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No longer restricted to data analysis, machine learning is now increasingly being used in
theory, experiment and simulation — a sign that data-intensive science is starting to

encompass all traditional aspects of research.
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ARTIFICIAL INTELLIGENCE (Al)

Computers mimic
human behaviour

First chatbots
Robotics

Expert systems
Natural language
processing
Fuzzy logic
Explainable AI

Narrow Al

MACHINE LEARNING (ML)

Computers learn without being

explicitly programmed to do so DEEP LEARNING (DL)

and improve with experience '
Multi-layered neural networks perform

Collection of data-driven methods / algorithms . . .
) certain tasks with high accuracy

Focused on prediction / optimization /
control based on properties learned from data

Tries to generalize to unseen scenarios

* Speech/handwriting
recognition

* Language translation

* Recommendation engines

 Computer vision
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SUPERVISED UNSUPERVISED
LEARNING LEARNING

Classification, prediction, forecasting Segmentation of data
computer learns by example computer learns without prior information about the data
09 o , ° Spamdetection * Medical diagnosis
02 s Weather forecasting MACHINE * Fraud (anomaly) detection
°o°°° * Housing prices prediction LEARNING * Market segmentation

» Stock market prediction * Pattern recognition

REI N FORCEM ENT * Self-driving cars
LEARNING * Make financial trades

4 . * Gaming (AlphaGo)
Real-time deCIS!OnS * Robotics manipulation
computer learns through trial and error
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Learning style Task

Classification
discrete variables

Supervised
Learning

We know the input & output Regression
(labeled data) continuous variables

Clustering
Unsupervised
Learning

We only know the input Association
(unlabeled data)

Machine Learning

Control
Reinforcement

Learning

Prediction
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Popular algorithms

Neural networks (e.g. stochastic gradient
descent, backpropagation)

Support Vector Machine

K-nearest neighbor

Decision Tree algorithms (e.g. Classification and
Regression Tree)

Random Forest (ensemble)

Uni or multivariate, linear or logistic

K-means

K-medians

Expectation Maximization (EM)
Hierarchical clustering

Apriori algorithm
Eclat algorithm

= Value based (Q-learning)
= Policy based
= Actor critic
= Policy gradient or actor-critic
= Model-free or model based

Deep Learning Networks

= Convolutional Neural Networks

= Recurrent Neural Networks

= Long Short-Term Memory
Networks

= Autoencoders

= Deep Boltzmann Machine

= Deep Belief Networks

Bayesian Algorithms

= Naive Bayes

= (Gaussian Naive Bayes

= Bayesian Network

= Bayesian Belief Network
= Bayesian optimization

Regularization,
dimensionality reduction,
ensemble, evolutionary
algorithms, computer vision,
recommender systems, ...

this slide is not exhaustive



Reinforcement learning
more than machine learning

Psychology (classical conditioning)

Neuroscience (reward system)
EEII-\I‘R\PG’IISGR 7" = | Economics (game theory)

Mathematics (operations research)
Engineering (optimal control, planning)

6 Andrea Santamaria Garcia - Reinforcement Learning



Reinforcement learning
understanding how the human brain learns makes decisions

ima.. = O BES
- T

https://arxiv.org/abs/1707.02286

https://www.deepmind.com/publications/playing-atari-with-

deep-reinforcement-learning

Andrea Santamaria Garcia - Reinforcement Learning


https://www.deepmind.com/publications/playing-atari-with-deep-reinforcement-learning
https://arxiv.org/abs/1707.02286

The RL problem

Reward hypothesis
all goals can be described by the maximization of expected cumulative
sum of a received scalar signal "Reward is enough”
Reward Goal Agent
scalar feedback signal R, maximization of executes action
that indicates how well the cumulative reward —> receives observation
agent is doing at step ¢ through selected actions - receives scalar reward

an agent must learn through trial-and-error
interactions with a dynamic environment
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https://www.sciencedirect.com/science/article/pii/S0004370221000862

interactive
The RL problem . ..

