.rutgers.edu/~dshih/694/ )
(Further Reading: )
e "HEPML - Living Review"
https://iml-wg.github.io/HEPML-LivingReview/
@ “Normalizing Flows for Probabilistic Modeling and Inference”
L arXiv: 1912.02762 )

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 2/40


https://arxiv.org/abs/2211.01421
https://www.physics.rutgers.edu/~dshih/694/
https://iml-wg.github.io/HEPML-LivingReview/
https://arxiv.org/abs/1912.02762

Motivation: Density Estimation

Problem:
Learn the underlying pdf from which a set of iid samples was drawn.

given: {x;} want: p(x)

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 3/40



Motivation: Density Estimation

probability density function.
p(x) >0, [dxp(x)=1

Problem:

Learn the underlying pdf rrom which a set of iid samples was drawn.

. P R
independent, identically distributed

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 3/40



Motivation: Density Estimation

Problem:

given: {x;}

Learn the underlying pdf from which a set of iid samples was drawn.

want: p(x)

a.u.

SB SR

SB

@ Important for statistical data
analysis (likelihoods, expectation
values, ...).

@ histograms, kernel density
estimation, Gaussian mixture
models, etc. suffer from the
Curse of Dimensionality!

Figure from Hallin et al. [arXiv:2109.00546, PRD]

Claudius Krause (ITP Heidelberg)

Normalizing Flows November 30, 2022

3/40



Motivation: Generative Models

Problem:

We have a distribution p(x) and want to sample (“generate”) new
elements that follow it.

given: {x;} want: x ~ p(x)
- Or -

given: f(x) want: x ~ f(x)/ [ f(x)

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 4/40


https://thispersondoesnotexist.com/

Motivation: Generative Models

Problem:

We have a distribution p(x) and want to sample (“generate”) new
elements that follow it.

given: {x;} want: x ~ p(x)
given: f(x) want: x ~ f(x)/ [ f(x)

@ Generation is an important aspect of
simulation.

@ GANSs, VAEs, Normalizing Flows,
Diffusion Models, and their derivates
have different advantages and
disadvantages.

https://thispersondoesnotexist.com/,
based on T. Karras et al. [1912.04958]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 4/40


https://thispersondoesnotexist.com/

Normalizing Flows in a Nutshell

Normalizing Flows learn a coordinate transformation.

Function / Function /
Distribution < ‘ Normalizing Flow ‘ < | Distribution
inze R4 in x € R4
f(z)=x
ffl(x):z

Mathematically speaking, this is a bijective function.

Claudius Krause (ITP Heidelberg)

Normalizing Flows

November 30, 2022

5/40



Normalizing Flows in a Nutshell

g
Normalizing Flows learn a coordinate transformation.
Function / Function /
Distribution N ] Normalizing Flow \ < | Distribution
in ze R4 in x € R4
f(z)=x
f~1(x)=z
Mathematically speaking, this is a bijective function.
=
p
“easy” base biiective “target”
Y s j o LS
distribution transformation distribution
p(x) = =(f~ ‘det ( )
< density estimation, p(x) = sample generation
< invertible function
=

Claudius Krause (ITP Heidelberg)

Normalizing Flows

November 30, 2022

5/40



Training Normalizing Flows

( Maximum Likelihood Estimation gives the best loss functions: )
@ Regression: Mean Squared Error Loss
@ Binary classification: Binary Cross Entropy Loss
Lo ... J
N

Normalizing Flows give us the log-likelihood (LL) explicitly!

= Maximize log g (the LL) over the given samples.

= — > ;logq(xi)

= If we don't have samples, but a target f(x), we can use the
KL-divergence.

X f(x f(x
£=Dialfal = [ o f(x) log i = (5 os 5)

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 6 /40



Normalizing Flows are great!

Pros and Cons of Normalizing Flows:

+

LL optimaztion is more stable than saddlepoint optimization of
GANSs.

Do not suffer from mode-collapse.
Model selection is straightforward with LL(val-set).

Flows are versatile (train for one thing, use for another).

+ + + +

Empirically: better at learning distributions to the %-level

— They scale bad with the dimensionality of the problem.
— Some architectures might be slow.

— There are topological constraints.

— Sparse data is hard to learn.

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 7/40



Applications of Normalizing Flows: Overview

Phase Space Sampling Detector Simulation
= sample according to do = sample from p(showers|E)

End-to-End Simulation
= sample from p(events)

forward ’ \ N
. 2 >
N
scattering decay ISR/SFR shower i
Y
S [T | w2 o[ 10
<
< 1 £ 3 £ 3 inverse

= use p(data) as bg estimate

{ Bump-Hunt Searches J

Inference Unfolding
= learn p(parameters|data) = learn p(parton|event)
Lattice QCD Astrophysics
= improve MCMC proposals = stellar densities

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 8/40



At the Core: Change of Coordinates Formula

Changing coordinates from Z to X with a map

X = f(Z) changes the distribution according to
of(2) | : ofF (%)
(%) = 7(2) |det =7(f (X)) |det ——=—
7R = (2) [det T2 = n(F(R) [det T
00y T ; 28
n(z) = const. 1o

