>z

el / ~ Gregor Kasieczka ik
B aw gregor.kasieczka@uni-hamburg.de- *
a® Twitter: @GregorKasieczka

>

= | Wiehl Workshop

CLUSTER OF EXCELLENCE Noether-
Programm | Aadl
QUANTUM UNIVERSE

. P I E R . Bundesministerium

vk s Y S furB||dung

iti

) o und Forschun
‘24 Universitdit Hamburg !

Partnership of
DER FORSCHUNG | DER LEHRE | DER BILDUNG Universitat Hamburg and DESY



mailto:gregor.kasieczka@uni-hamburg.de
https://twitter.com/GregorKasieczka
http://xkcd.com

"Department of Physics,
Columbia University,

New York, NY, USA.

“Institut fiir
Experimentalphysik,
Universitat Hamburg,
Hamburg, Germany.
*Physics Division, Lawrence
Berkeley National Laboratory,
Berkeley, CA, USA

“Berkeley Institute for

Data Science, University of
California, Berkeley, CA, USA.
SNHETC, Department of
Physics and Astronomy,
Rutgers University,
Piscataway, NJ, USA.
“e-mail: georgia@
nevis.columbia.edu;

gregor kasieczha@
uni-hamburg.de; swhravitz@
Ibl.gov; bpnachman@Ibl.gov;
shih@physics.rutgers.edu

REVIEWS

M) Check for updates

Machine learning in the search for new
fundamental physics

and David Shih(»**

searches and neutrino experiments.

For several decades, the standard model (SM) of par-
ticle physics has provided a clear theoretical guide
to experiments, resulting in an extensive search pro-
gramme that culminated with the discovery of the Higgs
boson'~. Although the SM is now complete, there are
key experimental observations that compel the com-
munity to expand the search efforts for new particles
and forces of nature beyond the SM (BSM). For exam-
ple, the existence of dark matter (DM) and dark energy
is well established’, as are the mass of neutrinos** and
the baryon-antibaryon asymmetry in the Universe’ —
yet none of these observations are explained by the SM.
Additionally, ‘aesthetic’ problems plague the SM, includ-
ing the unexplained weak-scale mass of the Higgs boson,
the existence of three generations of fermions, and the
minuteness of the neutron dipole moment’. Current and
near-future high-energy physics (HEP) experiments
have the potential to shed light on all of these funda-
mental challenges by creating new particles in the labo-
ratory, or by observing interactions of new particles with
normal matter or with other new particles.

This great potential for discovery comes with con-
siderable data challenges. New particle interactions are
expected to be rare, and their signature could be only
subtly different from the SM. This means that researchers

Georgia Karagiorgi®'*, Gregor Kasieczka®*, Scott Kravitz(»**, Benjamin Nachman 34>

Abstract | Compelling experimental evidence suggests the existence of new physics beyond the
well-established and tested standard model of particle physics. Various current and upcoming
experiments are searching for signatures of new physics. Despite the variety of approaches and
theoretical models tested in these experiments, what they all have in common is the very large
volume of complex data that they produce. This data challenge calls for powerful statistical
methods. Machine learning has been in use in high-energy particle physics for well over a decade,
but the rise of deep learning in the early 2010s has yielded a qualitative shift in terms of the scope
and ambition of research. These modern machine learning developments are the focus of the
present Review, which discusses methods and applications for new physics searches in the context
of terrestrial high-energy physics experiments, including the Large Hadron Collider, rare event

tens of thousands of tunable parameters) are well suited
for analysing large amounts of data in many dimensions
to find subtle patterns. Multivariate analysis has been
commonplace in HEP for decades (for example, the
TMVA ‘toolkit’)?, but the latest tools will qualitatively
extend the sensitivity to ‘hypervariate analysis’ whereby
the entire phase space of available experimental infor-
mation can be analysed holistically. These new tools
also allow for new analysis strategies independent of
the dimensionality (density estimation, variable-length
inputs and so on).

In tandem with the growing data volume, a related
challenge is the increasing need for efficient (in terms
of computational time, power and resource utilization)
and accurate data processing for high-throughput appli-
cations. Efforts to that end include the development
and acceleration of deep learning-based processing
algorithms on power-efficient hardware platforms’.

In addition to the growing data challenge, there is also
ding chall £ simulati i

the comp g g P

for what experiments may observe. HEP experiments rely
heavily on simulations for all aspects of research, from
experimental design all the way to data analysis. Built
on a thorough understanding of the SM and the funda-
mental laws of nature, these simulations are extremely

must collect and sift through an i amount of
complex data to isolate potential BSM physics. Machine
learning (ML) offers a powerful solution to this chal-
lenge. Deep learning techniques (used here to mean
modern ML, with deep neural networks (NNs) and
other advanced tools that contain (much) more than

p and sophisticated, but they are still only
an approximation to nature. It is therefore often necessary
to combine simulations with information directly from
data to improve simulation accuracy. The corresponding
ML models must be robust against inaccuracies and be

able to integrate uncertainties.
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w World Scientific

https://arxiv.org/abs/2112.03769

HEPML-LivingReview

A Living Review of Machine Learning for Particle
Physics

Modern machine learning techniques, including deep learning, is rapidly being applied, adapted, and
developed for high energy physics. The goal of this document is to provide a nearly comprehensive list of
citations for those developing and applying these approaches to experimental, phenomenological, or
theoretical analyses. As a living document, it will be updated as often as possible to incorporate the latest
developments. A list of proper (unchanging) reviews can be found within. Papers are grouped into a small
set of topics to be as useful as possible. Suggestions are most welcome.

download review

The purpose of this note is to collect references for modern machine learning as applied to particle physics.
A minimal number of categories is chosen in order to be as useful as possible. Note that papers may be
referenced in more than one category. The fact that a paper is listed in this document does not endorse or
validate its content - that is for the community (and for peer-review) to decide. Furthermore, the
classification here is a best attempt and may have flaws - please let us know if (a) we have missed a paper
you think should be included, (b) a paper has been misclassified, or (c) a citation for a paper is not correct or
if the journal information is now available. In order to be as useful as possible, this document will continue to
evolve so please check back before you write your next paper. If you find this review helpful, please consider
citing it using \cite{hepmllivingreview} in HEPML.bib.

