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Outline
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Bayesian Neural Networks

• Basic idea: learn the whole distribution over the NN weights w given training data {X,Y}


• Which parameters w of a function f are likely to have generated Y from X ?


 

   with for example 


• Often intractable → approximate with simpler function qθ(w) minimizing KL divergence 

 

• Sampling from optimal qθ*(w) → distribution of predictions instead of a point estimate

Description from Yarin Gal, Uncertainty in Deep Learning, PhD thesis, Cambridge, 2016 and arXiv:0712.4042.

p(w|X,Y ) =
p(X,Y |w)p(w)

p(X,Y )
=

p(Y |X,w)p(X|w)p(w)
p(Y |X)p(X)

=
p(Y |X,w)p(w)R
p(Y |X,w)p(w)dw

2.1 Bayesian modelling 19

2.1.1 Variational inference

The true posterior p(Ê|X, Y) cannot usually be evaluated analytically. Instead we define
an approximating variational distribution q◊(Ê), parametrised by ◊, whose structure is
easy to evaluate. We would like our approximating distribution to be as close as possible
to the posterior distribution obtained from the original model. We thus minimise the
Kullback–Leibler (KL) divergence [Kullback, 1959; Kullback and Leibler, 1951] w.r.t. ◊,
intuitively a measure of similarity between two distributions:

KL(q◊(Ê) || p(Ê|X, Y)) =
⁄

q◊(Ê) log q◊(Ê)
p(Ê|X, Y)dÊ. (2.3)

Note that this integral is only defined when q◊(Ê) is absolutely continuous w.r.t. p(Ê|X, Y)
(i.e. for every measurable set A, p(A|X, Y) = 0 implies q◊(A) = 0). We denote by q

ú
◊
(Ê)

the minimum of this optimisation objective (often a local minimum).
Minimising the KL divergence allows us to approximate the predictive distribution as

p(yú|xú
, X, Y) ¥

⁄
p(yú|xú

, Ê)qú
◊
(Ê)dÊ =: q

ú
◊
(yú|xú). (2.4)

KL divergence minimisation is also equivalent to maximising the evidence lower bound
(ELBO) w.r.t. the variational parameters defining q◊(Ê),

LVI(◊) :=
⁄

q◊(Ê) log p(Y|X, Ê)dÊ ≠ KL(q◊(Ê)||p(Ê)) Æ log p(Y|X) = log evidence,

(2.5)

which defines the objective we will refer to henceforth. Maximising the first term in this
last equation (referred to as the expected log likelihood) encourages q◊(Ê) to explain the
data well, while minimising the second term (referred to as the prior KL) encourages
q◊(Ê) to be as close as possible to the prior. This acts as an “Occam razor” term and
penalises complex distributions q◊(Ê).

This procedure is known as variational inference (VI), a standard technique in
Bayesian modelling [Jordan et al., 1999]. Variational inference replaces the Bayesian
modelling marginalisation with optimisation, i.e. we replace the calculation of integrals
with that of derivatives. But compared to the optimisation approaches often used in
deep learning, in this setting we optimise over distributions instead of point estimates2.
This approach preserves many of the advantages of Bayesian modelling (such as the

2Note that optimisation in the deep learning sense can be recovered by setting the approximating
distribution as a delta q◊(Ê) := ”(Ê ≠ ◊).
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p(Ê|X, Y)dÊ. (2.3)

Note that this integral is only defined when q◊(Ê) is absolutely continuous w.r.t. p(Ê|X, Y)
(i.e. for every measurable set A, p(A|X, Y) = 0 implies q◊(A) = 0). We denote by q
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the minimum of this optimisation objective (often a local minimum).
Minimising the KL divergence allows us to approximate the predictive distribution as
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KL divergence minimisation is also equivalent to maximising the evidence lower bound
(ELBO) w.r.t. the variational parameters defining q◊(Ê),

LVI(◊) :=
⁄

q◊(Ê) log p(Y|X, Ê)dÊ ≠ KL(q◊(Ê)||p(Ê)) Æ log p(Y|X) = log evidence,

(2.5)

which defines the objective we will refer to henceforth. Maximising the first term in this
last equation (referred to as the expected log likelihood) encourages q◊(Ê) to explain the
data well, while minimising the second term (referred to as the prior KL) encourages
q◊(Ê) to be as close as possible to the prior. This acts as an “Occam razor” term and
penalises complex distributions q◊(Ê).