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 9/40



At the Core: Change of Coordinates Formula

Changing coordinates from Z to X with a map

X = f(Z) changes the distribution according to
af(2)| " . f 1(X)
7(X) = m(Z)|det =m(f7(x)) |det ———
7R = (2) [det T2 = n(F(R) [det T
0.0 T ; 28
n(z) = const. 1o
UV T | 1T

Claudius Krause (ITP Heidelberg)

Normalizing Flows

November 30, 2022

9/40



At the Core: Change of Coordinates Formula

Changing coordinates from Z to X with a map

X = f(Z) changes the distribution according to
of ()| of (%
7(X) = 7w(2)|det (9(22) = 7(f71(x)) det%

"o 2 4
11(2) = const,
1.0
05
0.0

0.0 0.2 04 , 06 08 10

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 9/40



At the Core: Change of Coordinates Formula

Changing coordinates from Z to X with a map

X = f(Z) changes the distribution according to
af(2)| " . f 1(X)
7(X) = m(Z)|det =m(f7(x)) |det ———
7R = (2) [det T2 = n(F(R) [det T
0.0 28

"o 2 4
11(2) = const,
1.0
05
0.0

0.0 0.2 04 , 06 08 10

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 9/40



At the Core: Change of Coordinates Formula

Changing coordinates from Z to X with a map

X = f(Z) changes the distribution according to
af(2)| " . f 1(X)
7(X) = m(Z)|det =m(f7(x)) |det ———
7R = (2) [det T2 = n(F(R) [det T
0.0 28

"o 2 4
() = const,
1.0
05
0.0

0.0 0.2 04 , 06 08 10

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 9/40



At the Core: Change of Coordinates Formula

Changing coordinates from Z to X with a map

X = f(Z) changes the distribution according to
af(2)| " . f 1(X)
7(X) = m(Z)|det =m(f7(x)) |det ———
7R = (2) [det T2 = n(F(R) [det T
10 0.0 0.2 0.4 0.6 0.8 ;.0]0
0.4 x=22 0.4
vl | o

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 9/40



At the Core: Change of Coordinates Formula

Changing coordinates from Z to X with a map

X = f(Z) changes the distribution according to
af(2)| " . f 1(X)
7(X) = m(Z)|det =m(f7(x)) |det ———
7R = (2) [det T2 = n(F(R) [det T
0.4 x=22 0.4
= o
o ‘. n(z) = constAI Lo

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 9/40



At the Core: Change of Coordinates Formula

Changing coordinates from Z to X with a map

X = f(Z) changes the distribution according to

‘()

-1

AN =t o

det EE

#(X) = n(2)

=

4
() = const,

1.0

05

0.0

0.0 0.2 04 , 06 08 10

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 9/40



At the Core: Change of Coordinates Formula

Changing coordinates from Z to X with a map

X = f(Z) changes the distribution according to
PN BN 1 3| ofF (%)
7(X) = m(2) |det 55 =n(f~(x)) detT

a
o 2 4
11(2) = const,
1.0
05
0.0

0.0 0.2 04 , 06 08 10

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 9/40



Base distributions

det 212)

AF) =  7(2)|det 2L

-1 s
= n(f~(X)) )det o ()

@ Can be any distribution with only 2 requirements:

» We can easily sample from it
> We have access to 7(x)

@ Sets the initial domain of the coordinates.

Most common choices:

> uniform distribution (compact in [a, b])
> Gaussian distribution (in R)

Topology should match the topology of the target space.

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 10/40



We need a trackable Jacobian and Inverse.

7(x) = n(2) ‘det it

— —1/= of (%
b= r(f (%)) |det 250

X

o First idea:  making f a NN.

X inverse does not always exist

X Jacobian slow via autograd
af 3

X |det 5| < O(ngim)

Dinh et al. [arXiv:1410.8516], Rezende/Mohamed [arXiv:1505.05770]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 11/40



We need a trackable Jacobian and Inverse.

— > = of(Z
(X)) = w2 ‘det%

— —1/= of (%
b= r(f (%)) |det 250

X

o First idea:  making f a NN.

X inverse does not always exist

X Jacobian slow via autograd
af 3

X ’det E| < O(ngim)

= Let a NN learn parameters 6 of a pre-defined transformation!

o Each transformation is 1d & has an analytic Jacobian and inverse.
=1(X;0) = (CGi(x1;01), Co(x2; 02), - . ., Ca(Xn; 0,,))T

Dinh et al. [arXiv:1410.8516], Rezende/Mohamed [arXiv:1505.05770]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 11/40



We need a trackable Jacobian and Inverse.

#(%) = n(2)|det 2|1 = w(f—l(;’))‘det%y)

o First idea:  making f a NN.

X inverse does not always exist

X Jacobian slow via autograd
af 3

X ’det E‘ < O(ngim)

= Let a NN learn parameters 6 of a pre-defined transformation!

o Each transformation is 1d & has an analytic Jacobian and inverse.
=1(X;0) = (CGi(x1;01), Co(x2; 02), - . ., Ca(Xn; 0,,))T

@ Require a triangular Jacobian for faster evaluation.