* Reviews
o Modern reviews

= Jet Substructure at the Large Hadron Collider: A Review of Recent Advances in Theory and
Machine Learning [DOI]

= Deep Learning and its Application to LHC Physics [DOI]
= Machine Learning in High Energy Physics Community White Paper [DOI]

= Machine learning at the energy and intensity frontiers of particle physics

https://www.worldscientific.com/

worldscibooks/
10.1142/12294#t=aboutBook

https.//iml-wg.qgithub.io/
HEPML-LivingReview/
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Experimental particle physics workflow
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Experimental particle physics workflow




Triggering &
data taking

Triggering and
data taking

Particle collisions happen at a rate
of 40 MHz with size ~1 MB/event.

Need to distill to ~1 kHz via lossy,
irreversible filtering algorithms

(Trigger).

Data is very heterogenous: low-
level readouts in ~100M channels.
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Event generation &
detector simulation

Simulation

Theoretically well motivated

Monte Carlo based simulations of
known and hypothetical processes
as well as detector responses.

As ~similar amount of simulated
and real data is needed, significant
compute goes here.



Reconstruction

Build high level objects (particles,
leptons, jets, ..) from raw
measurements in detectors and identify
different particle decays.

Same processing chain for simulation —
and real data. ATLAS

Reconstruction, object
identification & calibration




Analysis

Select region of phase space
that isolates a physical
phenomen of interest and
perform detailed statistical

analysis.

Compares simulation and data,
quantifies uncertainties.

Triggering &
data taking

\ 4

Event generation &
detector simulation

\ 4

Reconstruction, object
Identification & calibration

\ 4

19.7 fo™' (8 TeV) + 5.1 fb™ (7 TeV)
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Machine learning plays an increasing
role in all of these steps

Triggering &| |Event generation &
data taking| |detector simulation

\ 4 \ 4

Reconstruction, object
Identification & calibration

\ 4

Final analysis, statistical and
physical interpretation
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Focus on two problems:



Simulation
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Focus on two problems:

Output
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Focus on two problems:

and finding new physics.
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Unifying theme:
Generative models



Unifying theme:
Generative models

7 Generator
G(z)

GAN: Adversarial /
training

lilianweng.github.io



Unifying theme:
Generative models

Generator

G(z)

Discriminator

D(x)

GAN: Adversarial / X |
training

Encoder

VAE: maximize X |
q¢(2[x)

variational lower bound

lilianweng.github.io



Unifying theme:

Generative models

GAN: Adversarial
training

VAE: maximize
variational lower bound

Flow-based models:
Invertible transform of
distributions

Discriminator

D(x)

Encoder
q¢(2|x)

Generator

Flow

T f®)

G(z)

Inverse

f~(2)

lilianweng.github.io



Unifying theme:
Generative models

Generator

G(z)

Discriminator

D(x)

GAN: Adversarial / X —»
training

Encoder

VAE: maximize X
q¢(2]x)

variational lower bound

Flow-based models: - Flow ” Inllfrse /
f(x) f (=)

Invertible transform of
distributions

Diffusion models: X0
Gradually add Gaussian - - - - - - - «--—-—---  "mm mus “«--—————-
noise and then reverse

lilianweng.github.io



Unifying theme:
Generative models

Generator

G(z)

Discriminator

GAN: Adversarial /
X
D(x)

training

Encoder

VAE: maximize X |
q¢(2]x)

variational lower bound

Flow-based models: x| Flow | Iz . Inllfrse | x/| |Widely
Invertible transform of f(x) f~(2) used in
distributions HEP
Diffusion models:. X0 X1 — | Xo > |z
Gradually add Gaussian - - - - - - - *--------  FEE RS *-------
noise and then reverse

One example so
far: 2206.11898

lilianweng.github.io



Introduction to NF

Flow-based models: X |—» Flow I 2 EE— Inllfrse SN x’
Invertible transform of f(x) [ (2)
distributions

e Basic idea: Learn a mapping between data and an intial
latent-space distribution (e.g. Gaussians)
e Bijective, so that it is invertable
(f-1 is not a learned approximated inversion, but the exact
inverse of f by construction)
e Actually a diffeomorphism

e Take into account Jacobian determinant (change of prob.

variable formula) to evaluate probability density in data
space

(need to construct f to allow easy calculation of Jacobian
determinant)

lilianweng.github.io



Introduction to NF

Flow-based models: X | L | Z | ——— Inllfrse X
f(x) f~(2)

