

Supervised and Reinforced Jet-Parton Assignment for Particle Physics Analyses

Martin Erdmann, Benjamin Fischer, Dennis Noll

Conceptual Advances Workshop

- Classification of ttH vs ttbb (1812.09722):
 - Two processes with same final state
 - Jet Parton Assignment (JPA) crucial:
 - Without JPA: Complex
 - With JPA: Easy (e.g. m_{bb} from slot 2 and 3)

- Classification of ttH vs ttbb (1812.09722):
 - Two processes with same final state
 - Jet Parton Assignment (JPA) crucial:
 - Without JPA: Complex
 - With JPA: Easy (e.g. m_{bb} from slot 2 and 3)

Particle Based

- Assign with one variable (pT)
- Pro: Fast & works with many part.
- Con: High ambiguity

- Evaluate all different assignments
- Pro: Accurate
- Con: Scaling of permutations
 - (6! = 720; 10! > 3Mio)

Method	Probability of assigning all particles correctly
χ^2	37 %
DNN	52 %

4 Existing Approaches

Particle Based

- Assign with one variable (pT)
- Pro: Fast & works with many part.
- Con: High ambiguity

- Evaluate all different assignments
- Pro: Accurate
- Con: Scaling of permutations
 - (6! = 720; 10! > 3Mio)

Method	Probability of assigning all particles correctly
χ^2	37 %
DNN	52 %

4 Existing Approaches

Particle Based

- Assign with one variable (pT)
- Pro: Fast & works with many part.
- Con: High ambiguity

- Evaluate all different assignments
- Pro: Accurate
- Con: Scaling of permutations

4 Existing Approaches

Particle Based

- Assign with one variable (pT)
- Pro: Fast & works with many part.
- Con: High ambiguity

- Evaluate all different assignments
- Pro: Accurate
- Con: Scaling of permutations

- Take the best out of the existing approaches:
 - Fast as particle based
 - Accurate as permutation method

A new approach to Jet-Parton Assignment

Evaluation:

- Input p⊤ sorted Event
- Assignment network assigns particles A(Event) (trainable)
- Analysis evaluates assigned events S(A(Event)) (trainable)

A new approach to Jet-Parton Assignment

Evaluation:

- Input p⊤ sorted Event
- Assignment network assigns particles A(Event) (trainable)
- Analysis evaluates assigned events S(A(Event)) (trainable)

- Multi-classification DNN:
 - Produces 2D Score
 - Bipartite graph:
 - Particle ↔ Slot

- Assignment:
 - Maximise joint score
 - Uses Munkres algorithm

- Supervised training with fixed Particle ↔ Slot
- Correct assignment can be learned
- Probability to correctly identify complete ttH final state is $\epsilon = 61 \,\%$
- Better than state-of-the-art parton assignment methods ($\epsilon = 52 \%$, 1706.01117)

Textbook example -

- Particle nature fully known
- One slot for one particle
- Supervised training works

-Real World

- Particle nature often not known
- Different particles in every event
- Need autonomy to adapt

Reinforcement Training - Procedure

- Training objective: Find order of inputs, which is best suited for analysis
 - Assignment network assigns particles A(Event)
 - Policy suggests new orderings P₁(A(Event)), P₂(A(Event)), P₃(A(Event)), ...
 - Analysis evaluates assigned (and permuted) events

Reinforcement Training - Procedure

= smallest loss

- Training objective: Find order of inputs, which is best suited for analysis
 - Assignment network assigns particles A(Event)
 - Policy suggests new orderings P₁(A(Event)), P₂(A(Event)), P₃(A(Event)), ...
 - Analysis evaluates assigned (and permuted) events

- Training objective: Find order of inputs, which is best suited for analysis
 - Assignment network assigns particles A(Event)
 - Policy suggests new orderings P₁(A(Event)), P₂(A(Event)), P₃(A(Event)), ...
 - Analysis evaluates assigned (and permuted) events

- Step 1: Train assignment $A_{new} \leftarrow P_3(A)$ (Policy Gradients)
- Step 2: Train analysis with Anew (Event)

Permutation Policy

- Ensures that all permutations can be probed along the training
- All pair-wise swaps $[\mathcal{O}(n^2)]$:
 - $N_{pool}(6) = 15$