Bark
Jump
Bite
Sit

interacts with its environment in discrete time steps t

Icons from the noun project
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How to cumulate reward?

Agent

\
Model

agent's representation of
the environment

Which behaviors perform well in this environment?

- agent's behaviour function
POllcy (how the agent picks its actions)

Estimate the utility of taking actions in particular states
of the environment (evaluation of the policy)

how good each state

value funCtion and/or action are

> Prediction: evaluate the future given a policy
> Control: optimize the future (find the best policy)
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Challenges in RL

Trade-off between exploitation and exploration

« Actions may have long-term consequences
* Reward might be delayed (does not happen immediately)

I—} should the agent sacrifice immediate reward to gain more long term reward?

The agent needs to:

v" Exploit whatit has already experienced in order to obtain reward now

v" Explore the environment to select better actions in the future by
sacrificing known reward now

...and both cannot be pursued exclusively without failing at the task
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The agent

Must:

= Be able to sense the state of its environment to some extent
= Be able to take actions that affect that state

= Have a goal or goals relating to the state of the environment

Markov Decision Processes

Include this 3 elements without
trivializing any of them
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Markov Decision Process (MDP)

Mathematical framework for modelling sequential decision making

- o _ a a e
A Markov Decision Process is a 5-tuple: (S, A, jPSS,, g y) S = finite set of states

st at e information used to determine
what happens next

A state transition can be:
. Deterministic Sy = f(H})
« Stochastic St41~P(S¢41

sequence of states and

TraJQCtory actions until time t
T = (So, ap, S1,A1, S, Ay, )

13 Andrea Santamaria Garcia - Reinforcement Learning

Environment state (S¢): environment's internal
representation, usually not visible to the agent

Agent state (S): agent's internal representation,
used by the RLalgorithm to pick the next action

Observation (O):partial description of a state,
which may omit information




Markov Decision Process (MDP)

Mathematical framework for modelling sequential decision making

. . ) . a a o
A Markov Decision Process is a 5-tuple: (S, A, jPSS,, g y) S =finite set of states

st at e information used to determine
what happens next

A state transition can be: anat;:?,‘; sﬁnt::fo/ I,’fr:r?dert{ r
.« e ue _ | Vi only if:
* Deterministic Sty1 — f(}[t) Y
« Stochastic St+1~P(St+1 [P)[St+1|5t] — P[5t+1|51,...,t]

 The state is a sufficient statistic of the future

The future is independent of the past, given the present

state transitions of an MDP satisfy the Markov property
T = (So, ap, S1,A1, S, Ay, )
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Fully observable environments 0: =35/ =5/

= Agentdirectly observes environment state
= Necessary condition to formalize an RL problem with an MDP

Partially observable environments &/ + 5/

Agent constructs its own state representation:

= Complete trajectory: St =1
= Beliefs of environment state: S& = (P[SE = 54], ..., P[SE = 5,,])
= Recurrent neural networks: S& = o(Wo0r + WS )

- Partially observable MDP
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Markov Decision Process (MDP)

Mathematical framework for modelling sequential decision making

. : _ a a
A Markov Decision Process is a 5-tuple: (5, A, fPSS/, S )/)

Predicts the next state
(dynamics of the environment)

a . | _ _ Probability of ending in state s’ after
SSsr — P [St+1 =S |'5t =S, A = a] taking action a while being in state s

State transition model / probability

? cee P 2:1
:11 . :1n I probabilities change overtime
= non-stationary Markov process

P =

° ° ° )
Prn1 0 Pan
Transition probabilities from all states and successor states
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Non-deterministic environment

Taking the same action in the same state on two different
occasions may result in different next states
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Markov Decision Process (MDP)

Mathematical framework for modelling sequential decision making

. . | a a
A Markov Decision Process is a S-tuple: (S, <A, P Rs, V)

Total discounted reward
from time step t

G = Rgo+1+t)/73t+2 +
= 2t=0V Rit1

“infinite-horizon discounted return”

Return

Andrea Santamaria Garcia - Reinforcement Learning

The goal is to maximize the return

« The discount factor y € [0, 1) avoids infinite returns (sum converges)
* ltvaluesimmediate reward over delayed reward (human-like)
« Itdeals with uncertainty about the future (no perfect model of env.)