Invertible transform of
distributions

¢ \Why could this be useful?
e Can sample from latent space and transform with f-1into
data space for use as generative model
e Can assign likelihood to data points by applying f

e Will see some physics applications later

e (Seee.qg.D. J. Rezende and S. Mohamed, Variational inference with
normalizing flows, International Conference on Machine Learning 37, 1530
(2015); I. Kobyzev, S. Prince, and M. Brubaker, Normalizing Flows: An
Introduction and Review of Current Methods, IEEE Transactions on Pattern
Analysisand Machine Intelligence , 1 (2020))

lilianweng.github.io



Introduction to NF

Generate new samples

I —_ }

Up » u; = fi(uo) Up = fro---ofyofi(uo)

Simple Complex
Distribution — —_— ' oo0o ' Distribution

e (Goal: assign probability density to each datapoint

e | earn bijective transformation between data and a latent space with
tractable probability

e Build from simple invertible transformations with tractable Jacobian

o\ | _
det( py > =

of, \| ™
det ( 8u>

p(x) =p(f ()] ]

)

p(u) ] ]

(

Thanks to T. Loesche

22



Introduction to NF

e Build from simple invertible transformations with tractable Jacobian

23



Coupling Flows

e Coupling flows / real NVP
¢ Practically not the most widely used flow,
but useful for illustration/understanding
e Will use an alternative (masked autoregressive flows) for
exercise

e Forward direction
e s and t are standard (e.g. fully connected) neural networks

Deep Learning for

Physics Research



Coupling Flows

exp l l

x ) [52] [t s b

\.
N L L dhtyn”
“/@“Sﬁﬁ“x N

| /

v
N

exp

N .

e Forward and backward direction
e Can already see invertability
¢ \What about Jacobian determinant?

Deep Learning for

Physics Research



Calculating Jacobian determinant

X1 I, z1 = X1 © exp(s2(X2)) + t2(x2)
I

X2—1>X2.
- °,
1o (B ) - (sl 82)
8X2 8x2 O 1
6X1 0X2

Triangular matrix by construction
detJ; = H exp(s2(x2)) = exp (Z S92 (X2)>

Similarly simple for Jo. Composition of functions
means multiplying their det J.

Deep Learning for

Physics Research



Autoregressive Flows

X1 Y1 X1 Y1
wgssii\\\*yQ o // Y2
I3 Y3 xTrs Y3

Tn YUn Tn YUn

Autoregressive property: Outputs conditioned on previous
iInputs

Again, leads to simple Jacobian and invertible functions
MAF: Masked Autoregressive Flow

e Forward direction (data->latent) fast, backward slow
|AF: Inverse Autoregressive Flow

e Sampling direction (latent->data) fast

Many other constructions exist as well (1908.09257 for an
overview)

1908.09257



Simple
Distribution

How to train NF?

Generate new samples

u; = fi(uo)

¢ | oss is the negative log likelihood,
assume Gaussian latent space distribution
e Sample points from the training dataset

¢ Transform into latent space using flow
(and keep track of det J)

I

H2+Z

U = o+

o fa o fi(up)

Complex
Distribution

Thanks to T. Loesche



Back to physics applications
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Context

¢ Roughly speaking, “simulation”
consists of two steps:
e Fvent generation
Model short-lived physics
of high energy patrticle collision
and resulting shower

e hard scattering

/ y s
é B
e partonic decays, e.g.
t — bW
- e parton shower
< o evolution
P e colo glets

e colourless clusters

_—
N e cluster fission
\
AN

Figure from D.
Zeppenfeld.



Context

e Roughly speaking, “simulation”
consists of two steps:
e Fvent generation
e Detector simulation
Describe interaction of particle
shower with various detector components

on a microscopic level




Context

¢ Roughly speaking, “simulation”
consists of two steps:
e Fvent generation
e Detector simulation

e Both are computationally expensive, performed
by a multitude of specific software packackes
and ML-based efforts exist to replace/augment them

e Potential benefits:
e Reduce ressource consumption (details in JRs talk)
¢ On-the-fly data generation
e Simulation trained directly on data (reduce modelling
uncertainty?)
¢ New analysis techniques utilising fully differentiable
(invertible?) generators

33



Context

Roughly speaking, “simulation”
consists of two steps:

e Fvent generation

e Detector simulation

Both are computationally expensive, performed
by a multitude of specific software packackes
and ML-based efforts exist to replace/augment them

Potential benefits:

e Reduce ressource consumption (details in JRs talk)

¢ On-the-fly data generation

e Simulation trained directly on data (reduce modelling
uncertainty?)

¢ New analysis techniques utilising fully differentiable
(invertible?) generators

Focus on detector (calorimeter) simulation in the following
34



Calorimeter
Showers

e Calorimeters aim to fully stop incoming particles,
and measure their energy in the process
e Due to large amount of classical simulation time spent
on calorimeters, good target for ML-based simulation.
e Started by 1712.10321, MANY results since

Calorimeters of the

/ CMS detector

I | |
Om Im 2m

Key:

Muon
Electron
Charged Hadron (e.g. Pion)

- = = = Neutral Hadron (e.g. Neutron)
- o o g Photon

it

e




Calorimeter Showers

Passive absorber
l l Shower of secondary particles ﬁ. b o,
n g

yvlcells]

Incoming particle

bt

Detectors

One data example.

