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This is a graph

Image credit: Holly Pacey



It has nodes

Image credit: Holly Pacey



Image credit: Holly Pacey
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features = attributes

how many connected edges

e.g.

*Properties
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Many GNN
success stories
in past few
years

In Science and beyond...



AlphaFold (DeepMind)

Predict 3D protein shape from
sequence of amino acids with

GNNs

Applications:
Drug dlscovery T1037 / 6vr4 T1049 / 6y4af
: 90.7 GDT 93.3 GDT
Englneer enzymes (RNA polymerase domain) (adhesin tip)

® Computational prediction


https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology

Glass dynamics simulation (DeepMind)

3D input

Graph input

g

3,

Graph network

10


https://www.deepmind.com/blog/towards-understanding-glasses-with-graph-neural-networks

L On current occasion...

FIFAWORLD CUP
Qat_ar2022

« Objective: build an autonomous football-team agent
— Players = nodes
— Player interactions = edges

[Learning to Play Football with Graphs and Reinforcement Learnin


https://www.iaai.hdm-stuttgart.de/news/2021/selected-topics-3-graph-neural-networks-for-reinforcement-learning/
https://www.kaggle.com/c/google-football

Discover relational structure

Node/edge attribute predlctlon (e. g drug side effects)

Link prediction \ / :\ \q/(\

Node prediction (Object dlscovery)

Learn optimal graph structure for downstream task



Introduction to graph networks

(@ Molecule
) ¢
(©) n-body System

(b) Mass-Spring System
<
|
: A XA
" ¥ —__ >
tes?
(d) Rigid Body System

o “Relational inductive
/S biases, deep learning,
/ and graph networks”

o

(e) Sentence and Parse Tree
Pl
The brown / \ k‘

jumped

dog jumped. The ’(4 \
brown dog

() Image and Fully-Connected Scene Graph

[1806.01261]
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https://arxiv.org/abs/1806.01261

Graphs as real-world data representation

 Most real-world data is
— Unordered
— Variable-size

 Examples
— Social networks
— Molecules
— Particles in a LHC collision
— Planets in a solar system
— Transportation networks
— Covid-19 patients




Graphs: very flexible data format
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Directed and undirected graphs

uy\d; \'QC—"QL CAJ% d\‘ tQC'l'e) ”‘dw




Graphs as inputs to a NN

* Neural net: f(x) - Yy’
— Minimize cost J(y,y’) with gradient descent

and back-prop,... wmosh ke -abnt  topic
 Tasks at level of: ora:
— Whole graph el onduition
— Each node
— Each edge

— Or any combination of those

« Classification, regression,
segmentation,...

17
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The GN block
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Edge update function in GN block




Node update function in GN block
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Graph update function in GN block

colleck off

QAJ‘v T Wo 1”7 —>




Building block: aggregate information

Collect or
Variable-size inputs m====) | aggregate | ===) Fixed-size output
information Independent of

order of inputs

22



Aggregate information: node update

Collectk b\{'b

%mw 2439-5

R wedey,

( (/\daL\ ‘00 \‘(Mm'X\

ULP“&*QJ
nedt Jeactrrs
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What function does the trick?

Desired properties
Variable-size input & fixed-size output
Independent of order of inputs

Sum

Attention weights, i.e.
importance to task at hand

Mean

Max/Min

Most advanced: weighted sum

~+

(1

— Transformers




The complete GN block

u =~

Variable-size inputs \
V

N

Fixed-size output,
iInvariant to order of inputs

E_

Edge block Node block Global block

[https://arxiv.org/abs/1806.01261]

25


https://arxiv.org/abs/1806.01261

GNA

GNA

GNA

GNL

GN3

Qe

Stacking GN blocks

GNJ

GNA

_;@l-)

I\

Depending on task at hand



Stacking GN blocks to increase receptive field

NN




Compare with other data representations

COMPLEX
UNSTRUCTURED SEQUENTIAL GRID RELATIONAL

STRUCTURE

Structure . B ¢.: L \/ \\’
= ++4+ -

Model MLP RNN CNN GNN
Arbitrary order
Variable-size inputs
Inductive
Bias * Weak Sequentiality Locality Strong

relational bias

* Beliefs about the model and data properties. Right initial beliefs = better generalization with less data 28



Example applications

Properties of molecules — graph-level regression
Movement of N-body system — node-level regression