Poli cy Map from state

to action

= Policy T completely defines how the agent will behave
= |t'sadistribution over actions given a certain state

Deterministic a = 7(s)
Stochastic: n(als) = P[A; = a|S; = 5]

Probability of taking a specific
action by being in a specific state

Given an MDP (S, A, P, R, y) and a policy m:
S7,TSI = Z T[(CllS) sc,ls/ R?gr = Z T[(CllS) :R?

aeA aecA
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observation

probabilities

per action

Categorical (discrete action spaces)
Gaussian (continuous action spaces)




= Estimation of expected ¢ o
Value function oo veqrand A way to compare policies

= Used to choose between states depending on how
much reward we expect to get
= Depends on the agent's behavior (policy)

Expected return starting from

State'value fUHCtlon state s and following policy

(evaluates the policy)
Va(s) = Ex[Ge | St = s]

”on policy”

Expected return starting from state s,

ACtlon'value fUHCtlon taking action a , and following policy n

On(s,a) = EpG; | St =5, A= a]

7@ function”
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Bellman optimality equation

The state-value function can be decomposed into:

= immediate reward R, .
= discounted value of next state y v(S,. )

V(s) = E[G; | ¢ = s]
= [Rt+1 Ty Rt+2 + y2 Rt+3 | St — S] Expected value of
wherever state

Reward you expect
you land next

E
E[Ri41+ ¥V Ry + vV Regz )| 8¢ = 5]
to get from being in
E
E

[Riv1 +V Gea1l Se =]  E(6) = E(E() your current state

[Res1+ Y V(Ser1)| 8¢ = 5]
L V() =

21 Andrea Santamaria Garcia - Reinforcement Learning




Bellman expectation equation

Considering the policy T we get:

V(s) = ) m(als)| RE+v ) P V()

A€EA SIES

Direct solution only for small MRPs
> System of § simultaneous linear equations with § unknowns

Other ways of solving it:
> lteratively (dynamic programming)
» Sampling (Monte-Carlo evaluation)
> Approximation (temporal-difference learning)

22 Andrea Santamaria Garcia - Reinforcement Learning



Example: gridworid Actions A = (1,1,<,>)

The agent needs to get from state 0 to

Deterministic env: 7, = 1
state 15 to get out of the maze 2L ce S,/

States Rewards rodiscounty

23 Andrea Santamaria Garcia - Reinforcement Learning



Example: gl'idWOl'ld random policy
A

Policy n(als) = P[A; = a|S; = s] =—> n(als) =rIP[T, Le, - | 8] = 0.25W

Random policy

Average of -158.82 cumulated reward

—200

—400

—600

Cumulated reward

—800

—1000

0 200 400 600 800 1000
Episode number

MC prediction
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Example: gridworid

Value function V© =) m(ls)|®i+y ) P4V

acA SIES

Solving simultaneously linear set of equations:
> environment's dynamics are completely known

0.5%v0 - 0.25*vl - 0.25%v4 + 1.0 = 0

-0.25*%v0 + 0.5%v1l - 0.25*v5 + 1.0 = 0
0.25%v3 - 0.25*%v7 + 1.0 = 0O g -142.0 -118.0