= The parameters 0 depend only on a subset of all other coordinates.

Dinh et al. [arXiv:1410.8516], Rezende/Mohamed [arXiv:1505.05770]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 11 /40



A chain of bijectors is also a bijector

The full transformation is a chain of these bijectors.

7['0(20)

7T1(Z]_)

2
fo(z1)

zZ] =
fi(z)

Zj =

fi(ziy1)

fr—1(zk) i

Claudius Krause (ITP Heidelberg)

Normalizing Flows

November 30, 2022

12/40


https://engineering.papercup.com/posts/normalizing-flows-part-2/

A chain of bijectors is also a bijector

The full transformation is a chain of these bijectors.

7['0(20)

7T1(Z]_) zZ; =

2
fo(z1)

fi(z)

Zj =

fi(ziy1)

Z) =
fr—1(zk)

7rk(zk2

Initial sample from N(O, 1)

https://engineering.papercup.com/posts/normalizing-flows-part-2/

Claudius Krause (ITP Heidelberg)

Normalizing Flows

November 30, 2022

12/40


https://engineering.papercup.com/posts/normalizing-flows-part-2/

A chain of bijectors is also a bijector

The full transformation is a chain of these bijectors.

mo(20) z0 = | m(z1)z1 = zi = ze = | m(zk)
fo(z1) fi(2) fi(zis1) f—1(2k)

Initial sample from N(, 1)

https

Claudius Krause (ITP Heidelberg)

After layer 1 After layer 3

After layer 2

After layer 6

o 65 10 15 20

2 {0 95 oo o5 10 15 20 30 s o s

://engineering.papercup.com/posts/normalizing-flows-part-2/

Normalizing Flows November 30, 2022

12/40


https://engineering.papercup.com/posts/normalizing-flows-part-2/
https://engineering.papercup.com/posts/normalizing-flows-part-2/

Affine Transformations

- . . .
The coupling function (transformation)
@ must be invertible and expressive

° i§ chgsen to factorize:
f(%:0) = (Cu(x1;61), Go(x2;62), . .., CalXn; 00)) T, .
where X are the coordinates to be transformed and 6 the

L parameters of the transformation. )

(historically first: the affine coupling function

C(x;s,t) =exp(s) x+t
where s and t are predicted by a NN.
@ It requires x € R.

@ Inverse and Jacobian are trivial.

@ lIts transformation powers are limited.

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 13 /40



Any monotonic function can be used.

Changing coordinates from Z to X with a map

X = f(Z) changes the distribution according to
PN BN 1 3| ofF (%)
7(X) = m(2) |det 55 =n(f~(x)) detT

08

0.6

0.4

a
o 2 4
11(2) = const,
1.0
05
0.0

0.0 0.2 04 , 06 08 10

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 14 /40



Any monotonic function can be used.

Changing coordinates from Z to X with a map
X = f(Z) changes the distribution according to

-1

MDA~ n(r(x)

7(x) = w(2) 57

det

of1(x)
det T

A more complicated transformation then leads to a more complicated
transformed distribution. Splines act in a finite domain.

—— RQ Spline
Inverse
e  Knots

96(x)

9plx)

0
-B 0 B -B 0 B
T

figures taken from Durkan et al. [arXiv:1906.04032]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 14 /40



Piecewise Transformations (Splines)

piecewise linear coupling function:

pdf

cdf

The NN predicts the pdf bin heights Q;.

Miiller et al. [arXiv:1808.03856]

Claudius Krause (ITP Heidelberg)

Normalizing Flows

November 30, 2022

15 /40



Piecewise Transformations (Splines)

piecewise linear coupling function: Miiller et al. [arXiv:1808.03856]
b—1
pdf cdf C= E Qk + aQp
k=1
@ = x—(b=1)w
w
Qp;
o . o W
The NN predicts the pdf bin heights Q;. aXB
Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 15 /40



Piecewise Transformations (Splines)

piecewise linear coupling function: Miiller et al. [arXiv:1808.03856]

b—1
pdf cdf C= Z Qk + aQp
k=1
@ = x—gb Lw

-11%

The NN predicts the pdf bin heights Q. 5XB :

rational quadratic spline coupling function: Durkan et al. [arXiv:1906.04032]

Gregory/Delbourgo [IMA Journal of Numerical Analysis, '82]

cdf

202 + ajor + ap @ still rather easy

€= boa? + bya + by @ more flexible

The NN predicts the cdf bin widths, heights, and derivatives that go in a;&b;.

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 15 /40



Taming Jacobians 1: Autoregressive Models

Remember: To tame the determinants, the parameters
0 must depend only on a subset of all other coordinates.

Autoregressive models solve this by  6; = 5,(>9<,)

01 = const.

1
p(x1)

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 16 /40



Taming Jacobians 1: Autoregressive Models

Remember: To tame the determinants, the parameters
0 must depend only on a subset of all other coordinates.