Query a knowledge graph — more complex
architecture

Applications in particle physics

29



Nodes
Edges

Example 1: molecules

The caffeine molecule

chemical name: 1, 3, 7-trimethylxanthine

ato m S chemical formula: CgH1gN4Oz
chemical bonds

C — carbon atom

H — hydrogen atom
N — nitrogen atom

O — oxygen atom
CH3 — methyl radical

30



Neural Message Passing for Quantum Chemistry

C\ \/Q Training data:

134k drug-like organic molecules
node  Fostures &_) that span a wide range of chemistry

-------------------
------------------
-------

4 ;
T e aemmman . _ae®”
: AtomFeatues e =TT mmmmmmaa==”

.‘ Feature Description

]

1 Atom type H, C,N, O, F (one-hot)

1 Atomic number Number of protons (integer)

1 Acceptor Accepts electrons (binary)

: Donor Donates electrons (binary)

[} Aromatic In an aromatic system (binary) l|

“ Hybridization sp, sp2, sp3 (one-hot or null)

“ Number of Hydrogens (integer)

[https://arxiv.org/abs/1704.01212]



https://arxiv.org/abs/1704.01212

Graph-level regression task

Target:
/Q Atomisation energy
Vibrational frequencies

o= :f-@d*w\‘a 6 Etc.

-------------------
------------------
-------

’I
---------------

Table 1. Atom Features

.‘ Feature Description

1

1 Atom type H, C,N, O, F (one-hot)

1 Atomic number Number of protons (integer)

1 Acceptor Accepts electrons (binary)

: Donor Donates electrons (binary)

[} Aromatic In an aromatic system (binary) l|
“ Hybridization sp, sp2, sp3 (one-hot or null)

“ Number of Hydrogens (integer)

[https://arxiv.org/abs/1704.01212]



https://arxiv.org/abs/1704.01212

Architecture used

G. N b\oc\&

G\‘l“’-kk ew(oeJJhﬂ D >/
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[https://arxiv.org/abs/1704.01212]



https://arxiv.org/abs/1704.01212

Example 2: learn dynamics of physical systems

* Nodes = planets
— Position
— Velocity vector
— Mass

« Edges = "fully connected”
— Gravitational force between any 2 planets

[https://arxiv.org/abs/1612.00222]



https://arxiv.org/abs/1612.00222

Node-level regression task

Predict nodes features after time t
— Dynamics of system

Train on N=6 planets
— Generalize to e.g. N=12 planets

Edge function:
— Compute distance of planets

Node function:
— Masses + distances = force
— Force + current velocity + mass = future position

[https://arxiv.org/abs/1612.00222]



https://arxiv.org/abs/1612.00222

Example 3: knowledge graph

e
Transport network
How many stations are bet\;éen e /#«;’ “7‘ ‘
Crar Court and Flact Grove? /5};1;’,.‘_“ oy R m—— g
) I . ST e AL b
Node = metro station Answer: 12 K e
Are Grey Court and Prust Road on ‘ “f
the same line? W, v
Answer: No N VG e
— I " Fom fokde e O
Edge = connecting line AN T N e
Kl o ™
"“",’:T.,,.F\K” ‘‘‘‘‘ S

Embed graph in natural language processing

[https://medium.com/octavian-ai/clevr-graph-a-dataset-for-graph-based-reasoning-5e4e64{28ffb] 36



https://medium.com/octavian-ai/clevr-graph-a-dataset-for-graph-based-reasoning-5e4e64f28ffb

GNNs in particle

physics: the LHC

S expertise

)

Your lecturer

s a great GNN showcase !

)

And it

37



LHC in a nutshell

Collide high-energy (HE) particles in controlled environment

Hermetic detectors around collision points to measure all produced particles

Answer fundamental questions

38



The motivation

Darie matter, dark energy,
quantum @m\/utg,... 3




. ,.A N ,/;& A.Ov 3 ‘
- Ay ~‘ ‘d "ik_i:\ A‘l‘,g?‘\ : e .i

Pa b ab il
A\ el N

.
a !,\a

; . &Y " - L\w";
N W

Two objectives:
Higgs discovery
New phenomena ©

40



particle
physics

GNNs in

[ Ref]

41


https://iopscience.iop.org/article/10.1088/2632-2153/abbf9a/pdf

Point cloud
data

_ . / ] Run: 427394
Sparse inhomogeneous 3D image — point cloud Event: 3838977
' 2022-07-05 17:02:31



Track reconstruction = edge prediction

Connecting

a
the dots .: '% " :

Traditional solution: Kalman filter
but too slow for HL-LHC !

