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ARTIFICIAL INTELLIGENCE (AI)

MACHINE LEARNING (ML)

DEEP LEARNING (DL)

Computers mimic 
human behaviour

Computers learn without being 
explicitly programmed to do so 
and improve with experience

Multi-layered neural networks perform 
certain tasks with high accuracy

Data +       Algorithm

Narrow AI

• First chatbots 
• Robotics
• Expert systems
• Natural language 

processing
• Fuzzy logic
• Explainable AI

• Speech/handwriting 
recognition

• Language translation
• Recommendation engines
• Computer vision

Collection of data-driven methods / algorithms
Focused on prediction / optimization / 
control based on properties learned from data 
Tries to generalize to unseen scenarios
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Segmentation of data
computer learns without prior information about the data

Real-time decisions
computer learns through trial and error

Classification, prediction, forecasting
computer learns by example

SUPERVISED 
LEARNING

UNSUPERVISED 
LEARNING

REINFORCEMENT 
LEARNING

MACHINE 
LEARNING

• Medical diagnosis
• Fraud (anomaly) detection
• Market segmentation
• Pattern recognition

• Spam detection
• Weather forecasting
• Housing prices prediction
• Stock market prediction

• Self-driving cars
• Make financial trades
• Gaming (AlphaGo)
• Robotics manipulation
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Deep Learning Networks
§ Convolutional Neural Networks
§ Recurrent Neural Networks 
§ Long Short-Term Memory 

Networks 
§ Autoencoders
§ Deep Boltzmann Machine
§ Deep Belief Networks
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§ Neural networks (e.g. stochastic gradient 

descent, backpropagation)
§ Support Vector Machine
§ K-nearest neighbor
§ Decision Tree algorithms (e.g. Classification and 

Regression Tree)
§ Random Forest (ensemble)
§ Uni or multivariate, linear or logistic

§ K-means
§ K-medians
§ Expectation Maximization (EM)
§ Hierarchical clustering

§ Apriori algorithm
§ Eclat algorithm

Bayesian Algorithms
§ Naive Bayes
§ Gaussian Naive Bayes
§ Bayesian Network
§ Bayesian Belief Network
§ Bayesian optimization

Regularization, 
dimensionality reduction, 
ensemble, evolutionary 
algorithms, computer vision, 
recommender systems, …

Learning style Task Popular algorithms

§ Value based (Q-learning)
§ Policy based
§ Actor critic

§ Policy gradient or actor-critic
§ Model-free or model based

Supervised 
Learning

Classification

Regression 

Unsupervised 
Learning

Clustering

Association

Reinforcement 
Learning

Control

Prediction

We know the input & output
(labeled data)

We only know the input
(unlabeled data)

this slide is not exhaustive

discrete variables

continuous variables
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Reinforcement learning

Psychology (classical conditioning)
Neuroscience (reward system)
Economics (game theory)
Mathematics (operations research)
Engineering (optimal control, planning)

BEHAVIOR
LEARNING

more than machine learning
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Reinforcement learning
understanding how the human brain learns makes decisions
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https://www.deepmind.com/publications/playing-atari-with-deep-reinforcement-learning
https://arxiv.org/abs/1707.02286
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Reward hypothesis 
all goals can be described by the maximization of expected cumulative 
sum of a received scalar signal

Reward
scalar feedback signalℛ!
that indicates how well the 

agent is doing at step 𝑡

The RL problem

Goal
maximization of 

cumulative reward 
through selected actions

Agent
executes action 

à receives observation 
à receives scalar reward

an agent must learn through trial-and-error 
interactions with a dynamic environment

“Reward is enough”

https://www.sciencedirect.com/science/article/pii/S0004370221000862
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Icons from the noun project

The RL problem

Reward

Agent

Goal

Actions
§ Bark
§ Jump
§ Bite
§ Sit

Environment
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interactive
dynamic

interacts with its environment in discrete time steps 𝑡

1

1

1
1

1



Andrea Santamaria Garcia – Reinforcement Learning10

Agent Which behaviors perform well in this environment?

Estimate the utility of taking actions in particular states 
of the environment (evaluation of the policy)

How to cumulate reward?

agent's behaviour function 
(how the agent picks its actions)Policy

how good each state 
and/or action areValue function

Model
agent's representation of 

the environment
Ø Prediction: evaluate the future given a policy
Ø Control: optimize the future (find the best policy)
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Challenges in RL

• Actions may have long-term consequences
• Reward might be delayed (does not happen immediately)

Trade-off between exploitation and exploration

should the agent sacrifice immediate reward to gain more long term reward?