Training

• Epoch wise Schedule:

1 Epoch Assignment
1 Epoch Analysis

- Pre-training (p_T as baseline):
 - Done for assignment and analysis

Use three best permutations (weighted)

- Evaluate three methods for jet-parton assignment with same analysis network:
 - Standard: p_T sorted
 - New (supervised): pre-trained with generator information
 - New (reinforced): autonomously trained without generator information

- Assignment network autonomously learns structure:
 - Direct neighbours grouped (e.g. bj₁, bj₂)
 - Do not confuse distinguishable particles (e.g. lj₂, bj₂)
 - Identifies branches of Feynman graph (e.g. b_{lep})

- A new method for jet-parton assignment
 - Supervised training if generator information is known
 - Reinforced training autonomously learns assignment based on the analysis

Backup

- Simulations Pythia + Delphes (10⁶ events 50% ttH, 50% ttbb)
- Input variables:
 - Low-level: 4-vector of 8 particles
 - High-level: 26 variables (see backup)

- Assignment Network:
 - Feed forward
 - 5 ELu Layers
 - 500 Nodes
 - Batch Normalization
- Analysis Network:
 - Lorentz-Boost Network (<u>1812.09722</u>)
 - Together with Feed forward:
 - 2 Elu Layers
 - 128 Nodes

17 Lorentz Boost Network (1/2) - <u>1812.09722</u>

Calculate θ^* :

- Reconstruct W
- Reconstruct t
- Boost lepton in W System = l_W
- Boost W in t system = W_t
- Calculate angle $\triangleleft(l_W, W_t)$

Reconstr. Boosted

Boosted particles

Feature

extraction

LBN Particles #2 - #5

ttH Events

ttbb Events

- Autonomously build high level variables:
 - Reconstruction: learnable weights
 - **Boost: Gamma Matrix**

Input vectors

Features: Single particle + Pairwise

Particles

Rest frames

Lorentz

boosts

Lorentz symmetry within neural network

Trainable

weights

- Optimally solving the assignment problem Particle ↔ Slot
- Example:

Assignment cost
Optimal choice

- Achieves a complexity of O(n³) compared to all different permutations O(n!)
- Involves 5 steps different complexity:
 - 1. Row reduction O(n²)
 - 2. Column reduction O(n²)
 - 3. Test for optimal assignment O(n³)
 - 4. If needed: Shift zeros O(n³)
 - 5. Making the final assignment O(n)

Algorithm 1 Reinforced Training

Input: Events (e), Permutations (\mathbb{P}), Analysis (A_0), Sorting model (S_0)

- 1: for $i \leftarrow 0$ to epochs do
- 2: $\hat{P} \leftarrow \operatorname*{argmax}_{P_n \in \mathbb{P}} A_i(P_n(S_i(\mathbf{e})))$
- 3: $T \leftarrow \hat{P}(S_i)$
- 4: train S_{i+1} to approximate T
- 5: train A_{i+1} with $S_{i+1}(\mathbf{e})$

Software

- Full development environment (editor, file browser, ...)
- Runs in your web browser

Hardware

- 200 CPU Cores
- 30 GPU Cards (300 TFlops)
- (ITC RWTH: 1500 TFlops)

Accessible via https://vispa.physik.rwth-aachen.de/

- Event shape variables: sphericity, transverse sphericity, aplanarity, centrality
- First five Fox-Wolfram moments
- Cosine of spatial angular difference θ* between the charged lepton in the W boson restframe and the W boson direction when boosted into the rest frame of its corresponding top quark. In the hadronic branch, the down-type quark is used owing to its increased spin analyzing power
- minimum, maximum and average of ΔR of jet pairs
- minimum, maximum and average $|\Delta\eta|$ of jet pairs.
- minimum and maximum of the distance in ΔRof jet-lepton pairs
- minimum, maximum and average $|\Delta\eta|$ of jet-lepton pairs
- sum of the transverse momenta of all jets
- transverse momentum and the mass of the jet pair with the smallestΔR
- transverse momentum and the mass of the jet pair whose combined mass is closest to the Higgs boson mass m_H=125GeV