[Ref, Exa.TrkX & L2IT]


https://iopscience.iop.org/article/10.1088/2632-2153/abbf9a/pdf

Fully connected graph:

100 edges
Kaggle:
.'-:.-:I-:I}ZIK

44



(@) )

Track reco with GNN in 3 steps

Metric

f' Learning

or

Hits

\; Module
Map

Graph

_/

Construction

% Graph Neural

e )? Network
@® \ R N “ )k )
¢
9

Edge
Labeling

Edge Scores

Connected
Components

Connected
Components
+ Walkthrough

Segmentation

é;

st
s

Track Candidates

45

[IDTR-2022-01]


https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2022-01/

1. Graph construction

Metric learning Module map

N-dimensional space

Eliclidian spate learned by the MLP

Lookup table:
possible module groups
U traversed by a particle

[TG et al., 2101.06428 ]

10'%edges — 10%edges (104true edges) IDTR-2022-01] *



https://ml4physicalsciences.github.io/2019/files/NeurIPS_ML4PS_2019_31.pdf
https://arxiv.org/abs/2101.06428
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2022-01/

Background rejection

2. Edge classification

10°
10’
10°
10°
10
10°
10°

10

E | I | | L | | L | | L | | L | | L E
- ATLAS Simulation Preliminary .
§ s = 14 TeV, tf, (u) = 200, primaries (tf and soft interactions) P, > 1 GeV §
| using Module Map _
E_ GNN classifier _E
SELLLLLLE Naive classifier =
__ ° Edge classification score s = 0.5 —
B, E
_I T e S R L L T T P b LL LT l| ---------------

2 O 3 O 4 O 5 O 6 O /7 0.8 O 9 1

Signal efficiency

ROC curve

47



7 efficiency, 7 purity, N~ compute time

% Graph Neural

Metric ° Connected
( Learr"ng ﬁ 90'& ? Network o,o?e,, Components " i .
L .y ¢, o o O - :
—* or ﬂ —’ / 4 _> »// % 091
O\ ‘ UJ!( 4 s’oor < \% J E
/ A A Connected ¥
M“c/)gule _J . %j ) ; @ . ﬁj Components
P V3 i + Walkthrough
Hits Graph Edge Scores Track Candidates
Graph Edge Graph
Construction Labeling Segmentation
1
Edge lost can’t be retrieved later Work in progress

Dominated by fake edges

Efficiency vs. purity
Dominates compute time (0.5 s)

48

[IDTR-2022-01]



https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2022-01/

49

%
%
[ Ref ]

[ParticleNet]

Jet reconstruction based on energy depositions
A cloud of particles

» Graph-level classification


https://iopscience.iop.org/article/10.1088/2632-2153/abbf9a/pdf
https://arxiv.org/abs/1902.08570

Interpreting jets based on associated particles

— Flavor tagging — graph-level classification

[ Ref]

50


https://iopscience.iop.org/article/10.1088/2632-2153/abbf9a/pdf

Flavor tagging domain:
longstanding & very active history of ML usage

We will discuss:
Data representations
Learning algorithms

51



Mini-intro to flavor tagging

Visualizing a jet in a collision

 Quark hadronizes to collimated
bunch of hadrons = jet

* They come in flavors

— C-jet TI ==
— b-jet ol |
— light-jet :d |'s |:b
* Interesting physics: b, ¢
« Task: identify jet flavor

 Train on truth-labelled
simulation data

[ATLAS experiment]

52



MC simulation

Too complex to predict
experiment outcomes
from first principles

« High-fidelity simulation engines (synthetic data) to describe
— Physics processes in a LHC collision
— Passage of particles through the (ATLAS) detector

53



B and C hadron features

b-jet
_ong lifetime tracks
Hdighmass .. b-hadron _ tertiary
High decay product multiplicity -~ c-hadron i
B hadron often decaystoC ™ e I—
hadron vertex

What we measure
— Reconstruct tracks (from hits)
— Extrapolate tracks to vertices

do
se_ — primary vertex
light-jet

54



Track features: signed IP significance

m T I I T I I I I I I I I I I I I T | I I I T | I T_]
— [ ATLAS Simulation Preliminary L1 Light-flavour jet tracks ]
~ - r==1i i
o 100 Vs =13TeV, 1 L2 cjettracks _
. f, : [ b-jettracks 3
b-Jef ©
= .
— i r i
O 101 _- =
tracks S ., :
...... b-hadron © 102 o e,
m :_ | = b ‘I.-- —
------ c-hadron _l.qf'l e T
A A
...... impacf 102 L __,.r';-"JF = 1. ;
parameter secondary - sty "Li
vertex ety
-4 P.:"_ l J | | | | I | | | | I | | | | I | | | | I | _{
10
do -20 -10 0 10 20
. Sdo = do/Oqo