The agent needs to:
ü Exploit what it has already experienced in order to obtain reward now
ü Explore the environment to select better actions in the future by     

sacrificing known reward now
…and both cannot be pursued exclusively without failing at the task
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Must:

§ Be able to sense the state of its environment to some extent

§ Be able to take actions that affect that state

§ Have a goal or goals relating to the state of the environment

The agent

Sensation

“Free-will”

Motivation

Markov Decision Processes
Include this 3 elements without 

trivializing any of them
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Mathematical framework for modelling sequential decision making
Markov Decision Process (MDP)

A Markov Decision Process is a 5-tuple: (𝒮,𝒜,𝒫!!!
" , ℛ!

" , 𝛾)
State information used to determine 

what happens next

𝑠#$% = 𝑓(ℋ#)

sequence of states and 
actions until time 𝑡Trajectory

Environment state (𝓢𝒆): environment’s internal 
representation, usually not visible to the agent
Agent state (𝓢𝒂): agent’s internal representation, 
used by the RL algorithm to pick the next action
Observation (𝓞):partial description of a state, 
which may omit information

𝜏 = (𝑠!, 𝑎!, 𝑠", 𝑎", 𝑠#, 𝑎#, … )

𝒮 = finite set of states

A state transition can be:
• Deterministic

• Stochastic 𝑠#$%~ℙ(𝑠#$%|𝜏#)
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Mathematical framework for modelling sequential decision making
Markov Decision Process (MDP)

State

𝑠#$% = 𝑓(ℋ#)

𝒮 = finite set of states

A state transition can be:
• Deterministic

• Stochastic 𝑠#$%~ℙ(𝑠#$%|𝜏#)

Markov state / property
A state is Markov if and only if:

ℙ 𝑠#$% 𝑠# = ℙ 𝑠#$% 𝑠%,…,#
• The state is a sufficient statistic of the future
• The future is independent of the past, given the present
• Once the state is known, the history may be discarded

state transitions of an MDP satisfy the Markov property

A Markov Decision Process is a 5-tuple: (𝒮,𝒜,𝒫!!!
" , ℛ!

" , 𝛾)

sequence of states and 
actions until time 𝑡Trajectory

𝜏 = (𝑠!, 𝑎!, 𝑠", 𝑎", 𝑠#, 𝑎#, … )

information used to determine 
what happens next
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Fully observable environments

Partially observable environments

§ Agent directly observes environment state
§ Necessary condition to formalize an RL problem with an MDP

𝒪# = 𝒮#+ = 𝒮#,

Agent constructs its own state representation:

§ Complete trajectory:
§ Beliefs of environment state:
§ Recurrent neural networks:

𝒮!$ = 𝜏!
𝒮!$ = (ℙ 𝒮!% = 𝑠& , … , ℙ 𝒮!% = 𝑠' )
𝒮!$ = 𝜎(𝑤(𝒪! + 𝑤)𝒮!*&$ )

𝒮#+ ≠ 𝒮#,

à Partially observable MDP



Andrea Santamaria Garcia – Reinforcement Learning16

Markov Decision Process (MDP)
Mathematical framework for modelling sequential decision making

Predicts the next state
(dynamics of the environment)State transition model / probability

𝒫778+ = ℙ 𝒮#$% = 𝑠′ 𝒮# = 𝑠,𝒜 = 𝑎 Probability of ending in state 𝑠′ after 
taking action 𝑎 while being in state 𝑠

𝒫 =
𝒫%% ⋯ 𝒫%9
⋮ ⋱ ⋮
𝒫9% ⋯ 𝒫99

Transition probabilities from all states and successor states

∑=1
If probabilities change overtime

= non-stationary Markov process

A Markov Decision Process is a 5-tuple: (𝒮,𝒜,𝒫!!!
" , ℛ!

" , 𝛾)
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Non-deterministic environment
Taking the same action in the same state on two different 
occasions may result in different next states

𝑡 = 𝑡; 𝑡 = 𝑡; + 𝜏
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Markov Decision Process (MDP)
Mathematical framework for modelling sequential decision making

The goal is to maximize the return
• The discount factor 𝛾 ∈ [0, 1) avoids infinite returns (sum converges)
• It values immediate reward over delayed reward (human-like)
• It deals with uncertainty about the future (no perfect model of env.)