Autoregressive models solve this by  6; = 5,(>9<,)

6, = const. | 0, = 6x(z)
)
p(x1) p(x2|x1)

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 16 /40



Taming Jacobians 1: Autoregressive Models

Remember: To tame the determinants, the parameters
0 must depend only on a subset of all other coordinates.

Autoregressive models solve this by  0; = 5,(>9<,)

0y = const. | 0, = bx(z1) | 05 = 63(z1, )
{ 1
p(x1) p(x2|x1) p(x3|x1, x2)

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 16 /40



Taming Jacobians 1: Autoregressive Models

Remember: To tame the determinants, the parameters
0 must depend only on a subset of all other coordinates.

Autoregressive models solve this by  0; = 5,(>9<,)

61 = const. | 6> = 0:(z1) | 63 = G3(z1, 2) 0; = 0i(z1,...,21)
+ + = +
p(x1) p(x2|x1) p(xs|x1, x2) p(xilx, ..., xi-1)
Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022

16 /40



Taming Jacobians 1: Autoregressive Models

Remember: To tame the determinants, the parameters
0 must depend only on a subset of all other coordinates.
Autoregressive models solve this by  0; = 5,(>9<,)
1 = const. | 02 = 02(z1) | O3 = 03(z1, 22) 0; =0i(z1,...,2i-1)
{ 1 2o 1
p(x1) p(x2|x1) p(xs|x1, x2) p(xilx, ..., xi-1)
0
Jacobian : \
—_———
O(d)
Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022

16 /40



Taming Jacobians 1: Autoregressive Models

Remember: To tame the determinants, the parameters
0 must depend only on a subset of all other coordinates.

—

Autoregressive models solve this by  0; = 0i(xj<i)

61 = const. | 6> = 0:(z1) | 63 = G3(z1, 2) 0; = 0i(z1,...,21)
il { 2o 1
p(x1) p(x2|x1) p(xa|x1, x2) p(xilx; -y Xi—1)

d
Jacobian : \ Hp(x,-|x1,... xi—1) = p(X)
i=1
O(d

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022

16 /40



Autoregressive NNs: MADE Blocks

MADE Block 0; = 0i(x1, %2, - . ., Xj<i)
( A
bijector input cond. input . . .
o o o o 0 o0 o Implementation via masking:
000000 6660060 @ a single “forward” pass gives
all 0;(x1, ..., x;_1).
- e g I( 1, s Rj 1)
= = very fast
O- O O O O 0
@ its “inverse” needs to loop
through all dimensions.
L ) = very slow
Germain et al. [arXiv:1502.03509]

Claudius Krause (ITP Heidelberg)

Normalizing Flows November 30, 2022 17 /40



Autoregressive NNs: MADE Blocks

MADE Block
e N
bijector input cond. input
o o o o 0 0 o
000000 000000
o o o o e o
o0 o0 o o o
O— O _0._ 0 O ©
0000000000000 00
transformation parameters
. J

Implementation via masking:

— —

0i = 0i(x1, %2, - . ., Xj<i)

@ a single “forward" pass gives
all 9,’(X17 600 ,X,',l).
= very fast

@ its “inverse”" needs to loop
through all dimensions.
= very slow

Germain et al. [arXiv:1502.03509]

Claudius Krause (ITP Heidelberg)

Normalizing Flows

November 30, 2022 17 /40



Autoregressive NNs: MADE Blocks

MADE Block
( )
bijector input cond. input
[e] e} [e] o 0 O ©O
000000 000000
3 ) 3 @ 4 ]
O (o} (o} (o} (o} 1o}

O~ O. O o} o] ol
OO0O0000D0DO0O00D0O0O00O0
transformation parameters
\. J

Implementation via masking:

— —

0i = 0i(x1, %2, - . ., Xj<i)

@ a single “forward" pass gives
all 9,’(X17 600 ,X,',l).
= very fast

@ its “inverse”" needs to loop
through all dimensions.
= very slow

Germain et al. [arXiv:1502.03509]

Claudius Krause (ITP Heidelberg)

Normalizing Flows

November 30, 2022 17 /40



Autoregressive Normalizing Flows allow for 2 different
realizations: MAF / IAF

Masked Autoregressive Flow (MAF)
= slow in sampling and fast in density estimation.

@ Can be trained via the log-likelihood.

Papamakarios et al. [arXiv:1705.07057]

Inverse Autoregressive Flow (IAF)
= fast in sampling and slow in density estimation.
@ Log-likelihood training is usually prohibitive in memory and time.

@ Instead, we can train an IAF with
“Probability Density Distillation” or “teacher-student training”.

Kingma et al. [arXiv:1606.04934]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 18/40



Probability Density Distillation passes the information from
the teacher to the student

teacher MAF, trained with LL, weights frozen

fast: density estimation, p(x)

slow: sample generation

student IAF

slow: density estimation, p(x)

fast: sample generation

Loss = MSE(z, z’) + MSE(x, x") + MSE(z;, z/)
+ MSE(x;, x!) + MSE(6,,0.) + MSE(6,,6.)