-0.25*%v0 + 0.75*v4 - 0.25%v5 - 0.25*%v8 + 1.0 = 0

-0.25*%v1l - 0.25*v4 + 0.75%v5 - 0.25%v6 + 1.0 = 0

-0.25*%v10 - 0.25*%v5 + 0.75%v6 - 0.25*%v7 + 1.0 = 0

-0.25*%v3 - 0.25%v6 + 0.5%v7 + 1.0 = 0

-0.25*%v12 - 0.25*v4 + 0.5*v8 + 1.0 = 0

0.5*%v10 - 0.25%v14 - 0.25%v6 + 1.0 = 0

0.25%v12 - 0.25*%v8 + 1.0 = 0

-0.25*%v10 + 0.5*v14 + 0.5 = 0

11 variables, 11 equations \

Y . .
T — V, = policy evaluation
Andrea Santamaria Garcia - Reinforcement Learning how much value this policy has?
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Example: gridworid

Value function v© =) m@s)| R +y ) PLV()

acA

Solving iteratively:
> Bellman equation becomes an update rule

Vi) < ) m(@ls) | RE+y ) Pl Vils)

a€EA SIES

Iterative Policy Evaluation, for estimating V ~ v,

Input 7T, the policy to be evaluated
V« T)’, Ve 0
Loop:

A<0

Loop foreach s € & :

V(s) « Z;r(a | 5) Zp(s’,r | s,a)[r + yV(s")]
a s'r

A — max(A, | V'(s) & Vis)|)
VeV

until A < @ (a small positive number)
Output V ~ v,

Andrea Santamaria Garcia - Reinforcement Learning

Coursera

SIES

S

-142.0 -118.0

|
 —> V, = policy evaluation
how much value this policy has?


https://www.coursera.org/lecture/fundamentals-of-reinforcement-learning/iterative-policy-evaluation-ICAfp

turn the Bellman eq.

Dynamic programming algorithms .. . ........

Prediction: what's the value for a specific policy?

= Control: which policy gives as much reward as possible?
- the policy with more value!

> > 7, > 7, Forany MDP:
A * There exists an optimal policy 7, thatis better
//\ { orequal to all other policies r, = m Vr
» All optimal policies achieve the optimal value

function V;, = V.(s) and Q. = Q.(s, a)

Value

So...do I have to calculate the value of
- 1 every policy and compare them®
0

|A| 51 deterministic policies in an MDP

m>mn'if V,(s) = V.V seS tate 41 ~ 4 million policies for simple gridworld example
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Bellman optimality equations

-
Ve () = EfulGe | ¢ = s] = maxV,(s) V seS | |
m - Optimal value functions
Qr+(s) = max Q,(s) V se§, aeA
- |
. . . . . T, assigns probability 1 to
By replacing the optimal policy on the Bellman equations we get: the action that receives the
| highest value
— maximum value over
V* (S) maax :RS + 14 z :PS'S every next possible state
s'es
> Nonlinear (max), no closed-form solution
Q.(s,a) =R +y Z jPSaS, max Q,(s’,a’) > Dynamic programming solutions only
4 ’ d applicable if the dynamics of the system P
S'€$ are known

28 Andrea Santamaria Garcia - Reinforcement Learning



Determining an optimal policy

V.(s) = max (RS +y Z P s %(s’))

s'es
maximum over all actions

For any state we look at each available
action and take the one that
maximizes the argument

. (s) = argmax <RS +vy Z P Vi (S'))

a s'es
particular action that

achieves that maximum .
(greedy action) I, (S ) arglc’lnax Q.

29 Andrea Santamaria Garcia - Reinforcement Learning



Policy improvement & iteration

improvement

Let's consider a value function V,; that is non-optimal, and we T = Vi =y = o T,

select an action that is greedy with respect to it:
evaluation

evaluation
m
t'(s) = argmax|{ R, +y Z P Ve(s) T V
“ s'es T—greedy(V)
improvement

= Jfthe action has a higher value, the policy is better

= 7V, is the unique solution to the Bellman optimality eq.