Return Total discounted reward 
from time step 𝑡

𝒢# = ℛ#$%+ 𝛾ℛ#$< +⋯
= ∑#=;> 𝛾#ℛ#$%
“infinite-horizon discounted return”

A Markov Decision Process is a 5-tuple: (𝒮,𝒜,𝒫!!!
" , ℛ!

" , 𝛾)
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Policy Map from state 
to action

§ Policy 𝜋 completely defines how the agent will behave
§ It’s a distribution over actions given a certain state

Given an MDP 𝒮,𝒜,𝒫, ℛ, 𝛾 and a policy 𝜋:

Categorical (discrete action spaces)
Gaussian (continuous action spaces)
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𝒫),),- = C
$.𝒜

𝜋 𝑎 𝑠 𝒫),),$ ℛ)
- = C

$.𝒜

𝜋 𝑎 𝑠 ℛ)
$

Deterministic:
Stochastic:

𝑎 = 𝜋 𝑠
𝜋 𝑎 𝑠 = ℙ[𝒜! = 𝑎|𝒮! = 𝑠]

Probability of taking a specific 
action by being in a specific state
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Value function Estimation of expected 
future reward

§ Used to choose between states depending on how 
much reward we expect to get

§ Depends on the agent’s behavior (policy)

𝒱E 𝑠 = 𝔼E 𝒢# 𝒮# = 𝑠]

State-value function

Action-value function

𝒬E 𝑠, 𝑎 = 𝔼E 𝒢# 𝒮# = 𝑠, 𝒜#= 𝑎]

Expected return starting from 
state 𝑠 and following policy 𝜋
(evaluates the policy)

Expected return starting from state 𝑠 , 
taking action 𝑎 , and following policy 𝜋

”on policy”

A way to compare policies

”Q function”
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Bellman optimality equation
The state-value function can be decomposed into:
§ immediate reward 𝓡𝒕1𝟏
§ discounted value of next state 𝜸 𝒗(𝓢𝒕1𝟏)

𝒱 𝑠 = 𝔼 𝒢# 𝒮# = 𝑠]
= 𝔼 ℛ!1& + 𝛾 ℛ!13 + 𝛾3 ℛ!14… 𝒮! = 𝑠]

= 𝔼 ℛ!1& + 𝛾 (ℛ!13 + 𝛾 ℛ!14…) 𝒮! = 𝑠]

= 𝔼 ℛ!1& + 𝛾 𝒢!1& 𝒮! = 𝑠]

= 𝔼 ℛ!1&+ 𝛾 𝒱(𝒮!1&) 𝒮! = 𝑠]

𝔼 f = 𝔼(𝔼(f))

𝒱 𝑠 = ℛ7 + 𝛾 @
7(∈𝒮

𝒫7,7( 𝒱(𝑠′)

Reward you expect 
to get from being in 
your current state

Expected value of 
wherever state 
you land next
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Bellman expectation equation
Considering the policy 𝜋 we get:

𝒱 𝑠 = @
+∈𝒜

𝜋 (𝑎|𝑠) ℛ7+ + 𝛾@
78∈𝒮

𝒫7,78+ 𝒱 𝑠′

Direct solution only for small MRPs
Ø System of 𝒮 simultaneous linear equations with 𝒮 unknowns

Other ways of solving it:
Ø Iteratively (dynamic programming)
Ø Sampling (Monte-Carlo evaluation)
Ø Approximation (temporal-difference learning)
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The agent needs to get from state 0 to 
state 15 to get out of the maze

Example: gridworld

🥳

😐

𝒜 = (↑, ↓,←,→)

𝒫7,78+ = 1

↓

↓

↓

→→

→

States Rewards

Actions

Deterministic env:

no discount 𝛾
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Example: gridworld
𝜋 𝑎 𝑠 = ℙ[𝒜! = 𝑎|𝒮! = 𝑠] 𝜋 𝑎 𝑠 = ℙ ↑, ↓,←,→ 𝒮! = 0.25

random policy

Policy

MC prediction
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Example: gridworld
Value function

Solving simultaneously linear set of equations:
Ø environment's dynamics are completely known