Can interpret as probability
density functions py, p., P

95

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-014/



https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-014/

Hand-designed jet feature: IP2D

Sum log-likelihood-ratio
(Neyman—Pearson lemma)

i
IPXDiccl = Z log (p?’b’c

1
1Etracks pl,c,l

https://cds.cern.ch/record/27650387?In=en

|

Normalised

107" L

10 &

100 =

1021

103L

T l T T T T I T T
Vs =13 TeV, PFlow jets, tt Sim.

T I T T

| I | T |
I: b-jets |
1 cijets 3
[ light-flavour jets a
77 stat. unc. 7]

.‘"I" < . 3
C PT A7, '
1075 '! / !"" !!' —
§ / !' 7 7 ” 4 A/ 3
- L By 07 E b,
| Z R | |;| ZH|;¢| I BT v Az |
-10 0 10 20 30 40
IP2D,
56


https://cds.cern.ch/record/2765038?ln=en

Vertex feature: SV171

'8 100 E I I I T | T T T T l T T T T T T T T T T T T I T ] T T T I_:
2 - Vs =13TeV, PFlow jets, tt Sim. [ b-jets -
g T 1 cets :
Secondary vertex features § | = pT—
10~ & 7777 stat. unc. -
b-jet 102 =
-3 —
— ftertiary 10 - -
vertex - -
secondary 107 = E
vertex - ]
] 1 1 1 1 | | 1 | 1 I 1 | 1 1 | 1 1 1 1 | | 1 | 1 | 1 1 1 % I_
0 1 2 3 4 5 6
m; v /GeV

https://cds.cern.ch/record/27650382In=en o



https://cds.cern.ch/record/2765038?ln=en

Weak inductive bias: MLP (DL1T)

ROC curve:

—— ATLAS DL1r light-jet rejection

—— ATLAS DL1d (loose) light-jet rejection
—— CMS DeepJet light-jet rejection

=== ATLAS DL1r c-jet rejection

——— ATLAS DL1d (loose) c-jet rejection

Probabilities for jet '
to be b, c, light

J\\\i‘\:\" i\'
R

Nl
\\\’ 4
NV c 10 CMS DeepJet c-jet rejecti
\t‘\\\"\N’{{ 5 eepJlet c-jet rejection
A‘\\\\\l\\!\m't':'(/k 8
‘\Y‘\ ,',":\7 > pc”
“ il i‘i 10° —
B e
2
/""" i, % 10
/A g
lh"l:\‘.\‘n\ ' 1
( 10
10°
04 0.5 06 0.7 0.8 09 1.0

b-tagging efficiency

hidden layers

output layer

https://cds.cern.ch/record/27650387?In=en 58



https://cds.cern.ch/record/2765038?ln=en

Recap

Inputs = variable number of unordered tracks (& vertices)

MLP = fixed-size number of ordered inputs

— Ad-hoc workaround:
* Fixed-size: zero-pad/truncate variable-size or sum
* Ordered: leading N tracks

— NOT ideal — why?



Universal approximation theorem

MLP (FF NN) can represent a good function for a task,
but the problem is how to construct it

Might require: i, —— S
Infinite data INFORMTION
Infinite network size i

DISTILLATION

Infinite compute

PATTERN RECOGNITION

WISDOM

CHAN %fy

éke’cchp\ana(:i 00



Add inductive bias: Recurrent NNs (RNNSs)

 Handle variable-length ordered sequences (e.g. NLP)
— The food was good, not bad at all
— The food was bad, not good at all

« Share parameters across the sequence

61



RNNs for flavor tagging

Tracks = variable-sized sequence

Better than summing tracks

But order is arbitrarily imposed

Unrolled RNN

Track |
features

Fully Connected
+
SoftMax
| o | | Z
IR IR IR A -
I IREIRE: =
e S i ] i
ARI=IRIZINS =
K orderedI by |Sdo| / Jet

[ ATL-PHYS-PUB-2017-003 ] 62



https://cds.cern.ch/record/2255226/files/ATL-PHYS-PUB-2017-003.pdf

Data representation matters

ldeal representation: GNNs

Variable-sized inputs 4

Unordered (1))
r ; | eo

\
[l
1\

ol
| |

i g\;.,

’ 63
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Flavor tagging with Deep Sets