= Ifthis greedy operation does not change V, then it
converged to the optimal policy because it satisfies the
Bellman optimality eq.

starting
Vr

30 Andrea Santamaria Garcia - Reinforcement Learning Images from http://incompleteideas.net/book/ebook/node46.html



http://incompleteideas.net/book/ebook/node46.html

- - - t the Bell .
Dynamic programming algorithms . . ...
Problem | Bellmanequation | Algorithm

Prediction Expectation equation lterative policy evaluation Temporal difference
Control Expectation equation + greedy policy Policy iteration Sarsa
Control Optimality equation Value iteration Q-learning

\ )
|

when we don’t know P

Off-policy learning

On-policy: improve and evaluate the policy being used to select actions

Off-policy: improve and evaluate a different policy from the one used to select actions

> Learnatarget policy 7 (optimal policy) while...
> ...selecting actions from behavior policy b (exploratory policy)

Provides another strategy for continuous exploration (experiences a larger # of states)

31 Andrea Santamaria Garcia - Reinforcement Learning



- m Learning method specialized for
Temporal dlfference Iearnlng multi-step prediction learning
= TD learning is learning a prediction from another, later learned prediction
> learning a guess from a guess (you don't know the true V)

V(s) < V(s)+a[R+yV(s") —V(s)]

= Difference between both predictions = temporal difference
= No P model needed (unlike in dynamic programming)

= Allows you to estimate the value function before the episode is finished
I—b = Making long-term predictions is exponentially complex

> Memory scales with the #steps of the prediction
= TD model = standard model of reward systems in the brain

Q-learl‘llng Otf-policy TD control Converges to the optimal value function as
long as the agent continues to explore

9(s,a) « 9(s,a) + a[R + ymax Q(s’,a) — Q(s,a)] sampling the state-action space
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Overview of RL methods

Tabular solution methods

> lterative (dynamic programming) » Used to solve finite MDPSs

» Sample-based (Monte-Carlo evaluation) = Value functions are stored as arrays (tables)
> Temporal-difference | eaming = Methods can often find exact solutions

In real-life situations, we cannot store the values of each possible state in an array,

especially in continuous problems
> Autonomous driving: array per possible image the camera sees?

E Approximate value by function
Approximate solution methods parametrized by a weight vector
> Value-based » Policy gradient — - neural networks (learning!)
. i = Applicable to partially observable
> Policy-based > Actor-critic problems

33 Andrea Santamaria Garcia - Reinforcement Learning



Approximate solution methods

Value-based Policy-based
contains a value function, does not store the value
policy is implicit function, only the policy .
Sample efficient DQN, NAF

Computationally fast
Unstable (bias, don't know true V)

quipy gradie_nt Actor-critic
optimizes parametrized stores both the policy

policies with gradient descent and value function
Convergence guarantees ACER AZC/ASC SAC
Sensitive to stepsize choi ’ ’
Poorsampleefcency PFO, TD3,
Large variance DDPG
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Deep Q Network Off-policy Discrete Continuous Q-value
DDPG Deep'Determ‘lnlstlc Off-policy Continuous Continuous Q-value
Policy Gradient
Asynchronous
A3C Advantage Actor- On-policy Continuous Continuous Advantage
Critic Algorithm
Trust Region Policy : : :
TRPO Optimizati On-policy Continuous Continuous Advantage
ptimization
PPO P(r)om.ma'l Pgllcy On-policy Continuous Continuous Advantage
ptimization
Twin Delayed Deep
D3 Deterministic Policy Off-policy Continuous Continuous Q-value
Gradient
SAC Soft Actor Critic Off-policy Continuous Continuous Advantage
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Model-free

The agent simply relies on some
trial-and-error experience for
action selection

Model-based

Predictive model:
“what will happen if I
take this action?”