𝒱 𝑠 = ,
!∈𝒜

𝜋 (𝑎|𝑠) ℛ$
! + 𝛾,

$%∈𝒮

𝒫$,$%! 𝒱 𝑠′

𝜋 → 𝒱- = policy evaluation
how much value this policy has?
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Example: gridworld
Value function 𝒱 𝑠 = ,

!∈𝒜

𝜋 (𝑎|𝑠) ℛ$
! + 𝛾,

$%∈𝒮

𝒫$,$%! 𝒱 𝑠′

Solving iteratively:
Ø Bellman equation becomes an update rule

𝒱()* 𝑠 ← ,
!∈𝒜

𝜋 (𝑎|𝑠) ℛ$
! + 𝛾,

$%∈𝒮

𝒫$,$%! 𝒱( 𝑠′

𝝅 → 𝓥𝝅 = policy evaluation
how much value this policy has?

C
ou
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er

a

https://www.coursera.org/lecture/fundamentals-of-reinforcement-learning/iterative-policy-evaluation-ICAfp
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Dynamic programming algorithms turn the Bellman eq. 
into update rules

§ Prediction: what’s the value for a specific policy?
§ Control: which policy gives as much reward as possible? 

à the policy with more value!

✅

Va
lue

State

𝜋(
𝜋&
𝜋3

𝜋 ≥ 𝜋, 𝑖𝑓 𝒱- 𝑠 ≥ 𝒱-, , ∀ 𝑠𝜖𝒮

𝝅∗ ≥ 𝜋3 ≥ 𝜋& ≥ 𝜋(
𝝅∗

For any MDP:
• There exists an optimal policy 𝝅∗ that is better 

or equal to all other policies 𝜋∗ ≥ 𝜋 ∀𝜋
• All optimal policies achieve the optimal value 

function 𝒱"∗ = 𝒱∗(𝑠) and 𝑄"∗ = 𝑄∗(𝑠, 𝑎)

So…do I have to calculate the value of 
every policy and compare them?

|𝒜| |𝒮| deterministic policies in an MDP
4** ≈ 4million policies for simple gridworld example
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Bellman optimality equations

𝒱"∗ 𝑠 = 𝔼"∗ 𝒢! 𝒮! = 𝑠]
𝜋

= max𝒱"(𝑠) ∀ 𝑠𝜖𝒮

𝒬"∗ 𝑠 = max𝒬"(𝑠) ∀ 𝑠𝜖𝒮, 𝑎𝜖𝒜
𝜋

By replacing the optimal policy on the Bellman equations we get:

𝓥∗ 𝒔 = max ℛ) + 𝛾 C
)!∈𝒮

𝒫),)! 𝒱∗(𝑠′)
𝑎

𝓠∗ 𝒔, 𝒂 = ℛ)
$ + 𝛾 C

)!∈𝒮

𝒫),)!
$ max 𝒬∗(𝑠,, 𝑎′)

𝑎′

maximum value over 
every next possible state

Ø Nonlinear (max), no closed-form solution
Ø Dynamic programming solutions only 

applicable if the dynamics of the system 𝒫
are known

𝜋∗ assigns probability 1 to 
the action that receives the 

highest value

Optimal value functions
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Determining an optimal policy

𝑎
𝓥∗ 𝒔 = max ℛ) + 𝛾 C

)!∈𝒮

𝒫),)! 𝒱∗(𝑠′)

For any state we look at each available 
action and take the one that 
maximizes the argument

maximum over all actions

𝝅∗ 𝒔 = argmax ℛ) + 𝛾 C
)!∈𝒮

𝒫),)! 𝒱∗(𝑠′)
𝑎

particular action that 
achieves that maximum

(greedy action)

“one-step lookahead”

🥳

😐 ↓

↓

↓

→→

→

𝝅∗ 𝒔 = argmax𝒬∗
𝑎
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Policy improvement & iteration

𝝅 ′ 𝒔 = argmax ℛ) + 𝛾 C
)!∈𝒮

𝒫),)! 𝒱-(𝑠′)

Let’s consider a value function 𝒱- that is non-optimal, and we 
select an action that is greedy with respect to it:

𝑎

§ If the action has a higher value, the policy is better
§ 𝒱∗ is the unique solution to the Bellman optimality eq.
§ If this greedy operation does not change 𝒱, then it 

converged to the optimal policy because it satisfies the 
Bellman optimality eq.