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 19/40



Probability Density Distillation passes the information from

the teacher to the student

s N
5 o 5 N
teacher MAF, trained with LL, weights frozen
fast: density estimation, p(x)
slow: sample generation
~
student IAF
slow: density estimation, p(x)
fast: sample generation
J
- J
( / / / D
Loss = MSE(z,z") + MSE(x, x") + MSE(z;, z/
| + MSE(x;, x!) -+ MSE(6,,0.) + MSE(6,,6.)
Normalizing Flows November 30, 2022 19 /40



Probability Density Distillation passes the information from

the teacher to the student

-
( teacher MAF, trained with LL, weights frozen )
_ fast: density estimation, p(x)
slow: sample generation
(M
student IAF
slow: density estimation, p(x)
fast: sample generation
L N\ J
( Loss = MSE(z,z') + MSE(x,x') + MSE(z;, z!
+ MSE(x;, x!) + MSE(6;,6.) + MSE(6y,6.)
N

Claudius Krause (ITP Heidelberg) Normalizing Flows

November 30, 2022

19/40



Probability Density Distillation passes the information from

the teacher to the student

teacher MAF, trained with LL, weights frozen

fast: density estimation, p(x)

slow: sample generation

student IAF

slow: density estimation, p(x)

fast: sample generation

|

/

Loss = MSE(z,z') + MSE(x, x") + MSE(z;, z/
+ MSE(x;, x!) + MSE(6,,6,) + MSE(0y,0)

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022

19/40



Probability Density Distillation passes the information from

the teacher to the student

teacher MAF, trained with LL, weights frozen

fast: density estimation, p(x)

slow: sample generation

student IAF

slow: density estimation, p(x)

fast: sample generation

|

Loss = MSE(z,z’) + MSE(x,x’) + MSE(z, z!

i

+ MSE(x;, x!) -+ MSE(6,,0.) + MSE(6,,6.)

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022

19/40



Probability Density Distillation passes the information from
the teacher to the student

s B
( teacher MAF, trained with LL, weights frozen )
_ fast: density estimation, p(x)
slow: sample geperation
N L 72 L 72 J
- MSE(z;, z/) + MSE(6,,6.) ﬁﬁ
AN STOUTTTIUC j\l AN
slow: density estinfption, p(x)
fast: sample generation
N e o Y,
( Loss = MSE(z,z’) + MSE(x, x") + MSE(z;, z/) )
+ MSE(x;, x!) + MSE(6,,0.) + MSE(6y,6.)
N Y,
e A

November 30, 2022 19 /40



Probability Density Distillation passes the information from

the teacher to the student

fast: density estimation, p(x)

( teacher MAF, trained with LL, weights frozen

slow: sample generation

N\ 2 N Y,
— MSE(x;, x!) + MSE(6y, 6.) ﬁﬁ

N

STUCETTT 17T

slow: density estimation, p(x)

4

N

fast: sample generation

/

+ MSE(x;, x!) + MSE(6,,6,) + MSE(0y,0)

{ Loss = MSE(z,z') + MSE(x, x") + MSE(z;, z/

Claudius Krause (ITP Heidelberg)

Normalizing Flows

November 30, 2022

19/40



Taming Jacobians 2: Bipartite Flows (“INNs")

‘ fxea(x € B) & Oxep(x € A) ‘

= Coordinates are split in 2 sets, transforming each other.

forward:
YA = XA
yB,i = C(xg,i; 0(xa))

inverse: Jacobian:
XA = YA gxé‘ 1—[ 9C(xg,i; 0(xa))
_ el = - a._
xg,i = C*(yg,i: 0(xa)) 0 2% f O, i

XA

XB

@@ Y permutation '—)

C(xg; 0(xa))

Dinh et al. [arXiv:1410.8516]

Claudius Krause (ITP Heidelberg)

Normalizing Flows November 30, 2022

20/40



Further improvements

Incorporating Symmetries:
@ Symmetric base distribution

@ Equivariant transformation: flg-x)=g-f(x)
Kanwar et al. [arXiv:2003.06413]; Kohler et al. [arXiv:2006.02425]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 21/40



Further improvements

Incorporating Symmetries:
@ Symmetric base distribution

@ Equivariant transformation: flg-x)=g-f(x)
Kanwar et al. [arXiv:2003.06413]; Kohler et al. [arXiv:2006.02425]

More expressive transformations:
@ Make C a monotonic NN, with 6 given by another NN.
Huang et al. [arXiv:1804.00779]

@ Make C the solution of an ODE, with C’ given by the NN.
Grathwohl et al. [arXiv:1810.01367]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 21/40



Further improvements

Incorporating Symmetries:
@ Symmetric base distribution

@ Equivariant transformation: flg-x)=g-f(x)
Kanwar et al. [arXiv:2003.06413]; Kohler et al. [arXiv:2006.02425]

More expressive transformations:
@ Make C a monotonic NN, with 6 given by another NN.
Huang et al. [arXiv:1804.00779]

@ Make C the solution of an ODE, with C’ given by the NN.
Grathwohl et al. [arXiv:1810.01367]

Dimensional reduction:

@ Project data to submanifold and learn on this space.
Esser et al. [arXiv:2004.13166], Brehmer/Cranmer [arXiv:2003.13913]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 21/40



Further improvements I

Improving precision of sampled distributions by using classifiers:
@ Train a classifier on samples vs truth.