* The environment is initially unknown
» The agent interacts with the environment
» The agent improves its policy

I—} all algorithms from previous slide

Andrea Santamaria Garcia - Reinforcement Learning

* The environment is known

« The agent performs internal
computations with its model without
external interaction

» The agent improves its policy

(BTN o8 o0
5 o 1 2 9 ( LEE SEDOL
~om ¢ - .( 00:01:00




Particle accelerators -

...make fundamental discoveries ...are major tools for basic and applied
in particle physics research, industry & medicine worldwide

1035

] Oe gﬁ/-
~100000 5

X-ray tubes

© £
> . = - § Free-electron lasers ™ ®
) 1 ‘3 <5
@ Lo B = f 10%0 ®/ FLASH, SACLA,
= @ g . = = R LCLS, X-FEL, . ...
g 2 %U 10000 S g > ? 25
il > -

=2 8 T 3 it %N 10 Synchrotron radiation sources MAX-IV, APS-U,
C% = ; | B = <'§ h Sirius, ... o
= Z = 1000 o ‘B € 3 g Generations 4t

=)

= = S 4 20 ®
25 g 3 £ 5 B 1077 d B
c 5 % . = o %NE 3r ALS, ESRF, APS, NSLS, . . .
L = i g = o M E
c o _{0.06 TeV: 3
T E 100 5 E g_ ;:J X 1015 2nd NSLS, BESSY, SRS, PF, . ..

{@)] — < oy == aul—
2= | 2 I=] § Istw_—®"  SURF,SSRL, DORIS, VEPP3, . ..
= F 104 = 2 20
- ¢ s &
< 8 <

&

P 1895 Roentgen tube

10° T T T T T T T

1970 1980 1990 2000 2010 2020 2030 2040 2050 1950 1960 1970 1980 1990 2000 2010 2020 2030
YEAR YEAR

Technological innovation is needed to keep up with the challenging goals!
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When to apply machine learning?

Classical Machine
control Learning
theory

3

there are some clear cases

i
i

Both perform equally
Cost of implementation and maintenance should then be considered
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Future accelerators

Denser beams for
higher luminosity &
brilliance

-

.

complex beam
dynamics & instabilities

complex design &

operation

)

39

Larger circular
colliders for higher
energies

-

\_

« orders of magnitude
more signals

* machine protection
limits

trends and cha“enges and this is not considering user’s needs!

Compact plasma
accelerators with
higher gradients

-

)

Andrea Santamaria Garcia - Reinforcement Learning

.

* very tight tolerances

* very high-quality
beams required




What can machine learning do for us?

Very fast predictions by evaluating an already trained model

/;‘:f/ Classification task\ /u Optimization task\

Check out the references

Detect outliers and anomalies in Achieve desired beam properties o we provide here!
accelerator data states by tuning machine parameters https://github.com/ansantam/20
= Fault detection . _ 22-MT-ARD-ST3-ML-
s i = Bayesian algorithms .
= Predictive maintenance - Optimizers workshop/blob/main/references/
k " Data cleaning / \ / references.pdf
4 j. . N/ @
./ Prediction task b Control task
Predict the beam properties based Control the state of the beam in real time
on current accelerator parameters in a dynamically changing environment
" Surrogate models = Reinforcement learning

\ » Virtual diagnostics / \

40 Andrea Santamaria Garcia - Reinforcement Learning
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https://github.com/ansantam/2022-MT-ARD-ST3-ML-workshop/blob/main/references/references.pdf

Motivation
Coherent Synchrotron Radiation (CSR)

Achieved in short bunch

Interesting for users operation mode (low-a optics)
Short bunch Increased Microstructures appear CSR power fluctuation
radiation power l
) o< N2 0.16
3 A 4
= \ =
g T2
o Incoherent Radiation < x
& o« N 5 ° <
o . & 2 ?&
= : =
" -4
THz X-rays —»\ S
I 4
log (frequency) long posmon 02,0)
Image courtesy of A.-S. Muller Simulation code: Parallelized VFP solver Inovesa T. Boltz et al, MOPGWO017, IPAC’19
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http://accelconf.web.cern.ch/ipac2019/papers/mopgw017.pdf
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Influencing the micro-bunching instability