Images from http://incompleteideas.net/book/ebook/node46.html

𝜋& → 𝒱-& → 𝜋3 → ⋯ → 𝜋∗
evaluation

improvement

http://incompleteideas.net/book/ebook/node46.html
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Dynamic programming algorithms turn the Bellman eq. 
into update rules

Off-policy learning
On-policy: improve and evaluate the policy being used to select actions
Off-policy: improve and evaluate a different policy from the one used to select actions 

Ø Learn a target policy 𝜋 (optimal policy) while…
Ø …selecting actions from behavior policy 𝑏 (exploratory policy)

Provides another strategy for continuous exploration (experiences a larger # of states)

Sample-based version

Temporal difference

Sarsa

Q-learning

when we don’t know 𝒫

Problem Bellman equation Algorithm

Prediction Expectation equation Iterative policy evaluation

Control Expectation equation + greedy policy Policy iteration

Control Optimality equation Value iteration
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Temporal difference learning
§ TD learning is learning a prediction from another, later learned prediction 

Ø learning a guess from a guess (you don’t know the true 𝒱)

§ Difference between both predictions = temporal difference
§ No 𝒫 model needed (unlike in dynamic programming)

Q-learning

Learning method specialized for 
multi-step prediction learning

§ Allows you to estimate the value function before the episode is finished
§ Making long-term predictions is exponentially complex

Ø Memory scales with the #steps of the prediction
§ TD model = standard model of reward systems in the brain

𝒱 𝑠 ← 𝒱 𝑠 + α[ℛ + 𝛾𝒱 𝑠, − 𝒱 𝑠 ]

Off-policy TD control

𝒬 𝑠, 𝑎 ← 𝒬 𝑠, 𝑎 + α[ℛ + 𝛾max𝒬 𝑠′, 𝑎 − 𝒬 𝑠, 𝑎 ]

Converges to the optimal value function as 
long as the agent continues to explore 
sampling the state-action space
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Overview of RL methods
Tabular solution methods

Ø Iterative (dynamic programming)
Ø Sample-based (Monte-Carlo evaluation)
Ø Temporal-difference learning

§ Used to solve finite MDPs
§ Value functions are stored as arrays (tables)
§ Methods can often find exact solutions

Approximate solution methods
Ø Value-based
Ø Policy-based

§ Approximate value by function 
parametrized by a weight vector 
--> neural networks (learning!)

§ Applicable to partially observable 
problems

In real-life situations, we cannot store the values of each possible state in an array, 
especially in continuous problems

Ø Autonomous driving: array per possible image the camera sees?

Ø Policy gradient
Ø Actor-critic
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Approximate solution methods

Value-based
contains a value function, 

policy is implicit

Policy-based
does not store the value 
function, only the policy

Actor-critic
stores both the policy 

and value function

Policy gradient
optimizes parametrized 

policies with gradient descent

DQN, NAF

§ Convergence guarantees
§ Sensitive to stepsize choice
§ Poor sample efficiency
§ Large variance

ACER, A2C/A3C, SAC
PPO, TD3, 

DDPG

§ Sample efficient
§ Computationally fast
§ Unstable (bias, don’t know true 𝒱) 
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Description Policy Action space State space Operator

DQN Deep Q Network Off-policy Discrete Continuous Q-value

DDPG Deep Deterministic 
Policy Gradient Off-policy Continuous Continuous Q-value

A3C
Asynchronous 

Advantage Actor-
Critic Algorithm

On-policy Continuous Continuous Advantage

TRPO Trust Region Policy 
Optimization On-policy Continuous Continuous Advantage

PPO Proximal Policy 
Optimization On-policy Continuous Continuous Advantage

TD3
Twin Delayed Deep 
Deterministic Policy 

Gradient
Off-policy Continuous Continuous Q-value

SAC Soft Actor Critic Off-policy Continuous Continuous Advantage
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The agent simply relies on some 
trial-and-error experience for 

action selection

Predictive model: 
“what will happen if I 

take this action?”

• The environment is initially unknown
• The agent interacts with the environment
• The agent improves its policy

• The environment is known
• The agent performs internal 

computations with its model without 
external interaction
• The agent improves its policy

Model-free Model-based

all algorithms from previous slide
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Particle accelerators …

Technological innovation is needed to keep up with the challenging goals!

