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Supervised and Reinforced Jet-Parton Assignment for
Particle Physics Analyses
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(Slides 5-7)
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Reiorced
(Slides 8-12)
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e (lassification of ttH vs ttbb (1812.09722):.
= Jwo processes with same final state
= Jet Parton Assignment (JPA) crucial:
— Without JPA: Complex
— With _PA: Easy (e.g. mpp from slot 2 and 3)
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e (lassification of ttH vs ttbb (1812.09722):.
= Jwo processes with same final state
= Jet Parton Assignment (JPA) crucial:
— Without JPA: Complex
— With _PA: Easy (e.g. mpp from slot 2 and 3)
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Slot

- Particle Based

Existing Approaches

Assign with one variable (pT)
Pro: Fast & works with many part.
Con: High ambiguity

0.35
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0.25
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0.05
0.00
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Partlcle
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- Permutation Methods N

e FEvaluate all different assignments
e Pro: Accurate
e (on: Scaling of permutations

= (6! =720; 10! > 3Mio)

Probability of assigning

Method :
all particles correctly
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Evaluate all different assignments
Pro: Accurate

on: Scaling of permutations
= (6! =720; 10! > 3Mio)

Method Probabllllty of assigning
all particles correctly
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- Particle Based

e Assign with one variable (pT)
e Pro: Fast & works with many
e (Con: High ambiguity
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part.

- Permutation Methods N

e FEvaluate all different assignments
e Pro: Accurate
e (on: Scaling of permutations
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- Particle Based N ¢ Permutation Methods 2
e Assign with one variable (pT) e [Evaluate all different assignments
e Pro: Fast & works with many part. e Pro: Accurate

e (Con: High ambiguity e (Con: Scaling of permutations

\ - »~ —~— —“ -

\_

e Take the best out of the existing approaches:
= [ast as particle based
= Accurate as permutation method
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5 A new approach to Jet-Parton Assignment

e FEvaluation:
= |nput prsorted Event
= Assignment network assigns particles A(Event) (trainable)
= Analysis evaluates assigned events S(A(Event)) (trainable)
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2D Score

»  A(Event)
Input Particles
e Multi-classification DNN: ® Assignment:
= Produces 2D Score =  Maximise joint score
= Bipartite graph: = Uses Munkres algorithm

— Particle < Slot
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Supervised training with fixed Particle <> Slot

Correct assignment can be learned

Probability to correctly identify complete ttH final state is ¢ = 61 %

Better than state-of-the-art parton assignment methods (e = 52 %, 1706.01117)

r=0.76, p=0.81, €=0.61

- 0.8

2 brep /B bnad bj1 bj>
Particle


https://arxiv.org/abs/1706.01117

8

Reinforcement Training - Motivation

- Textbook example

e Particle nature fully known
e One slot for one particle
e Supervised training works
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Particle nature often not known
Different particles in every event
Need autonomy to adapt
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9 Reinforcement Training - Procedure

e Training objective: Find order of inputs, which is best suited for analysis

o network assigns particles A(Event
= Policy suggests new orderings Pi(A(Event)), P2(A(Event)), Ps(A(Event)), ...
o evaluates assigned (and permuted) events

P1i(A(Event))

Event P2(A(Event)) Analysis

Ps(A(Event))
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9 Reinforcement Training - Procedure

e Training objective: Find order of inputs, which is best suited for analysis

o network assigns particles A(Event
= Policy suggests new orderings Pi(A(Event)), P2(A(Event)), Ps(A(Event)), ...
o evaluates assigned (and permuted) events

P1i(A(Event))

Po(A(Event))

Ps(A(Event))

Event

= smallest loss

e Step 1: Train assignment Anew < P3(A) (Policy Gradients)
e Step 2: Train analysis with Anew(Event)
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- Permutation Policy

e Ensures that all permutations can be probed
along the training

e All pair-wise swaps [O(n?)]:
. Np001(6) =15

\_

- Training

® Pre-training (pt as baseline):
= Done for assignment and analysis

e Use three best permutations (weighted)
\_

e Epoch wise Schedule: <1 Epoch Assignment>
1 Epoch Analysis

pre-train

1 2/3

1/3
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e FEvaluate three methods for jet-parton assignment with same analysis network:

s Standard: p; - sorted

= New (supervised): pre-trained with generator information
= New (reinforced): autonomously trained without generator information

) 80.1 (test)
__. 80.0 A {
=,
T 77.5-
=
>
Q
© 75.0- 74.2 (test)
>
Q
Q
T 72.5-
C
)
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O 67.5- — pT-sorted
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e Assignment network autonomously learns structure:
= Direct neighbours grouped (e.g. bj1, bjo)
= Do not confuse distinguishable particles (e.q. lj2, bj2)
= |dentifies branches of Feynman graph (e.g. biep)

oT - aSS|gnment
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e A new method for jet-parton
assignment

Supervised training if generator
information is known

Reinforced training autonomously
learns assignment based on the
analysis
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e Simulations Pythia + Delphes (106 events - 50% ttH, 50% ttbb)
e |nput variables:

= | ow-level: 4-vector of 8 particles

= High-level: 26 variables (see backup)
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] ttbb =]
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average AR of jets event centrality
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e Assignment Network:
= [eed forward
— 5 ELu Layers
- 500 Nodes
— Batch Normalization

e Analysis Network:
= |[orentz-Boost Network (1812.09722)
=  Together with Feed forward:
— 2 Elu Layers
- 128 Nodes
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17 Lorentz Boost Network (1/2) - 1812.09/722
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Input

Calculate @ *:

Heconstruct W

Reconstruct ¢

Boost lepton in W System = [,
BSoost Win t system = W,
Calculate angle <«(ly, W)

Features
@
Reconstr. Boosted O
Particles Particles
alele) o 810166

elole o SIolC ®,
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18 Lorentz Boost Network (2/2) - 1812.09/722

e Autonomously build high level variables:
= Heconstruction: learnable weights

= Boost: Gamma Matrix
= [eatures: Single particle + Pairwise

Lorentz symmetry within neural network

Input vectors

OO
OO
OO
BLE,

[o]e cio

SRR

Trainable
weights

Particles
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Rest frames

CABICE D
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boosts
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19 Munkres algorithm

e Optimally solving the assignment problem Particle <= Slot
e Example:

Assignment
cost

Optimal choice

e Achieves a complexity of O(n3) compared to all different permutations O(n!)
® |Involves 5 steps - different complexity:

1. Row reduction - O(n2)

2. Column reduction - O(n2)

3. Test for optimal assignment - O(n3)

4. If needed: Shift zeros - O(n3d)

5. Making the final assignment - O(n)
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20 Training process - Pseudocode

Algorithm 1 Reinforced Training
Input: Events (e), Permutations (IP),
Analysis (Ap), Sorting model (.Sp)

1: for ¢ <— 0 to epochs do
2: P argmax Az(Pn(Sz(e)))

P,cP
3: T + P(Sz)
4: train S;11 to approximate T

5: train A;q with Si_|_1(e)




RWTHAACHEN

21 VISual Physics Analysis (VISPA UNIVERSITY

VISPA®

Software Hardware

e Full development environment e 200 CPU Cores

(editor, file browser, ...) e 30 GPU Cards (300 TFlops)
e Runs in your web browser

o B, augerpy x +
4 M save  x Close M Saveas..
- -y
11 # create a histogram containing the cosmic ray em £  python 'sfile’ v
12 axl = fig.add_subplot(221)
13 axl.hist(log_energies, bins=4@, range=(16.5, 20), 12-2-2920."15:1110}= . 4 Top 4 Botom @ Ciear
14 axl.set_xlabel('logl@(Energy [eVI)') executing “python 'auger.py
15 oxl.set_ylabel('Events' | =mmmmmemmmemmememees -
16 QUTPUT:
17 # naive 'unprojected' map of data . X
18 ax3 = fig.add_subplot(222) /software/python3.5/lib/python3.5/site-packages/matplotlib/pr

19 ax3.scatter(gal_lons, gal_lats, c=log_energies, 17 * np:sqEE(1ERxE/A4) Deki2ERly /R 2) ek 2)

20 ax3.set_xlabel('Longitude [rad]")
21 ax3.set_ylabel('Latitude [rad]')

runtime: 2.02 s

23 # convert degrees to radian
24 1 = np.deg2rad(gal_lons)
25 b = np.deg2rad(gal_lats)

27 # Hammer projected map of data

28 ax4 = fig.add_subplot(223, projection="hammer"')
29 events = ax4.scatter(l, b, c=log_energies, linewic
30 ax4.set_ylabel("Latitude [deg]") # set y-oxis la

32 fig.tight_layout() # improve plot layout

apgajs
aab B

34 # plot color bar

35 cbar4 = pylab.colorbar(events, orientation="horiz
36 cbar4.set_label("$\log_{10}$(Energy/[eV])")

37 cbar4.set_ticks(np.arange(17.0, 20.5, 0.5))

39 # Hammer projected map of events with highest ene
40 selection = energies > 19 # select only cosmic r¢
41 axl = fig.add_subplot(224, projection="hammer"')

42 events2 = axl.scatter(l[selection], b[selection],
43 axl.set_ylabel("Latitude [deg]") # set y-oxis la

son(aaAandnna
poBjAnBEaRann
pee/Ranjesaann

e Accessible via https://vispa.physik.rwth-aachen.de/
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Event shape variables: sphericity, transverse sphericity, aplanarity, centrality
First five Fox-Wolfram moments

Cosine of spatial angular difference 8" between the charged lepton in the W
boson restframe and the W boson direction when boosted into the rest frame of
its corresponding top quark. In the hadronic branch, the down-type quark is used
owing to its increased spin analyzing power

minimum, maximum and average of AR of jet pairs

minimum, maximum and average |An| of jet pairs.

minimum and maximum of the distance in ARof jet-lepton pairs

minimum, maximum and average |An| of jet-lepton pairs

sum of the transverse momenta of all jets

transverse momentum and the mass of the jet pair with the smallestAR
transverse momentum and the mass of the jet pair whose combined mass is
closest to the Higgs boson mass mu=125GeV

Inspired by 1804.03682



https://arxiv.org/abs/1804.03682