CSR self interaction

Continuously changing \
Vers (@) = Var(a)
Y A —

T
| Perturbation of slope at
S 408 K synchronous position
3 e found to be critical
;_(g 20*\\/
c l AN l I
Q | | | | |
g O NG
g | | : \\\ :
S 20N
E l l l l [P
L I I I I I ‘\.
40| N
1 1 i 1 1

long. position (0,0)
Images courtesy of T. Boltz
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CSR power (W

norm. RF amplitude

Compensate the effect of the CSR perturbation by
modulating the RF voltage (amplitude)

&

Vep = sin(2m frpt)
= 170 + Anod Sin(ZT[fmod + @mod)

szj H ALl
z::z
T
1.000 Constant modulation

oot L EERET RIS

Initial damping,
but quickly out of
sync...we need
dynamic control!




RF voltage modulation with manual control

Mitigation via Dynamic RF Amplitude Modulation

CSR signal
micro-structures in phase space 0.144
~ 0.142
=
@
g 0140
o
2
oL
o o0a 5 0.138
g o.
2
% 03 0.136 J.
[=3
)
3 02 0.134
2
Z
o 0.1 0 5 10 15 20
3 RF amplitude modulation
s 00 1.006 :
-0.1
g 1.004
5 02 g
I 2 1.002
° —0.3 a
= £
2 -04 © 1,000 ——=o
S w
o
£ 0.998
Y 5
. eng, 0 2
Courtesy of T. Boltz Y e -
n =
(of,a 4 #
0.994
0 5

10 15 20
time (Ts)

VRr = sin(2mfgrt) O: Vo + Amoa SN2/ 00 + Omoa)
High average, low variance CSR. So far so good...now to Reinforcement Learning!
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Applying reinforcement learning

Action Reward

V() =Vy+ A,,,0 SINRES 00 + Omod) R = pcsp —w ocsg Where w is a weight
Could we improve the reward definition?

Observable (state definition) Observable (state definition)

Charge distribution CSR signal
Input: (256x256) matrix + (5x1) feature vector Input: (8x1) feature vector
subtract MaxPool
mean 3><3 extract Dense Dense Dense Dense Dense
features (ReLU)  (ReLU)  (RelU)  (RelU)  (RelU)
Concatenate 7
~ (5x1)
: !
{: Dense x4 ‘ :
i (leaky RelLU) 7 %
AAAAAA (RN Pyt csr Amod fmod
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Images courtesy of T. Boltz
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Micro-Bunching Control with Reinforcement Learning (PPO)

CSR signal
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Algorithm: PPQ === b
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7wt Testsin simulation with CSR signal

Micro-Bunching Control with Reinforcement Learning (DDPG)

as state definition
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Exploration noise = Ornstein-Uhlenbeck Courtesy of T. Boltz
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Evolution of the actions with time (PPO)

10.000 |- -- 24.5
__0.146
2 0.144 < 999911~ 240 T
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o stabilize the CSR emission 20.5
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0.990 a =
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time (Ts)
Other strategies are
possible, such as varying
the amplitude more
Images courtesy of T. Boltz 1 step = 0.25 synchrotron periods (chosen small enough for the agent to be able to react to the changing micro-structure dynamics)

46 Andrea Santamaria Garcia - Reinforcement Learning



Real-time, high-repetition data acquisition
State-of-the-art detectors

z '8
54
<08
200+
_ 26.00 26.50 27.00 27.50
>
2 KARA tim
g 100 — T A /
5 P T e \ 7 A\ Longitudinal
: - — ! diagnosti
2 wps N\ = - iagnostics
NV R KALYPSO
S : : Horizonfal, |\ \ ¥ \: Eiald EOSD
305 306 30.7 308 309 . Yerany ) Afear-Fie I 2 Zom
Time (ns) diagngstics| |\ x ‘ 1 ‘
KALYPSO L\ " & :
\ \ At s
Phase space density reconstruction
\in commissioning)
L3 e KALYPSO
Meghana M Patil, 12th International Particle Far-Field EOSD Stefan Funkner; DOI:
Accelerator Conference (IPAC’21) 10.1103/PhysRevAccelBeams.22.022801
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“Accelerated deep reinforcement learning for fast feedback of