Track n

Deep Set
Graph without edges o Tackd
j(ndets, 1, m)
O @ i
® O o O

[DIPS]

Embed in higher-dimensional latent space 64


https://cds.cern.ch/record/2718948

Flavor tagging with Deep Sets (step 2)

= Aggregation FF NN

i ~ i |
> H TG | (ndets, 100)  (ndets, 100) I
|

(ndets, n, 128)

Sum over the
tracks

n n
= =
C C
=} >
= =
2 2
o o
o o
— —

(ndets, 128)

Permutation invariant
Arbitrary input size

DIPS] Account for track correlations

65


https://cds.cern.ch/record/2718948

Interpretability

Saliency map:

how sensitive is discriminant

to input changes

N ()
an 1 an

8x,~k B NJ=1 (9)6(‘])

[DIPS]

b-jets with 8 associated tracks
failing a threshold corresponding
to a 77% b-tagging efficiency

ATLAS Simulation Preliminary
Vs =13 TeV, tt

nSCTHits —
nPixHits —
shared SCT hits—

split pixel hits =

shared pixel hits [~

split IBL hits

shared IBL hits
IBL hits

PIX1 hits

log AR

frac
log p7

Sz0

Sao
| | | I

1 2 3 4 S} 6 7

Tracks sorted by sqg

0.4 3D,

0.3

—0.2

— 0.1

—0.0

—-0.1

—1-0.2

-0.3

-0.4
66
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https://cds.cern.ch/record/2718948

Deep Set — GNN

* Fully connected graph
 Edges — information exchange

o
= O
==

[

Intial track Condi t nal tra k

. N .

P Idg ph

[ATL-PHYS-PUB-2022-027]

o =
<) Jet flavour
< 5 . D prediction
2

67


https://cds.cern.ch/record/2811135

The importance of auxiliary tasks

* Improves performance
« Stepping stone
 Available for downstream tasks

GNN representatlon =
l - - . -

Combined Intial track
Inputs representation

raph

Jet flavour
. D prediction

£
o5 o
: . S Tracl_( origin
5 predictions

Conditional track
representation

Networ

G

Track
Initialiser
Netw

Nod

Vertex
predictions

Network

[ATL-PHYS-PUB-2022-027] 68


https://cds.cern.ch/record/2811135

Transformers Are Taking the Al World




Representation Learning for NLP

ONOSONENE Vil
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L] .
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Transformers completely superseded RNNs 70
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Sentences are fully-connected word graphs

o >

Translation?

Sentiment?

Next word?

Part-of-speech tags?

72



Transformers
are
graph neural networks




GNN — Transformer

GNN Transformers

T T I T T T T I T T T T I i} T T T I T T T T I T T T

~.
-
-
-
S -
. 0
N.—.~ ~'~,~
Lo L
- Ty
-~ x
i e
g e
. T,

Background rejection ratio

L I L 1 1 1 I ) L L 1 1 I 1
0.85 0.90 0.95

b-jet efficiency

1 1 1 1 1 |
0.75

0.80

Faster to train
Scale better with more data & more parameters
Potential for pre-trained backbone + fine-tuning

74



s there more unused information?

Hits (leftover) | s
Neutrals

Heterogenous graph
— Different node & edge types (track, hit, neutral)
— Cannot apply same GN block

Way out: embed in a common latent space

75



Have we really used all information now?

he difference between face recognition & PP?

We have a model



The holy grall

Encode model in
graph structure

77



Back to the inductive bias story

Learning generic functions = curse of dimensionality
Encode physics priors to reduce dimensionality
Graphs separate data representation from learning

Encode structure: leaving edges out or adding nodes

Geometric deep learning



https://arxiv.org/abs/2104.13478

Interpreting particles in a collision

Jet

[ Ref]


https://iopscience.iop.org/article/10.1088/2632-2153/abbf9a/pdf

Encoding model in GNN

Unseen nodes

\

A
e

g0 Jdo

(a) Feynman diagram (b) Node and edge graph



Topograph idea

Encode Feynman

diagram in GNN @@

Add virtual W & top ST
nodes @ \ @
Combinatorics

— Fully connected O(n?) AN

— Topograph O(n) ¢T_> @ _____ @
PrediCt kinematiCS (a) Fu]]y connected graph

[arxiv submission in preparation]

¢T_>@

(b) Topograph

\

\
\ \
\@

81



Particle Blocks
EEEEE -

" Soooaol SN\ | /S ps 1

b e e — —

\\ , - pl p3
NN Ny X PRGN -
NN N \ _ -
NN AN //\ //\/ |
N \\/ y//,< \ |
\ \ |
S \ \

» Auxiliary tasks WS px

Block N -
— Virtual node regression \Qi
— Link prediction o\

82



Modular network structure

@@@@@ @
bcdo# 0

Information Exchange

a

Network ¢ to embed particles in same space p

a

GNN layer to exchange information between particles

, , " ‘ Initialize virtual nodes with attention pooling

83



Graph of graphs of graphs...