This procedure is known as variational inference (VI), a standard technique in
Bayesian modelling [Jordan et al., 1999]. Variational inference replaces the Bayesian
modelling marginalisation with optimisation, i.e. we replace the calculation of integrals
with that of derivatives. But compared to the optimisation approaches often used in
deep learning, in this setting we optimise over distributions instead of point estimates2.
This approach preserves many of the advantages of Bayesian modelling (such as the

2Note that optimisation in the deep learning sense can be recovered by setting the approximating
distribution as a delta q◊(Ê) := ”(Ê ≠ ◊).
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• Small training datasets lead to larger 

 uncertainties in the BNN predictions 

 (example from top-tagging in 1904.10004) 

• BNNs predictions for out-of-distribution 

 test samples can have large uncertainties

Bayesian Neural Networks

8 Introduction: The Importance of Knowing What We Don’t Know

(a) Standard deep learning model (b) Probabilistic model

Fig. 1.2 Predictive mean and uncertainties on the Mauna Loa CO2 concen-
trations dataset, for various models, with out of distribution test point x

ú.
In red is the observed function (left of the dashed blue line); in blue is the predictive
mean plus/minus two standard deviations. Di�erent shades of blue represent half a
standard deviation. Marked with a dashed red line is a point far away from the data:
standard deep learning models confidently predict an unreasonable value for the point;
the probabilistic model predicts an unreasonable value as well but with the additional
information that the model is uncertain about its prediction.

Remark (A note on terminology). The word epistemic comes from “episteme”,
Greek for “knowledge”, i.e. epistemic uncertainty is “knowledge uncertainty”.
Aleatoric comes from the Latin “aleator”, or “dice player”, i.e. aleatoric uncer-
tainty is the “dice player’s” uncertainty. Epistemic and aleatoric uncertainties are
sometimes referred to as reducible and irreducible uncertainties respectively, since
epistemic uncertainty can be reduced with more data (knowledge), while aleatoric
uncertainty cannot (the stochasticity of a dice roll cannot be reduced by observing
more rolls). We will avoid this terminology though, since aleatoric uncertainty can
also be seen as “reducible” through an increase in measurement precision, i.e. by
changing the underlying system with which we perform the experiment.

Uncertainty information is often used in the life sciences, as discussed in the Nature
papers by Herzog and Ostwald [2013]; Krzywinski and Altman [2013]; Nuzzo [2014],
as well as the entertaining case in [Trafimow and Marks, 2015]. In such fields it is
quite important to quantify our confidence about the models’ predictions. Uncertainty
information is also important for the practitioner. Understanding if a model is under-
confident or falsely over-confident (i.e. its uncertainty estimates are too small) can help
get better performance out of it. Recognising that test data is far from the training data
we could augment the training data for example.

But perhaps much more important, model uncertainty information can be used in
systems that make decisions that a�ect human life—either directly or indirectly—as
discussed next.

Y. Gal, PhD thesis, Cambridge

1904.10004

SciPost Physics Submission

Figure 4: Correlation between predictive mean and standard deviation. The error bars in the
upper left panel correspond to five independent trainings and indicate the uncertainty on the
uncertainty given by the BNN. The right panel shows the predictive standard deviation for
µpred = 0.45 ... 0.55 as a function of the size of the training sample with the same error bars
from di↵erent trainings. The lower panels instead show the statistical spread for 10k jets,
signal and background combined.

0.45 ... 0.55 as a function of the size of the training sample. The estimated uncertainty on
the tagger output decreases monotonically from 16% to 12% when we increase the training
sample from 100k to 1.2M jets. This improvement is significant compared to the error bars,
which correspond to di↵erent training and testing samples.