CALICE AHCal testbeam. lllustration of particle shower
(Slightly different detector, In @ sampling calorimeter.
but close enough)

36



Concrete Problem

Describe photon showers in high
granularity calorimeter segment

Model energy in 30x30x30 (=27k) cells
(pixels): grayscale images

Incoming photon energies from
10 to 100 GeV: need to condition on this

Consider fixed geometric area of
detector

Use ~1M examples from classical
simulation as training data

37

2005.05334



Architecture

Output

ol

Input Intermediate —
npu \ Sampling /nellne( iate 0 \__chffifllclce —
X|— - :u Decod % |—d . |Post Processor
Encoder = 7 — ecoder - Network
= / ‘ \ Critic
KLD
1 Latent-
N o [ MSE
N(O, 1) —_— . +MMD
MMD
. Lpip.ae = — Bc, -E|CL(E(x
e Bounded Information Bottleneck BIB-AE Bo,, - ElCL(E(2))]
Autoencoder (BIB-AE, = Bc - E{C(D(E(z)))]
based on 1912.00830) — Bep - E[Cp(D(E(z)) — )]

* Unifies features of GAN and VAE
* /1M trainable parameters

38

+ BkLp - KLD(E(x))

+ Bvmp - MMD(E(z), N(0,1))).

2005.05334



Results

101 MeV

y [cells]

101 MeV

Wasserstein
Ground Truth GAN GAN

Individual shower images very hard to judge per-eye

39
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101

101

visible cell energy [MIPs]
10° 101

102

Results

S 10°2f
. |

A

— Geant4

— BIB-AE PP

full spectrum

103
102

e
visible cell energy [MeV]

101

40

* Different from e.g. photographs,
there is a number physically
meaningful quantities

e Use to judge quality of simulated
data

* BIB-AE first model to correctly
model cell-energy distribution
(histogram of pixel values) correctly

* (And of course other marginal
distributions and correlations)

2005.05334



Generative Frontiers

 (Good progress in various directions



Generative Frontiers

 (Good progress in various directions

e Still many issues to be solved:
* Experimental integration of simulation for
high-granularity calorimeters
* Multi-dimensional conditioning
* Whole calorimeter simulation
* |rregular geometries
* Benchmarking

42



Generative Frontiers

 (Good progress in various directions

e Still many issues to be solved:
* Experimental integration of simulation for
high-granularity calorimeters
* Multi-dimensional conditioning
* Whole calorimeter simulation
* |rregular geometries
* Benchmarking

e Statistics?

43



p(x)

Statistics

If we train a generator on N data points, and use it to produce M>>N
examples, what is the statistical power of the M points?

Compare (known) truth distribution to sample and oversampled data from GAN

0.18

0.16

0.14

0.121

0.10

0.081

0.06

0.04 -

0.02

0.00

10 quantiles --=- truth
GAN trained on 100 data points — fit
1 Sample
GAN

0.080;
0.060

MSE
o
o
=
<

20 quantiles

100 data

points

quantile

0! 102

103 10%
number GANed

10°

2008.06545



Statistics - 2D

100 training points GANed sampled
3.0 6
" -
IZ.O ‘I

=7 )

o )l
6 -y — )

6 -4 2 0 2 4 6 = 6 -4 -2 0 2 4 6 =
X X

I3.O
2.0

Relative deviation from Gaussian ring distribution

2008.06545



Statistics - Physics

Test the statistical properties of
simplified calorimeter showers.

218k Geant4
0.15 4= 1k Geant4
- VAE-GAN

0.10 -
0.05 -
2 -
9
1-
0 I — T 1
600 800 1000
Evis [MGV]

10-2 Bk e Scaling of

' . difference to
ground truth with
resolution again

10—3

1k—1000k

10—4 218k validation better for the
showers enerative model
Geant4 9 ]
107° —— VAE-GAN

4 16 64 256 1k 4k 16k

nquant

Cell Energy [MeV]

2202.07352



Generative Frontiers

 (Good progress in various directions

e Still many issues to be solved:
* Experimental integration of simulation for
high-granularity calorimeters
* Multi-dimensional conditioning
* Whole calorimeter simulation
* |rregular geometries
* Benchmarking

e Statistics

e Quality of simulation

47



Flows for generation

So far, only discussed GAN/VAE based

approaches to calorimeter simulation ”

Can also attempt to simulate with flows
Issue: As the flows are bijective, dim(latent - "

space) = dim(data space) o I W I Y N

This is bad T
CaloFlow improves the performance on ;‘ :

simple calorimeter data (1712.10321) by = w s wommow ww s
training a two-step MAF-based density ’ 5 |
estimator: Flow 1 learns energy/layer, Flow . ) y

2 learns to distribute this energy : ﬂ j o
CaloFlow Il speeds up evaluation by W o g I S om o e 0w gE e TEw
training another fIOW type y GEANT y CaloGAN [ y CaloFlow

e Student/teacher training an IAF
(inverse autoregressive flow) on the MAF
e Sampling from the IAF

2106.05285, 2110.11377

(Krause & Shih)



Flows

<«<— Training direction «———

30-dim. base

GEANT4 energies
Ej

Flow energies

Ej

GEANT4 showers

e Energy flow
distribution
.« W I 2 I
I." ".| permut. permut. permut.
YY Uy YY" vy YY vy
[ Einc> Einc[—> Einc >
/) MADE block MADE block MADE block
VYUYV My Y
§ RQS RQS RQS
— > Generative direction ——
<«—— Training direction, Ej: GEANT4 «—
3000-dim. Shower flow
base distribution
=y =W b—n 0
|."’ \ permut. permut. permut. permut.
YY"y YY vy YY"ty YY" vy
[ E; Ej Ei Ei ||
\ Einc| |MADE block|| | |Einc| IMADE block|||| |Einc[” IMADE block||| |Einc| |MADE block
VYUY YYY Y Ry Iy
‘§ RQS RQS RQS RQS

—>» Generative direction, Ej: energy flow ——>

Further challenges when extending to higher
dimensions..