@ By the Neyman-Pearson Lemma, the output of the classifier is

related to the LL ratio. NN(x) = 1ft:tt,:t(:()x) = pgf;;u;e(:()x) =w

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 22 /40



Further improvements I

Improving precision of sampled distributions by using classifiers:
@ Train a classifier on samples vs truth.
@ By the Neyman-Pearson Lemma, the output of the classifier is
related to the LL ratio. NN(x) = (2l — _Puunld) - —

1—Ptruth (X) - Pgenerated (X)

1 instead of the plain samples x, we can now consider them
weighted by w(x) DCTRGAN: Diefenbacher et al. [arXiv:2009.03796]
= corrects pgenerated (X) to Ptruth (X)

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022

22/40



Further improvements I

Improving precision of sampled distributions by using classifiers:
@ Train a classifier on samples vs truth.

@ By the Neyman-Pearson Lemma, the output of the classifier is

related to the LL ratio. NN(x) = lft;t":t(:()x) = pgf;;u;e(:()x) =w

1 instead of the plain samples x, we can now consider them

weighted by w(x) DCTRGAN: Diefenbacher et al. [arXiv:2009.03796]
= COrrects Pgenerated(X) t0 Peruth(X)

2 Modify loss to £ = -, ﬁ log q(xi)

= “bad” points are more important for optimization.
DiscFlow: Butter et al. [arXiv:2110.13632]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022

22/40



Applications of Normalizing Flows: Overview

Phase Space Sampling Detector Simulation
= sample according to do = sample from p(showers|E)

End-to-End Simulation
= sample from p(events)

forward ’ \ N
. 2 >
N
scattering decay ISR/SFR shower i
Y
S [T | w2 o[ 10
<
< 1 £ 3 £ 3 inverse

= use p(data) as bg estimate

{ Bump-Hunt Searches J

Inference Unfolding
= learn p(parameters|data) = learn p(parton|event)
Lattice QCD Astrophysics
= improve MCMC proposals = stellar densities

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 23 /40



Applications: Learning the true Posterior Distribution

Normalizing Flows can learn conditional probabilities.

= use them to learn the posterior p(parameters|data)
BayesFlow/cINN: Radev et al. [arXiv:2003.06281]

Summary network

Sampling
— z~Ny(0,I)
Approximate posterior
pg(Olx = %)
= train p(2)
M. < infer

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 24 /40



Applications: Learning the true Posterior Distribution

Normalizing Flows can learn conditional probabilities.

= use them to learn the posterior p(parameters|data)
BayesFlow/cINN: Radev et al. [arXiv:2003.06281]

v-Flows: infering the v-momentum in semileptonic ft-events.
Jets

[—

PP | lLepton | Misc —»

Deep Set

Embedding Network

Conditional Invertible Neural Network N(0,T)

» -

v-Flows: Leigh et al. [arXiv:2207.00664]
November 30, 2022 25 /40

Claudius Krause (ITP Heidelberg) Normalizing Flows



Applications: Learning the true Posterior Distribution

Normalizing Flows can learn conditional probabilities.

= use them to learn the posterior p(parameters|data)
BayesFlow/cINN: Radev et al. [arXiv:2003.06281]

{Unfolding detector effects:

Single detector event
3200 unfoldings

g(r, f(za)) 10 15 20 25 30

{r} pra (G

10
---------- =
T £

/_\ 9(wp, f(za)) m
@} 7

fraction of events
9 =

parton

00 02 04 06 08 10

LButter et al. [arXiv:2006.06685] auantile pr,,

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 26 /40



Applications: Anomaly Detection (Bump Hunts)

[Introducing Bump Hunts: Searches with few model assumptions

SB SR

Paata(z|m € SB)

= prgllm < SB) Pdata(z|m € SR)

SB m

Paata(xlm € SB)
= puglalm € SB)

Assumptions
@ signal is localized in m

@ background in m is smooth

e 1 additional discriminating
features x

Select events with

Pdata Psignal
~J
Pbackground Pbackground

=

Claudius Krause (ITP Heidelberg)

Normalizing Flows November 30, 2022

27 /40



Applications: Anomaly Detection (Bump Hunts)

LHC Olympics R&D dataset:

== Background
Signal

e 1,000,000 QCD dijet events o g Feston

Sidebands (SB)

@ 1,000 signal events
W' = X(— qq)Y(— qq)

4 6

e my = 3.5TeV, mj [TeV]
mx = 500GeV, my = 100GeV

= Background
Signal

@ In SR, 3.3TeV < my; < 3.7TeV:

|
> 121'352 bg eVentS 000 025 050 n7smﬂ1?:ev?zs 150 175 200 [} 05 m'“:’;wlﬁv] 15
> 772 sg events

o S/VB=22

LHCO: G. Kasieczka et al. [2101.08320]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 28 /40