…make fundamental discoveries 
in particle physics 
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Optimization and control tasks in accelerators

Classical 
control 
theory

Machine 
Learning?? ?

Both perform equally
Cost of implementation and maintenance should then be considered

When to apply machine learning?

there are some clear cases
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• complex beam 
dynamics & instabilities
• complex design & 

operation

• very tight tolerances
• very high-quality 

beams required

• orders of magnitude 
more signals
• machine protection 

limits

Denser beams for 
higher luminosity & 

brilliance

Larger circular 
colliders for higher 

energies

Compact plasma 
accelerators with 
higher gradients

Future accelerators 
trends and challenges and this is not considering user’s needs!

39
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Very fast predictions by evaluating an already trained model

Control the state of the beam in real time 
in a dynamically changing environment

§ Reinforcement learning

Achieve desired beam properties or 
states by tuning machine parameters

§ Bayesian algorithms
§ Optimizers

Predict the beam properties based 
on current accelerator parameters
§ Surrogate models 
§ Virtual diagnostics

Detect outliers and anomalies in 
accelerator data

§ Fault detection 
§ Predictive maintenance
§ Data cleaning

Classification task Optimization task

Control taskPrediction task

What can machine learning do for us?

Check out the references 
we provide here!

https://github.com/ansantam/20
22-MT-ARD-ST3-ML-

workshop/blob/main/references/
references.pdf

40

https://github.com/ansantam/2022-MT-ARD-ST3-ML-workshop/blob/main/references/references.pdf
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Simulation code: Parallelized VFP solver Inovesa T. Boltz et al, MOPGW017, IPAC’19

∝ N2

∝ N

Image courtesy of A.-S. Müller

Short bunch Increased 
radiation power

We want a high average, 

low variance CSR

Microstructures appear CSR power fluctuation

Interesting for users
Achieved in short bunch 

operation mode (low-𝜶 optics)

Coherent Synchrotron Radiation (CSR)
Motivation

http://accelconf.web.cern.ch/ipac2019/papers/mopgw017.pdf
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Perturbation of slope at 
synchronous position 

found to be critical

Initial damping, 
but quickly out of 
sync…we need 
dynamic control!

Images courtesy of T. Boltz

𝑉'( = 4𝑉 𝑡 sin 2𝜋𝑓'(𝑡
4𝑉 𝑡 = 4𝑉+ + 𝐴,-. sin 2𝜋𝑓,-. + 𝜑,-.

Continuously changing Compensate the effect of the CSR perturbation by 
modulating the RF voltage (amplitude) 

Constant modulation

CSR self interaction
Influencing the micro-bunching instability
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Courtesy of T. Boltz

𝑉'( = 4𝑉 𝑡 sin 2𝜋𝑓'(𝑡 4𝑉 𝑡 = 4𝑉+ + 𝐴,-. sin 2𝜋𝑓,-. + 𝜑,-.

High average, low variance CSR. So far so good…now to Reinforcement Learning!

RF voltage modulation with manual control
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(256x256x1)

(256x256x1)

(254x254x1)

(126x126x2)

(124x124x4)

(61x61x4)

(59x59x8)

(29x29x8)

(27x27x16)

(13x13x16)

(11x11x32)

(805x1)
(64x1)

(2x1)

subtract
mean

Conv (3x3)
+ leaky ReLU

MaxPool
(3x3)

Concatenate
(5x1)

Dense x4
(leaky ReLU)

Images courtesy of T. Boltz

Action
8𝑽 𝒕 = 8𝑽𝟎 + 𝑨𝒎𝒐𝒅 𝒔𝒊𝒏 𝟐𝝅𝒇𝒎𝒐𝒅 +𝝋𝒎𝒐𝒅

Reward
R = 𝝁𝑪𝑺𝑹 −𝒘 𝝈𝑪𝑺𝑹 where 𝑤 is a weight
Could we improve the reward definition?