Diefenbacher, Kasieczka,
Krause, Shekhzadeh,
Shih — coming soon



uoos bulwod — yiys

‘yapezy)ays ‘osnery
‘e)zoaisey] ‘Jayoequalai(

L, 9
Ne)
F
—
I
Fo
—
3
T 9
o
—_ >
2
]
C
L
7 (@)
o
S S
(7))
¥ -
o
— o S O
©O N <t m o~ — o NJ
o o o o o o o
— — — — — — — e
22UalinddQ >
< X
E @)
= . O
] _ RS
1] O o
] — (7))
i +=
>
D
| -
— t
7 0D
g O
>
T2 :
o 2
—
m
LI L L _0
S S r= =
— — — —

°92UallnNd2Q



Anomaly Detection



P SB SR SB n:1

Paata(T|m € SB)
= prg(z|m € SB)

Paata(T|m € SB)

Pdata(z|m € SR)
= ppg(x|m € SB)




Motivation

Why are neutrinos massive?

* Theoretical and experimental What is the nature of dark.
reasons to expect new physics matter & dark energy?
beyond the Standard Model

What are the origins
of the LHCb flavour
anomaly?

Why is there more matter
than anti-matter?

GeV

Top pole mass M, in

Why is there more

matter than anti-

matter? Is the electroweak
vacuum stable?

How can the Higgs
boson be light when
the mass receives
large quantum

53 corrections?

What are the details
of cosmic inflation?



Motivation

* Theoretical and experimental
reasons to expect new physics
beyond the Standard Model

* However, so far only negative
results In direct (model driven
searches

t -t

t = by - bW

t = (tX9/bX7 — bWRY)

t = bff'g?

t = bxi — bff'x?

t—cx?

t = bgi — bul - butx?

b — bx?

b - txF - tWER

a-ax}

CMS (preliminary)

Moriond 2021

Overview of SUSY results:

137 fb™* (13 TeV)
pp — tt
Combination: SUS-20-002
0¢: arXiv:1909.03460;1908.04722,2103.01290
1¢: arXiv:1912.08887
2/¢ opposite-sign: arXiv:2008.05936
Combination: SUS-20-002
04: arXiv:1909.03460;2103.01290
14: arXiv:1912.08887

squark pair production

=05

=05

2( opposite-sign: arXiv:2008.05936 z=05

Combination: SUS-20-002

0¢: arXiv:1909.03460;2103.01290
14: arXiv:1912.08887

04: arXiv:1909.03460;2103.01290
0¢: arXiv:1909.03460;2103.01290
0¢: arXiv:2103.01290

2(: arXiv:2008.05936

pp — bb
0¢: arXiv:1909.03460;1908.04722
2( same-sign and > 3/: arXiv:2001.10086

PP — Qq
0/4: arXiv:1909.03460;1908.04722
0¢: arXiv:1909.03460;1908.04722

AM).(‘t =5 GeV, BF=50%

AM: =5 GeV, BF=50%
AM < 80 GeV (max. exclusion)
AM < 80 GeV (max. exclusion), z = 0.5

AM < 80 GeV (max. exclusion)

=05

Mgy =50 GeV

one light squark (i, d, &, or 3)

Gr +41(@,d,E,3)

250 500

750 1000 1250 1500
mass scale [GeV]

Selection of observed limits at 95% C.L. (theory uncertainties are not included). Probe up to the quoted mass limit for light LSPs unless stated otherwise.
The quantities AM and z represent the absolute mass difference between the primary sparticle and the LSP, and the difference between the intermediate
sparticle and the LSP relative to AM, respectively, unless indicated otherwise.

54

1750




Motivation

* Theoretical and experimental
reasons to expect new physics
beyond the Standard Model

* However, so far only negative
results in direct (model driven)
searches

e Make sure that we do not miss
potential discoveries at the LHC
— Anomaly detection

55



Types of anomalies

Outliers/Point anomalies: Datapoints far away

from regular distribution
Examples:

Detector malfunctions

 Background-free search
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Types of anomalies

Outliers/Point anomalies: Datapoints far away
from regular distribution

Examples:
e Detector malfunctions

 Background-free search

Group anomlies: Individual examples not
interesting,

but signal is an overdensity with respect to
background

Examples:

e Resonance searches

e Transient signals in time series s { SR i 8B m
pdata(x‘m S SB) pdata(as\m c SB)

ata(x|m € SR
= pbg(x|m € SB) Pdatal(| ) = pbg(:c|m € SB)
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Approaches

Use classical simulation to estimate backgrounds?

Yes No

Systematically compare simulation and
recorded data, look for differences

Con: Relies on imperfect simulation,
Maximally background model dependent
Pro: Sensitive to all types of anomalies

e Estimate background from data
e Con: Need to make

assumptions about signal model
e Pro: No reliance on simulation

The LHC Olympics 2020

AC ity Chall for

y
Detection in High Energy Physics

81014IIIIIIIIIIIIIIIIIIIIIII
1013 CMS —+— Data I Single top
1012 Prelimi Bl W + jets Iy + jets