Applications: Anomaly Detection (ANODE)

Anomaly Detection with Density Estimation (ANODE):

@ train “outer”’ density estimator

pdata (X|mJJ S SB) 100 = Background
Signal
10 Signal Region (SR)
@ train “inner” density estimator .
108 Sidebands (SB)
Pdata(x|myy € SR)
10
@ compute 100
pinner(X‘ mJJ)
P xma) for my; € SR o

6
mijj [TeV]

B. Nachman, D. Shih, [2001.04990, PRD]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 29 /40



Applications: Anomaly Detection (ANODE) on Gaia data

(Looking for stellar streams:

)
www.esa.int

_~NGC6205/M13

NGC63a1/M92

stream of
M2
NGC6779/M56

__
NGC 7099/M 30

NGC362
NGC 288
—
- J
e I
10
=
= a0
L | g A
—20 0 0 1 2 3
147 (mas/yr) ) b—r
D. Shih et al. [2104.12789, MNRAS]
& /

Normalizing Flows November 30, 2022 30/40


https://www.esa.int/var/esa/storage/images/esa_multimedia/images/2022/02/gaia_reveals_a_new_member_of_the_milky_way_family/23954169-1-eng-GB/Gaia_reveals_a_new_member_of_the_Milky_Way_family.jpg

Applications: Anomaly Detection (ANODE) on Gaia data

(Looking for stellar streams

NGC63a1/M92

_~NGC6205/M13

4
stream of
mMs2

NGC6779/M56

__
NGC 7099/M 30

NGC288
—=

NGC362

)
www.esa.int

Jux (mas/yr)

—20

&

—20 0
5, (mas/yr)

10

1 2 3

b—
D. Shih et al. [2104.12789, MNRAS] |

Claudius Krause (ITP Heidelberg)

Normalizing Flows

November 30, 2022

30/40


https://www.esa.int/var/esa/storage/images/esa_multimedia/images/2022/02/gaia_reveals_a_new_member_of_the_milky_way_family/23954169-1-eng-GB/Gaia_reveals_a_new_member_of_the_Milky_Way_family.jpg

Applications: Anomaly Detection (CATHODE)

Classifying Anomalies THrough Outer Density Estimation (CATHODE):

@ train “outer” density estimator
Pdata(x|myy € SB)

@ sample “artificial” events from
pouter(X|mJJ S SR)

@ can also oversample

@ train a classifier on these samples

10°

10¢

10°

10!

10°

= Background
Signal

Signal Region (SR)

Sidebands (SB)

mjj [Tev]

vs data A. Hallin, J. Isaacson, G. Kasieczka, CK, B. Nachman, T. Quadfasel,
M. Schlaffer, D. Shih, M. Sommerhalder [2109.00546, PRD]

Mixed Sampe 1 i Sample 2 o Classification without Labels (CWola)
©OOO®® :..gg learns from mixed samples.

@ An optimal classifier is also optimal for

?gggg 55:%8 distinguishing S from B.
E.M. Metodiev, B. Nachman, J. Thaler, [1708.02949 JHEP]

Claudius Krause (ITP Heidelberg) Normalizing Flows

November 30, 2022

31/40



Applications: Numerical Integration with Importance
Sampling

1

1
N o mc 1 (% 2 i
I:/0 f(x) dx — N2 F(x)  Xi...uniform, ouc(l) ~ 75

MC

importance sampling

Xi...q(%),

1 f(%)
N Z q(xi)

In the limit g(X) o< (X), we get o15(/) = 0

q(x) a(x)ax

—

We therefore have to find a g(x) that approximates the shape of f(X)

= Once found, we can use it for event generation,
i.e. sampling p;,d;, and ¢; according to do(p;, ¥, ;)

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022

32/40



Applications: Numerical Integration with Importance
Sampling

1
N mc, 1 . 2 ' —
= /0 fx)dx  — & 2 Jf(%)  %...uniform, omc(l) ~ 5

1 — -
F(X) o MC 1) .

= — —_— — P .
/0 q()?) q(X)dX importance sampling N z’: q()?) g CI(X)

In the limit g(X) o f(X), we get o1s(/) = 0

—

We therefore have to find a g(x) that approximates the shape of f(X)

= Once found, we can use it for event generation,
i.e. sampling p;,d;, and ¢; according to do(p;, ¥, ;)

We need both samples x and their probability g(x).
= We use a bipartite, coupling-layer-based Flow.

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 32 /40



Applications: Numerical Integration with Importance
Sampling

How it works:

— xi—> f(—}fl)—>
i-flow . 1

T—{ ADAM optimizer

i-flow: C. Gao, J. Isaacson, CK [arXiv:2001.05486, ML:ST]
gitlab.com/i-flow/i-flow

Statistical Divergences are used as loss functions:

o Kullback-Leibler (KL) divergence:

Dki = [ p(x) log J(;%dx = > J(%l log ;i(%%, Xi ... q(x)

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 33/40



Applications: eTe™ — 3j.

