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Introduction: Why use Graph Convolutions?
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Convolutions are advantageous for tasks like pattern recognition as they
incorporate the structur of the data by design

For example:

Convolutions on hexagonal grids
(e.g. Auger Surface Detector)

Convolutions on 
pixelized grids
(e.g. images)

2)1)

Problem: What if the structure is irregular, non-Euclidean or changes between measurements?

1) https://github.com/vdumoulin/conv_arithmetic

2) https://arxiv.org/abs/1803.02108v1

https://arxiv.org/abs/1803.02108v1
https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://github.com/vdumoulin/conv_arithmetic
https://arxiv.org/abs/1803.02108v1
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1. Spherical Data (e.g. in HEALPix format)

2. Point Clouds with fixed positions (e.g. detector hits)

Examples of challenging data structures

2)

1)

Challenges:
• Convolutions should incorporate spherical shape
• Should be rotational invariant
• Using a 2D projection would lead to distortions

Challenges:
• Irregular geometries
• Sparsity

1) https://arxiv.org/abs/1810.12186

2) https://arxiv.org/abs/1809.06166
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https://arxiv.org/abs/1809.06166
https://arxiv.org/abs/1810.12186
https://arxiv.org/abs/1810.12186
https://arxiv.org/abs/1809.06166
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3. Point clouds with continuously distributed positions (e.g. cosmic-ray arrival directions)

4. …

Examples of challenging data structures

Challenges:
• No fixed positions / grid
• Positions change for each dataset
• Sparsity

Using graph convolutions can solve these problems!
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A graph 𝓖 = 𝓥, 𝓔 is an ordered pair of nodes 𝓥 and edges 𝓔

Nodes

Edges

Describing a graph:
• Defined by connections / neighborhoods
• Changing order of nodes still describes the same graph

• Permutational invariance

What are Graphs?
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Describing a Graph: Adjacency Matrix 𝑨
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Consider graph with 𝑁 nodes

• Adjacency matrix 𝑨 of shape 𝑁 ×𝑁 represents structure of the graph

• 𝐴𝑖𝑗 = 1 of node 𝑖 is connected to node 𝑗 and otherwise 0

𝐴 =

0 1 1 0 0 0

1 0 0 1 1 0

1 0 0 1 0 0

0 1 1 0 1 1

0 1 0 1 0 0

0 0 0 1 0 0

(For a weighted graph the entries are weighted accordingly.)

Example
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Describing a Graph: Degree Matrix 𝑫

Consider graph with 𝑁 nodes

• Diagonal degree matrix 𝑫 of shape 𝑁 × 𝑁

• Counts how often edges terminate at each node: 𝐷𝑖𝑖 = σ𝑖 𝐴𝑖𝑗

𝐷 =

2 0 0 0 0 0

0 3 0 0 0 0

0 0 2 0 0 0

0 0 0 4 0 0

0 0 0 0 2 0

0 0 0 0 0 1

(For a weighted graph the entries are weighted accordingly.)

Example
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Graph Convolutions
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Convolutions on pixelized grids Convolutions on graphs

Images: Deep Learning in Physics Research, World Scientific

𝒩𝑖: Neighbors of node ℎ𝑖

ℎ𝑖
𝑙+1 = 𝜎 ℎ𝑖

𝑙𝑊𝑙 + ෍

𝑗∈𝒩𝑖

1

𝑐𝑖𝑗
ℎ𝑗
𝑙𝑊𝑙

Average over neighbors

https://arxiv.org/abs/1609.02907

https://www.worldscientific.com/worldscibooks/10.1142/12294
https://arxiv.org/abs/1609.02907
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Example: Zachary’s Karate Club
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https://commons.wikimedia.org/wiki/File:Social_Network_Model_of_Relationships_in_the_Karate_Club.png

• Social network: University karate club with 34 members

• Key figures: Administrator “John A.” and instructor “Mr. Hi”

• Conflict between John A. and Mr. Hi splits club into multiple groups

→ Represent social network as graph and classify groups using graph convolutions

Mr. Hi

Mr. Hi

John A.

John A.