10" reliminary B Drell-Yan [ Multiboson

35.91" (13 TeV) I Multijet Higgs

109 Exclusive, 1u tt

Gregor Kasieczka (ed),' Benjamin Nachman (ed),>® David Shih (ed),' Oz Amram,”
Anders Andreassen,® Kees Benkendorfer,2” Blaz Bortolato,® Gustaaf Brooijmans,’
Florencia Canelli,' Jack H. Collins,'! Biwei Dai,'2 Felipe F. De Freitas,'* Barry M.
Dillon,®'* loan-Mihail Dinu,> Zhongtian Dong,' Julien Donini,'® Javier Duarte,'” D.
A. Faroughy'® Julia Gonski,” Philip Harris,'® Alan Kahn,” Jernej F. Kamenik,*'?
Charanjit K. Khosa,?*% Patrick Komiske,?! Luc Le Pottier,>?? Pablo
Martin-Ramiro,22* Andrej Matevc,%19 Eric Metodiev,2! Vinicius Mikuni,!” Inés
Ochoa,2! Sang Eon Park,'® Maurizio Pierini,”’ Dylan Rankin,' Veronica Sanz,2020
Nilai Sarda,”” Uros Seljak,>"'? Aleks Smolkovic,® George Stein,>'? Cristina Mantilla
Suarez,” Manuel Szewc,” Jesse Thaler,”! Steven Tsan,'” Silviu-Marian Udrescu,'®
Louis Vaslin, 6 Jean-Roch Vlimant,2? Daniel Williams,? Mikaeel Yunus's

Events per Cla
o
S

Vnstitut fiir Experimentalphysik, Universitit Hamburg, Germany

2Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
#Berkeley Institute for Data Science, University of California, Berkeley, CA 94720, USA
NHETC, Department of Physics & Astronomy, Rutgers University, Piscotaway, NJ 08854, USA
3 Department of Physics & Astronomy, The Johns Hopkins University, Baltimore, MD 21211,

6 Google, Mountain View, CA 94043, USA
" Physics Department, Reed College, Portland, OR 97202, USA

arXiv:2101.08320v1 [hep-ph] 20 Jan 2021
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Approaches

Use classical simulation to estimate backgrounds?

Yes No

& many ideas in between!

Much more anomaly detection
throughout this workshop.
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Assumptions

Rarity: Pr(anomaly) « Pr(hormal)

Overlap:
max x p(x|anomaly)/p (x|normal) < o

Resonance: Pr(|m —-m0| > §lanomaly) = O for
some feature m (often a mass) and fixed m0,
%)

Smoothness: p (x|m, normal) varies slowly

>

with m so that one can use data with s { SR | SB m

. Pdata(T|m € SB) T Pdata(z|m € SB)
Im — m0| > & to estimate p(x|m,normal) for ~mgloim e 55)  Pua(m €SB i ¢ )
lm —m0| < 6
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Introducing: LHC Olympics

* Encourage development and comparison of model-
agnostic search strategies
* Focus on group anomalies, data-driven searches
« Use for a convenient overview of space of techniques
 Complementary to 2105.14027

* Provide a complete package, balance details vs

accessiblity Welcome to the home of the LHC
Olympics 2020!
e Datasets:
* One R&D dataset for algorithm development
* Three black box datasets (BB1-BB3)
« Unblinded over time

e Timeline:
« Spring 2019: Release R&D dataset (link)

e Autumn 2019: Release BB datasets (link)

« January 2020: Winter Olympics as part
of ML4Jets, unblinding of BB1 (link)

 July 2020: (Virtual) Summer Olympics, unblinding of
BB2 and BB3 (link)

 LHC Olympics paper (https://arxiv.org/abs/
2101.08320) public

https://Ihco2020.github.io/homepage/
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https://zenodo.org/record/6466204#.YoydSpNBxqs
https://zenodo.org/record/4536624#.Yoz_7pNBz0o
https://indico.cern.ch/event/809820/sessions/329216/#20200116
https://indico.desy.de/event/25341/
https://arxiv.org/abs/2101.08320
https://arxiv.org/abs/2101.08320
http://www.apple.com/uk

100k signal examples (signal, see Feynman diagram

on the right)
Labels provided

Relatively simple signal

R&D dataset

For building and testing methods
1M background examples (Standard Model),

 Known to differ in previously mentioned
features from background distribution

Unrealistically high S/B

| LHCO02020
., £0000¢ my,, anomaly ]
S 30000} Am;, anomaly |
= 20000} O my,, normal
(@]
© 10000} [0 Amj, normal
0%.0 02 04 06 08 10
Feature
30000 — LHC02020
» 25000} T71 1, anomaly [0 Tp1,1, normal -
E 20000¢ T21, 2, anomaly [0 T21,2, normal 1
2 15000¢ -
g 10000} :
5000 :
000 02 04 06 08 10
Feature
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Collisions per bin