. W
@ :

Space of constituents of a jet

Space of objects in a collision event

|/

Jet

Lepton

Jet

MET

SUPERSTRING \ & Gm\: suts)
M-tMor, heterctic) ,;’::, i

Ga olon EgxEp
Type-EA Trn AT
So(sx),
Ty'e rr d
") AN

(€N

Collision events = nodes

in theory space

84



Raw data

Jet

1®
>
O
O
e
=
O
Q.

particle cloud

MET

[Ref]


https://iopscience.iop.org/article/10.1088/2632-2153/abbf9a/pdf

Generating images < generating point clouds

Based on fully-connected GNN [2106.11535]

86

[Karras et al., 2018]


https://arxiv.org/pdf/2106.11535.pdf

No Al lecture w/o
these 2 topics

Quick intermezzo: going'beyond GNNs...




1. Ethical Al

« What you see is what you get

« Trained models reflect the training data
— Existing biases are kept!

— Famous cow-on-the-beach issue
* Universal cow features
» Spurious patterns

o Effort needed to unbias
— Augment

— Decorrelate
Support issue




2. Trustworthy Al

Explain to human how the verdict was reached

1. Post-hoc explainer NN applied to trained model

— Perturbation-based [SHAP, LIME]
— Gradient-based [Saliency map, see b-tag example]

2. Self-explainer: learn like a human during training
— Inject stochasticity & learn the noise

— For GNNs: node Gaussian noise, edge Bernoulli noise
« Resonates with a physicist’s notion of uncertainty

Training epochs
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For critical points: case 1

[2210.16966]
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https://arxiv.org/pdf/2210.16966.pdf

Graphs for experts

(that you are now!)
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What could go wrong?
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Common problems with GNNs
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[Slides from Hammers & Nails talk by Francesco Di Giovanni, Twitter]



Under-reaching

Yellow cannot reach \\

green in BHIPUALES O O
\“ " \“
‘ "O \‘

Fix: increase depth /
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Over-smoothing

Too deep: node representations can
become similar (smoothed out) and
weaken influence of graph structure

Fix: decrease depth / sharper
update functions
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Over-squashing

A~ Size of k-hop neighborhoods
" grows substantially with k

’
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Squashing more and more
information into a node

Congestion / bottleneck issue

Fix: add short-cuts based on

=3 curvature

U™ Alon and Yahav (2021)



Riccl curvature — intuition

Spherical (> 0) Euclidean (= 0) Hyperbolic (< 0)
@ @ @
@ @ @
@ @ @

Clique (> 0) Grid (= 0) Tree (< 0)
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Curvature-inspired alleviation of over-squashing
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Example



Example




Candidate edges to

v/add (plus several



Example

New edge sampled

based on potential
improvement to
bottleneck

;

Curvature of previous
bottleneck increased
=> bottleneck improved



Example

This edge has the highest
curvature, which is > C*






Example

We repeat with the next
edge with minimum
curvature




Example

Sample the next beneficial edge



Example

o /0

Suppose this edge now has
maximum curvature, but not > C*;
we do not remove it



Example

Finally, suppose this edge now has
min curvature, but there are no
candidate edges to add that will help




Example

We have converged and are done



This i1s what we started from



Discussion

* Improved flow of messages in graph
« But what if structure matters? (which was changed)



“New directions in science are
launched by neuch
more often than by new
concepfts.”

- Freeman Dyson




“Solving intelligence, and then
using that to solve everything else.”

- Demis Hassabis, Google DeepMind
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“Go for the messes —
that’s where the action is.”

- Steven Weinberg

“Deep Learning today reminiscent of the field

of particle physics before the Standard
Model: veritable zoo of particies but few

unifying principles.”

- Michael Bronstein on geometric deep learning (freely quoted)




Summary

Graph-structured data is everywhere
Encode & discover relational inductive bias

Any domain & downstream task
— Huge impact in particle physics
Transformers are GNNs

Very active field of research
More innovation to come