48

In practice: we need hardware!
Fast feedback for real-time optimization

o [

Schottky diode
50 GHz-2 THz

Detector response (mV)

Xilinx ZYNQ

BBB Cavity

Feedback

Bunch-by-bunch /
LLRF

—_—

Scalar processor (ARM-PS)
for the implementation of the
“critic” neural network

Large FPGA/DSP for
data management

beam dynamics at KARA,” W. Wang et al, IEEE TNS, vol. 68,

2021 (doi: 10.1109/TNS.2021.3084515)

Dedicated programmable Al-engines for

the deployment of fast inference “actor”
400 tiles x 8 FP multiplications x 0.5 GHz neural network + feature extraction

Images courtesy of M. Caselle - up to 1.6 Tera FP operations per second !!!
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Custom modular
readout DAQ


https://ieeexplore.ieee.org/document/9442681/
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Thank you for
your attention!

What questions do you
have for me?

= Sutton & Barto book

= https://arxiv.org/pdf/cs/9605103.pdf

=  Reinforcement learning lectures by David Silver
=  https://spinningup.openai.com/en/latest/

= Coursera RL specialization

Let's connect! andrea.santamaria@kit.edu / @ansantam

Andrea Santamaria Garcia - Reinforcement Learning

All'icons from this talk from TheNounProject


http://incompleteideas.net/book/RLbook2018.pdf
https://arxiv.org/pdf/cs/9605103.pdf
https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ
https://spinningup.openai.com/en/latest/
https://www.coursera.org/specializations/reinforcement-learning
mailto:andrea.santamaria@kit.edu
https://twitter.com/ansantam

Reinforcement learning -

Frameworks

python’
@OpenAI N A

Baselines . P 4
Dopamine
® P L -
. S Stable baselines
I Q) DeepMind ES N
) TR a N
Chainer RL & r
Environments

MuJoCo

Advanced physics simulation

D

Google DeepMind

Control Suite

DeepMind

https://neptune.ai/blog/the-best-tools-for-reinforcement-learning-in-python
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How fast can neural networks run?

6037

Dense Dense Dense Dense Dense
(ReLU) (ReLU) (ReLU) (ReLU) (ReLU)

6000

5000 55 560 19

4000 ‘ 7 S0 | ' ‘ 7 GPU

3000 16 3,5

2000 AN =~ _ 4 AT  cpPu

0,1 17 0
100 Y YT
0 HighFlex2

Training Error_Training Inference Error_Inference 8 bit 2x1)

=)

Latency measured with Versal: 4.5 ps
= 32 bit floating point computation

= 4 times better than previous Ultrascale+
family FPGA (on 8 bit integers)

bufsd
bUfS " output: pliodut gataOut txt)

Each engine 64 neurons

Images courtesy of E. Brindermann, M. Caselle, L. Scomparin W. Wang, M. Caselle, et al IEEE TNS, https:/doi.org/10.1109/TNS.2021.3084515 (2021)
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Observation vector based on the CSR
signal

observation sequence: Ucsg

observation value

[
2
]
>
c
S
=1
©
c
o
@
2
°

step

" ucsg is the normalized mean of the CSR power signal in the last time period.

= ocsr IS the normalized standard deviation of the CSR power signal in the last time period.

" Myreng IS @ slow trend of the CSR power signal

* af . is the amplitude of the main frequency in the Fourier transformed CSR signal.

"  fmain i the main frequency in the Fourier transformed CSR signal.

" ¢r,..n 1S the phase of the main frequency in the Fourier transformed CSR signal.

= Afg is the relative phase between the CSR signal and the applied RF signal (amplitude modulation).

" c.erm Models the termination condition (difference between the last reward and the one 10 steps prior).
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