m=100 GeV

105 | | | LI.HCOZOIZO
SS: SR §§ - Fit(KSp= 0.60
~~~~~~ Normal
104 [ Anomaly
103 I
102}
A

2500 3000 3500 4000 4500 5000

m

2107.02821



Generative models
for anomaly detection

>

SB § SR § SB m

Pdata(z|m € SB)
= prg(x|m € SB)

pdata(x|m € SB)

ata(xlm € SR
— poglalm € 5B)  Piaald] )

* 1): Choose one feature (m) in which to search for resonances
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Generative models
for anomaly detection

Train generative model

here \ au. A

T
\

>

SB § SR § SB m

Pdata(z|m € SB)
= prg(x|m € SB)

Pdata(|m € SB)

ata(x|m € SR
— puglalm € 5p)  Piswelrl € ST

* 1): Choose one feature (m) in which to search for resonances

e 2): Use m divide spectrum into non-overlapping regions. Designate one as
signal region (SR), others as sidebands (SB). Repeat the following for all
choices of SR
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Generative models
for anomaly detection

Train generative model

here \ au. A

T
\

>

SB § SR § SB m

Pdata(z|m € SB)
= ppg(x|m € SB)

Pdata(z|m € SB)

ata(x|m € SR
pdt( ‘ ) :pbg(l’|m€SB)

 3) Train a generative model p(x|m) on auxiliary features in SB
(used MAF, other choices including GAN/VAE possible as well)
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Generative models
for anomaly detection

Train generative model

here \ au. A

T
\

—and sample here

>

SB § SR § SB m

Pdata(z|m € SB)
= ppg(x|m € SB)

Pdata(z|m € SB)

ata(x|m € SR
pdt( ‘ ) :pbg(l’|m€SB)

 3) Train a generative model p(x|m) on auxiliary features in SB
 4) Sample from p(x|m) in SR. Designate as pogest.

2109.00546
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Generative models
for anomaly detection

( Pbg,est. \ ( Pdata )

Background only Background +
potential signal

xu . . :L‘“

®30 224 .o
¢ '?..:f"vg'-

. . . )

( Classifier 6

 3) Train a generative model p(x|m) on auxiliary features in SB
 4) Sample from p(x|m) in SR. Designate as pog,est
e 5) Train binary classifer between pdata and pog,est.

. ‘da
o ,E*“

6/

2109.00546



Generative mode

Is

for anomaly detection

20.0

17.5 -

e | &
12.5 4

— S
10.0 A

|

— 7.5

2
o 5.0 -
2.5
0.0

)
4)
)

Signal Region

15.0 A

—— Supervised

ours

— CATHODE:
Classifying Anomalies
THrough Outer Density
Estimation

Signal Efficiency (True Positive Rate)

3) Train a generative model p(x|m) on auxiliary features in SB
Sample from p(x|m) in SR. Designate as pog,est.
5) Train binary classifer between pdata and pog,est. (Mixed sample classifer)

6) Cut on high classifier scores to enrich sample with anomalies
(and perform statistical analysis)
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Comments on anomaly
detection

* As CATHODE approximates a likelihood ratio, it should be robust
compared to methods that only use pBackground (€.9. autoencoders)

B

Px(_ )
f
. pz(2)

69

2012.03808 (Lan & Dinh)



Comments on anomaly
detection

* As CATHODE approximates a likelihood ratio, it should be robust
compared to methods that only use pBackground (€.9. autoencoders)
* However, still can be sensitive to choice of input features

164 . e Random
—— Default, val loss = 0.69277+0.00002
—— 1G, val loss = 0.69302+0.00005
—— 2G, val loss = 0.69316+0.00003
—— 3G, val loss = 0.69328+0.00003
—— 5@, val loss = 0.69338+0.00007
7G, val loss = 0.69352+0.00005
10G, val loss = 0.69389+0.00012

14 ~

= =
o N
1 1

Significance Improvement
(o]

6

4

2 1 =SS\

N
OiO 012 Oj4 Oj6 018 le

True Positive Rate

70
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Comments on anomaly
detection

* As CATHODE approximates a likelihood ratio, it should be robust
compared to methods that only use pBackground (€.9. autoencoders)
* However, still can be sensitive to choice of input features

e Need also consider

Shaping of distributions under tigher anomaly detection cuts
Cost of signal-injection in training on data

How to efficiently estimate / compare / communicate sensitive
regions of different anomaly detection algorithms

Make data-based anomaly detection more flexible

Ia



No compression Compress per event Compress entire dataset

\
px|0)

/

Many numbers per event Small set of Small set of numbers
numbers per event per dataset

Triggering &
data taking




What else can we do?



Emphemeral Learning

* Remember triggering:
* Only able to store a subset (<1 in 10.000) of events
* Possible (wild) alternative:

* Train a generative model online during data taking

No compression Compress per event Compress entire dataset

Many numbers per event Small set of Small set of numbers
numbers per event per dataset

* Fixed size, independent of training data amount

 Radically different format from usual way of storing data, but
might open up new approaches

74

2202.0937



- E E E EEEEEEEEDE©EDEEDEEEEEEEEEEEEEEEEm

OnlineFlows

Online Offline
"""""""""""""""""" . '4"'-"""""'~
. 4
1 [ |
1 |
ONLINEFLOW |  9enerate =
1 synthetic
. events |
Iﬁ
: .
. :
Measurement '
¢ f ' :
\ RO _( LVL1 Trigger) : :
1 1
\ * . :
HL Trigger ' : Analysis
1 1
OL ! !
e © . save |
</ : few :
: events :
1 \

-------------------------------
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Schematic of proposed
approach.

Focus on HLT, more
technical challenges
for use in hardware
Trigger.

Main problem:

How to make training
work if each event is
only available for short
time?

2202.0937



Proof of concept

Use LHCO dataset,

train on high-level
features on a mixture of Z.o
background (99%) and -0

signal (1%).

8.0 1

0.0

3.

><104 ><104
—— Data 3.0
—— ONLINEFLOW
10x Signal 2.0 1
=== Signal Region ®r20 §2
| - =
= =
S S 1.0 1