VISPA Example!
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Graph Convolutions in the Spatial Domain

• Nodes now have positions that are considered, no longer only connections

• Analogous to classical CNN but in continuous space

Classical CNN Continuous Graph Convolution

Discrete grid
positions

Continuous grid
positions

Discrete filter
Continuous

filter

https://arxiv.org/abs/1901.00596

https://arxiv.org/abs/1901.00596
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• Implement continuous filter as function ℎ

• One implementation: EdgeConv

• Node 𝑥𝑖 ∈ ℝ𝐹: Calculate edge features

for each node 𝑥𝑗 that is connected to 𝑥𝑖 with an edge

• ℎ𝜃 with trainable parameters 𝜃 (e.g. a neural network) allows network to learn approximation of optimal 
kernel function

• Get „Feature Map“ by performing channel-wise symmetric aggregation □ (e.g. mean)

EdgeConv¹ Operation

1) https://arxiv.org/abs/1801.07829

𝑒𝑖𝑗 = ℎ𝜃(𝑥𝑖 , 𝑥𝑗) ℎ𝜃: ℝ
𝐹 × ℝ𝐹 → ℝ𝐹′

𝑥𝑖
′ = □

𝑗: 𝑖,𝑗 ∈ℰ
ℎ𝜃 𝑥𝑖 , 𝑥𝑗

Transform graph with 𝑁 nodes in 𝐹 dimensions to graph with 𝑁 nodes in 𝐹′ dimensions 
→ New nearest neighbors (“dynamic”)!

𝑘 = 5 nearest neighbors

https://arxiv.org/abs/1801.07829
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Convolution: Classic versus Graph network
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• dense pixel occupation
• object identification
• analysis: single pixel contributions

• sparse or dense neighbor occupation
• pattern recognition
• single objects identification

coordinate x

features f

short & long
range
correlations

short range
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filters
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Classic: grid Graph: neighbors

Martin Erdmann
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Classification taskisotropy signal

Elongated pattern

Ultra-high-energy 
cosmic rays
from source

Passage through
Galactic magnetic

field

Deflection Depending on 
Energy and Charge

Pattern in arrival
directions

𝐸/𝑍

Source

Example: Classification of Cosmic-Ray Arrival Directions

https://www.sciencedirect.com/science/article/pii/S0927650520300992

VISPA Example!

https://www.sciencedirect.com/science/article/pii/S0927650520300992
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Describing a Graph: Graph Laplacian 𝑳

Consider graph with 𝑁 nodes

• Unnormalized graph Laplacian 𝑳 of shape 𝑁 ×𝑁

• Defined by 𝑳 = 𝑫 − 𝑨

• Discrete version of the Laplace operator

• (Symmetric) normalized graph Laplacian: 𝐿sym = 𝐷−
1

2 𝐿𝐷−
1

2 = 𝐼 − 𝐷−
1

2𝐴𝐷−
1

2

𝐿sym = 𝑈Λ𝑈𝑇

𝐿sym diagonalized by Fourier basis

𝑈 = 𝑢0, … , 𝑢𝑁−1 ∈ ℝ𝑁×𝑁

Λ = diag 𝜆0, … , 𝜆𝑁−1 ∈ ℝ𝑁×𝑁
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Graph Convolutions in the Spectral Domain

𝐿sym = 𝑈Λ𝑈𝑇

Use to define convolution of graph signal 𝑓:

1. Multiplication of 𝑈𝑇 with 𝑓 yields Fourier transform

2. Convolution theorem

3. Convolution operation of 𝑓 with kernel function ℎ

መ𝑓 = ℱ𝒢 𝑓 = 𝑈T𝑓 ℱ𝒢
−1 መ𝑓 = 𝑈 መ𝑓 = 𝑓

𝑓 ∗ 𝑔 = ℱ−1 ℱ 𝑓 ⋅ ℱ 𝑔

ℎ 𝐿sym 𝑓 = 𝑈(ℎ Λ 𝑈T𝑓)

• Convolution depends on structure of the graph (i.e. on 𝐿)
• Computationally demanding / challenging to implement
• Efficient implementations exist, e.g. using Chebyshev polynomials (see arXiv:1606.09375)

https://arxiv.org/abs/1606.09375
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• Graph structure does not change by convolution itself → can be followed by pooling

• Can assign properties to each node and interpret the node itself as corresponding to one position (thus
incorporating spatial relations)

• Edges chosen depending on the task, e.g. by calculating nearest neighbors

• Convolution defined based on the graph → graph has to stay the same between different datasets

Suited for:

Detector hits with a detector layout that does not change

Spherical data in the HEALPix format (example: DeepSphere¹)

Using Spectral Graph Convolutions

Convolution + Pooling

1) https://arxiv.org/abs/1810.12186

Pooling

Learned filters

https://arxiv.org/abs/1810.12186
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Images can also be treated as graphs with 1 pixel ≙ 1 node.

First 20 eigenvectors of 𝐿

Example: MNIST

VISPA Example!
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Graph Neural Networks Overview
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Data: One fixed graph

Data: Multiple graphs, identical shape

Graph Convolutional Network

Spectral Graph Convolution

Data: Multiple graphs, changing shape

Spatial (Dynamic) Graph Convolution

e.g. point clouds

Often possible to apply more than one approach to a 
problem (exact position → spatial graph convolution, 
positions pixelized on grid → spectral graph convolution, …)

Find best-suited approach based on shape of data, its 
symmetries and performance/efficiency