Finally, the spread of these 10k signal and background jets is illustrated in the four lower
panels, with a matching color code. We immediately see that the spread is strongly reduced
for larger training samples.

3.2 In-situ calibration of weight distribution

Before we attempt to compare the output of the BNN to a frequentist distribution of many
deterministic neural networks we can apply a cross check within the Bayesian framework itself
and construct a hybrid version of the BNN. This will lead us to another attractive feature of
such networks, their explicit calibration based on training data.

The standard BNN constructs its output distribution by sampling the individual weights
of each layer. They are initialized as a random set of Gaussians with di↵erent means and

11
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Our Example Use Case

• Classification of images in EM calorimeters = photon identification


• Main background:


• High-energy π0 → γγ
• Toy EM calorimeter à la 1712.10321


• ATLAS-like: 3 layers of LAr+Pb


• 1 m from Geant4 particle gun

2.2 The ATLAS experiment

2.2 The ATLAS experiment

Fig. 2.2 shows a drawing of the ATLAS detector [98, 99] with its solenoid and toroid magnets
and the di↵erent subdetector systems. The subdetectors – inner tracking detector, calorimeters
and muon spectrometer – are briefly described in Sec. 2.2.1 – 2.2.3. The magnet, trigger and
data acquisition systems are introduced in Sec. 2.2.4 and 2.2.5, respectively.

All detector systems have been designed to cope with two main challenges set by the LHC:
on the one hand, the high event rate puts special requirements to the detector. Fast and
radiation-hard electronics and sensor elements are necessary as well as an e�cient trigger and
data acquisition system. On the other hand, very good particle identification is the key to an
e�cient suppression of the large background contribution from multijet production at a hadron
collider, as well as from additional inelastic interactions from the same bunch crossing (pile-up).

The design of the ATLAS detector follows the structure illustrated in Fig. 2.3, which shows
schematically the interactions of di↵erent types of particles with the detector material: the
innermost detector layer is a tracking detector, in which electrically charged particles are traced
for example by creating electron-hole pairs in semiconductors or by ionising gas. Typically, the
tracking detector is embedded in a magnetic field so that the momenta of the particles can be
measured from the curvature of the tracks.

.

chamber
tracking

calorimeter
electromagnetic hadronic

calorimeter chamber
muon

photons

electrons

muons

pions

outermost layerinnermost layer .

Figure 2.3: Schematic view of the interactions of di↵erent types of particles in a general pur-
pose detector at a modern high energy particle collider.

The next detector layers consist of electromagnetic (EM) and hadronic calorimeters. The
calorimeters are massive and therefore induce electromagnetic showers from electrons and pho-
tons by pair production and bremsstrahlung, and hadronic showers by various processes between
hadrons and matter. Electron and photon showers are typically contained in the electromagnetic
calorimeter while hadronic showers range into the hadronic calorimeter.

Since almost all muons produced at the LHC are minimum ionising particles, they are the only
electrically charged particles which may pass the calorimeters and reach the outermost layer,
which is made of tracking chambers. Hence, these detectors are called muon chambers.

In principle, it is desirable to cover the full solid angle with sensitive detector material. How-
ever, in the very forward region some space must be kept open for the beam pipes. Moreover,
support structures, cables, cooling systems etc. need to be included in the detector design and
reduce the sensitive volume.

2.2.1 Inner detectors

The ATLAS Inner Detector (ID) consists of three subdetector systems: the Pixel detector
and the Semiconductor Tracker (SCT), which use silicon semiconductor technology, and the

15
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calorimeters are massive and therefore induce electromagnetic showers from electrons and pho-
tons by pair production and bremsstrahlung, and hadronic showers by various processes between
hadrons and matter. Electron and photon showers are typically contained in the electromagnetic
calorimeter while hadronic showers range into the hadronic calorimeter.

Since almost all muons produced at the LHC are minimum ionising particles, they are the only
electrically charged particles which may pass the calorimeters and reach the outermost layer,
which is made of tracking chambers. Hence, these detectors are called muon chambers.