<— cos ¢ of decaying fermion with beam

<—»<p of decaying fermion with beam ‘Target distribution

< cos ¥ of decay

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 34 /40



Applications: eTe™ — 3j.

+ cos ¥ of decaying fermion with beam

< @ of decaying fermion with beam ‘ Learned distribution ‘

”11 < cos 1 of decay

1« o of decay

H “j <+ propagator of decaying fermion

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 35 /40




Applications: Calorimeter Shower Generation

@ We consider a toy calorimeter inspired by the ATLAS ECal:
flat alternating layers of lead and LAr

@ They form three instrumented layers of dimension
3% 96, 12 x 12, and 12 X 6

@ Showers of et,~, and 71 (100k each)
@ All are centered and perpendicular
@ Ejy. is uniform in [1,100] GeV

Local Energy Deposit [MeV]

z
200 ° ‘<
et [

I I I
050 100 150
Depth from Calorimeter Cen n

CaloGAN: Paganini, de Oliveira, Nachman [1705.02355, PRL; 1712.10321, PRD]
Normalizing Flows November 30, 2022 36 /40



Calorimeter Shower Generation in 2 steps: learn p(I|EmC)

(Flow |
o learns py(Ey, E1, Ez| Einc)

@ is optimized using the log-likelihood.

~

-

Flow I N
o learns py(Z|Eo, E1, E>, Einc) of normalized showers

@ in CALOFLOW vl (2106.05285 — called “teacher”):

@ Masked Autoregressive Flow trained with log-likelihood
@ Slow in sampling (= 500 slower than CALOGAN)

@ in CALOFLOW v2 (2110.11377 — called “student”):

@ Inverse Autoregressive Flow trained with Probability Density

Distillation from teacher (log-likelihood prohibitive)
van den Oord et al. [1711.10433]

i.e. matching IAF parameters to frozen MAF
@ Fast in sampling (= 500 faster than CALOFLOW v1)

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022

37/40



Calorimeter Shower Generation in 2 steps: learn p(f|EmC)

GEANT4 data
E;
sampled F;

GEANT4 data

5 8 L

CaloFlow samples

7 B

<— density estimation in training, Ej,. from GEANT4 data +——

3 dim.
Base dist.

Normalizing Flow Bijector — Flow I

post-processing

— sampling of £; for E,, — >

<— density estimation in training, £; from GEANT4 data +——

504 dim.
Base dist.

Normalizing Flow Bijector — Flow II

—> shower generation, F; from Flow I

Data processing Flow |
“" map E; to [0, 1] “—" invert logit
“«" work in logit space “—" map back to E;

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 38/40



Calorimeter Shower Generation in 2 steps: learn p(f|EmC)

<+— density estimation in training, Ei, from GEANT4 data +——
GEANT4 data
% E;
o
)
sampled E;

_—
GEANT4 data

9 L

CaloFlow samples

PSR .
oy )
2
§

3 dim. Normalizing Flow Bijector — Flow I

Base dist.

—— sampling of E, for By ———>

<— density estimation in training, E; from GEANT4 data +—

504 dim. Normalizing Flow Bijector — Flow I1

Base dist.

— shower generation, E; from Flow I

Data processing Flow Il

“+" add noise “—" invert logit
“<" normalize layers to 1 “—" renormalize to E;
“+" work in logit space “—" apply threshold

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 38/40



Applications: Calorimeter Shower Generation

e oo c W . CRT)
A Classifier provides the “ultimate metric”.

According to the Neyman-Pearson Lemma we have:
@ The likelihood ratio is the most powerful test statistic to distinguish
the two samples.

@ A powerful classifier trained to distinguish the samples should therefore
learn (something monotonically related o) thIS.

o If this classifier is confused, we conclude paranra(X) = Pgenerated(X)
= This captures the full 504-dim. space.

? But why wasn't this used before?

= Previous deep generative models were separable to almost 100%!

DCTRGAN: Diefenbacher et al. [2009.03796, JINST]

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 39/40



Applications: Calorimeter Shower Generation

CK, D. Shih [2106.05285, 2110.11377]
o First generative model to fool a classifier.

@ Does not scale well to higher dimensions.

o Good generation times with teacher-student-training or CL-based flow.

AUC DNN based classifier
GEANT4 vs. GEANT4 vs. (teacher) GEANT4 vs. (student) GEANT4 vs.
CALOGAN CaLoFrow vl CALOFLOW v2 CL-based flow
et 1.000(0) 0.859(10) 0.786(7) 0.638
~ 1.000(0) 0.756(48) 0.758(14) 0.631
xt 1.000(0) 0.649(3) 0.729(2) 0.705
& Work in progress with F. Ernst, L. Favaro, T. Plehn, D. Shih —‘r—
167 Awhj' 10
[V

time |5
time [b]

P S

e 0
10° e
10!
10— —

00 02 04 06 08 L 10t 10° o !“" |\|m~ 100 10 10
Shawer Nenth Wirdth . encrated Showers

Claudius Krause (ITP Heidelberg) Normalizing Flows November 30, 2022 40 / 40