Observable (state definition)
Charge distribution
Input: (256x256) matrix + (5x1) feature vector

Observable (state definition)
CSR signal
Input: (8x1) feature vector Easier to measure 

& process

Applying reinforcement learning
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Courtesy of T. Boltz

Tests in simulation with CSR signal 
as state definition

Exploration noise = Ornstein-Uhlenbeck

Episode terminated 

due to lack of 

improvement

Algorithm: PPO

Algorithm: DDPG
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State based on CSR Signal, PPO
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State based on CSR Signal, PPO

46

Small changes in the modulations frequency 
stabilize the CSR emission

👍

1 step = 0.25 synchrotron periods (chosen small enough for the agent to be able to react to the changing micro-structure dynamics)Images courtesy of T. Boltz

Other strategies are 
possible, such as varying 

the amplitude more

🔍

Evolution of the actions with time (PPO)
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KARA

Meghana M Patil, 12th International Particle 
Accelerator Conference (IPAC’21)

State-of-the-art detectors

Phase space density reconstruction

Stefan Funkner; DOI: 
10.1103/PhysRevAccelBeams.22.022801 

Real-time, high-repetition data acquisition
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Fast feedback for real-time optimization
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In practice: we need hardware!

Detector

KAPTURE2

FPGA DAQ

BBB iGp*

BBB Cavity

Detector

KAPTURE2

FPGA DAQ

BBB iGp*

BBB Cavity

Detector

KAPTURE2

FPGA DAQ

BBB iGp*

BBB Cavity

Schottky diode
50 GHz – 2 THz

Scalar processor (ARM-PS)
for the implementation of the 

“critic” neural network

Large FPGA/DSP for 
data management 

Dedicated programmable AI-engines for 
the deployment of fast inference “actor” 

neural network + feature extraction

Feedback

HighFlex 2 DAQ card
Xilinx ZYNQ

Custom modular 
readout DAQ 
optimized for AI 
applications

Ethernet 1GbE

Versal board

Xilinx Versal ACAP

Fast digitizer

Bunch-by-bunch / 
LLRF

RF modulation computed by Versal

full custom
ization of dataflow

All linked by high bandw
idth 

N
etw

ork on a C
hip (N

oC
)

Images courtesy of M. Caselle
400 tiles  x   8 FP multiplications  x  0.5 GHz 
à up to 1.6 Tera FP operations per second !!!

https://ieeexplore.ieee.org/document/9442681/
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Thank you for
your attention!
What questions do you
have for me?

All icons from this talk from TheNounProject

§ Sutton & Barto book
§ https://arxiv.org/pdf/cs/9605103.pdf
§ Reinforcement learning lectures by David Silver
§ https://spinningup.openai.com/en/latest/
§ Coursera RL specialization

Let’s connect! andrea.santamaria@kit.edu / @ansantam

http://incompleteideas.net/book/RLbook2018.pdf
https://arxiv.org/pdf/cs/9605103.pdf
https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ
https://spinningup.openai.com/en/latest/
https://www.coursera.org/specializations/reinforcement-learning
mailto:andrea.santamaria@kit.edu
https://twitter.com/ansantam
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Reinforcement learning
Frameworks

Environments

Stable baselines

https://neptune.ai/blog/the-best-tools-for-reinforcement-learning-in-python
Te

ns
or

for
ce

De
ep

M
ind

 
Co

nt
ro

l S
uit

e
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https://neptune.ai/blog/the-best-tools-for-reinforcement-learning-in-python
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How fast can neural networks run?

Images courtesy of E. Bründermann, M. Caselle, L. Scomparin W. Wang, M. Caselle, et al IEEE TNS, https://doi.org/10.1109/TNS.2021.3084515 (2021)

HighFlex2

§ 32 bit floating point computation
§ 4 times better than previous Ultrascale+ 

family FPGA (on 8 bit integers)

8 bit

Latency measured with Versal:  4.5 µs

Each engine 64 neurons

https://doi.org/10.1109/TNS.2021.3084515
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Observation vector based on the CSR 
signal
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State based on CSR Signal, PPO

§ 𝜇!"# is the normalized mean of the CSR power signal in the last time period.
§ 𝜎!"# is the normalized standard deviation of the CSR power signal in the last time period.
§ 𝑚$%&'( is a slow trend of the CSR power signal
§ 𝑎)!"#$ is the amplitude of the main frequency in the Fourier transformed CSR signal.
§ 𝑓*+,' is the main frequency in the Fourier transformed CSR signal.
§ 𝜑)!"#$ is the phase of the main frequency in the Fourier transformed CSR signal.
§ ∆𝜃#- is the relative phase between the CSR signal and the applied RF signal (amplitude modulation).
§ 𝑐$&%* models the termination condition (difference between the last reward and the one 10 steps prior).