In principle, it is desirable to cover the full solid angle with sensitive detector material. How-
ever, in the very forward region some space must be kept open for the beam pipes. Moreover,
support structures, cables, cooling systems etc. need to be included in the detector design and
reduce the sensitive volume.

2.2.1 Inner detectors

The ATLAS Inner Detector (ID) consists of three subdetector systems: the Pixel detector
and the Semiconductor Tracker (SCT), which use silicon semiconductor technology, and the
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• Particle gun kinetic energy: 20 GeV 

• Single photon (signal)


• 8 physical background classes:


• Different purely EM decays of mesons with 

 different masses → different opening angles


• + noise background class (noise burst in 2nd layer 

 with 1% cross talk to neighbouring cells) 

• Photon ID algorithm at LHC would be trained on 

 effective mixture via parton shower programs

Our Example Use Case

J/ψ→e+e-

η→3π0→6γ

η→γγ

η’→ηπ0π0→10γ

η’→ηπ0π0→6γ

η’→γγ

γ

noise burst

π0→γe+e-

π0→γγ
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Classification Performance

• Setup: 2D CNN with 8 filters and 3x3 kernel size for each calorimeter layer 

          + 10 output nodes all using Flipout (1803.04386)


• Assume weights to be Gaussian distributed, uncorrelated and with Gaussian priors


• Very similar performance to deterministic NN
Deterministic NN Bayesian NN



Mean

Results

• For each image, sample from the weight distributions → mean & variance per image
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Std. Dev.
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Results

• Now: remove one class at a time during training = anomaly (here: J/ψ → e+e-)

Mean Std. Dev.
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Results

• In general, larger uncertainty than before


• Stems from three different cases:


A) Examples with ~0 variance


B) Examples with >1 active output node


C) Examples with “jumpy decisions”

A)

B) C)
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Results

• In general, larger uncertainty than before


• Stems from three different cases:


A) Examples with ~0 variance


B) Examples with >1 active output node


C) Examples with “jumpy decisions”

A)

B) C)

← anomaly not detected

← anomaly seen by deterministic NN & BNN

← anomaly only seen by BNN
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Results

• Another example: noise burst as anomaly

Mean Std. Dev.
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Results

• Standard deviations when each class is removed one-by-one


• Some anomalies are easier to identify than others
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Conclusions

• Bayesian network’s uncertainty estimate may help to identify anomalies


• Semisupervised approach (LHC Olympics 2020, 

                                                     2101.08320)


• We don’t know, yet, if it can compete with 

 specialized AD algorithms 

• One advantage: 

 Provides AD capabilities as a sanitiy/DQ cross check 

 for standard classification tasks (such as ID)


• At some additional training and prediction costs

Section Short Name Method Type Results Type

3.1 VRNN Unsupervised (i) (BB2,3) and (ii) (BB1)

3.2 ANODE Unsupervised (iii)

3.3 BuHuLaSpa Unsupervised (i) (BB2,3) and (ii) (BB1)

3.4 GAN-AE Unsupervised (i) (BB2-3) and (ii) (BB1)

3.5 GIS Unsupervised (i) (BB1)

3.6 LDA Unsupervised (i) (BB1-3)

3.7 PGA Unsupervised (ii) (BB1-2)

3.8 Reg. Likelihoods Unsupervised (iii)

3.9 UCluster Unsupervised (i) (BB2-3)

4.1 CWoLa Weakly Supervised (ii) (BB1-2)

4.2 CWoLa AE Compare Weakly/Unsupervised (iii)

4.3 Tag N’ Train Weakly Supervised (i) (BB1-3)

4.4 SALAD Weakly Supervised (iii)

4.5 SA-CWoLa Weakly Supervised (iii)

5.1 Deep Ensemble Semisupervised (i) (BB1)

5.2 Factorized Topics Semisupervised (iii)

5.3 QUAK Semisupervised (i) (BB2,3) and (ii) (BB1)

5.4 LSTM Semisupervised (i) (BB1-3)

Table 2. A categorization in terms of method and result type for all of the results presented in the
Sec. 3, Sec. 4, and Sec. 5.
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