| | 1.0 :
ﬂ 0.0 ‘ ‘ ‘ 0.0 ‘ ‘
00 3.25 3.50 3.75 4.00 0.00 0.25 0.50 0.75 0.0 0.5 1.0
my; [TeV] my [TeV] my — my [TeV]
XlOJ‘ X103
1.0 1 0
0.8 1 6.0
£ 2
= =
505 3 4.0
) )
0.2 1 2.0
0.0 - - - - 0.0 : . ,
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
o) -2
21 21
N
4P
(@)
<
Al
(@)
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Proof of concept

Use LHCO dataset,
train on high-level
features on a mixture of
background (99%) and
signal (1%).

Train classifier to
distinguish a signal
region and sideband
(CWoLA appaorach)

Compare procedure
directly carried out on
data with output of
flow.

18 1% Signal
— 100% Data

16 1
- —— 50% Data
q;) 14 —— 20% Data
% 5% Data
£ 10 ONLINEFLOW
S 89 -
S -
I~
S
=
20 4 -
N

21

0 . . . .

0.0 0.2 0.4 0.6 0.8 1.0

Signal Efficiency (True Positive Rate)
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Wrapping up



Compress per event Compress entire dataset

No compression

y [cells]

Small set of numbers

Many numbers per event Small set of
numbers per event per dataset
¥ 3 .
1:\ ::.
a.u.4
>‘\‘
\"5“
1=~~‘.

g

3y

A' SB SR SB
Pdata(T|m € SB)

Pdata(z|m € SB)
= ppg(x|m € SB) Paata(m € SK) - _ Pog(xlm € SB)




Generator

GAN: Adversarial
training

VAE: maximize x z Decoder ’
variational lower bound 0(2/x) [ o (x|2)

o — veree , . 19.7 167 (8 TeV) + 5.1 fb” (7 TeV)
iropaienp B E—170 12 T oms
distributions 8 35 :_ H S/(S+B) Welghted sum
~ - n ¢ Data
Diffusion models: _.(B 3 N & 3 .
radually add Gaussian B | S A e c F —— S+B fits (weighted sum)
noise and then reverse a>) 25 :_ ______ Bcomponent
[0 R U =10
o o N Y P +20
Q 2 [
h— F
S 15F
z
o Fopo=1.14702
+ 05 m,=124.70+0.34 GeV
@/ E | | | | | | |
= ot b b b b b b e
(dp) L B
200 _ B component subtracted ]
100 {
0 %*
-100 - * .
v v b by v b v b v b by
110 115 120 125 130 135 140 145 150
m,, (GeV)




What else

* Notice something?

81



What else

* Notice something?

* All examples of flows use the fact that flows are good and easily
trainable generative models

But none use the fact that we can access a per-example
likelihood

 Might have useful applications by itself?
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What else

Notice something?

* All examples of flows use the fact that flows are good and easily
trainable generative models

 But none use the fact that we can access a per-example
likelihood

 Might have useful applications by itself?

Can also use examples where detector
an invertable network does not

invert onto the physics quantities, B /
but is parametrised by them [ {Zp, Tp} | ’ (24,74}

[LMMD, MSE} ---------- > INN <---------- ‘[LMMD, MSE]

,(](-’pr, Tp)

—@ A {Za, T}
. . J/

E
:
2006.06685
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What else

* Notice something?

* All examples of flows use the fact that flows are good and easily
trainable generative models

 But none use the fact that we can access a per-example
likelihood

 Might have useful applications by itself?

 (Can also use examples where
an invertable network does not
iInvert onto the physics quantities,
but is parametrised by them

e Also uses in other domains, e.g. lattice QCD

84


https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.121601

Closing

 Unsupersvised learning in the form of density
estimators is quickly becoming a key instrument in
our toolbox

* Learning of actual densitities not yet widely
exploited

 Advances in the power of these models and
the quality of learned distributions opens
new doors for physics analysis

e Excited for the future:

* What can we do with fully differentiable

surrogate models with tractable probabilities for
all (ErUM) physics?

Thank you!
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Comments on anomaly
detection

* As CATHODE approximates a likelihood ratio, it should be robust
compared to methods that only use pBackground (€.9. autoencoders)
* However, still can be sensitive to choice of input features

e Need also consider

Shaping of distributions under tigher anomaly detection cuts
Cost of signal-injection in training on data

How to efficiently estimate / compare / communicate sensitive
regions of different anomaly detection algorithms

Make data-based anomaly detection more flexible
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Bonus Slides




Outline

Introduction

Applications of generative models
e Calorimeter simulation
e Statistical properties

Anomaly detection
e Overview

e CATHODE
e Current challenges

Synthesis
e New approaches
e Problems / opportunities

Closing



Challenge datasets

* All contain total of 1M examples; might contain signal;
no labels provided during ‘content’ phase (labels available no)

 All used different simulation parameters for background (to avoid
unrealistic exploits)

BB1: 834 signal examples BB2: empty BB3:
Same event topology as R&D

. 4 Dijet signature 9
dataset, different masses

might be easy?

m=378 GeV ¢ q Y
Y

q
m=3.823 TeV

/
4 d  Trijet signature 9

X

m=732 GeV q
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& Friends

e Situation seems better for density ratio based techniques (CWola, ANODE,
CATHODE,..)

Per Neyman-Pearson: Likelihood-ratio is

p(x|anomaly)

optimal test statistic LS B =

Unfortunatly, p(x|anomaly) is not available / p( T ‘ normal)

Build data/background ratio: 7 . p(ZE )
e p(x|normal)

Approximate background density using r - p ($ )

control measurement (e.g. sideband) IBlIs] ﬁ(a: ‘ normal)

Expand p(x) = fnormal p(a:|normal) g fanomaly p(:c|anomaly)

p(x|anomaly)

And insert: L D / B~ fnormal e f anomaly ~ <
p(x|normal)

e However...
90



