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The phase transition restoring chiral symmetry at finite temperatures is considered in a linear o model.
For three or more massless flavors, the perturbative € expansion predicts the phase transition is of first or-
der. At high temperatures, the U 4(1) symmetry will also be effectively restored.
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* HISQ fermions
" plan: look at regions, where a 15
order signal is expected
M small masses
Crossover " large N
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Time histories
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Time histories
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Time histories

N¢=5, V=1(|33X6, m.=0.0|01| 3=4.55 :

0.6

o
S
T
<.
3
(S
3
....
PO
L]

¥

e
1
paey
&
X )
is~3,

| MC-Step

0 500 1000 1500

4 An ML approach to the classification of phase transitions in many flavor QCD

2500

3000



S-reweighting

* way to interpolate any observable between (s
™ this includes histogram bins

" reweighting in volume or mass not possible

™ fine sampling in 8 required
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[B-reweighting
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[B-reweighting
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ns | 0.001 0.002 0.003 0.0035 0.004 0.0045 0.005
16 | 17601 19167 11526 0 18866 0 0

24 | 5204 87176 149135 24278 29821 14904 15212
ns | 0.006 0.008 0.010 0012 0014 0.016

16 | 59782 60420 61456 61456 61256 61256

24 | 24756 40237 23648 13380 25574 25499
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about 300.000 GPUh
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Convolutional neural networks (CNNs)

Picture
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Convolutional neural networks (CNNs)

Picture Features
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Convolutional neural networks (CNNs)

Picture Features Pixels
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Convolutional neural networks (CNNs)

Picture Features Pixels Dense
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Convolutional neural networks (CNNs)

Picture Features Pixels Dense Output
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Convolutional neural networks (CNNs)

Picture Features Pixels Dense Output

catness
dogness
horseness
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Convolutional neural networks (CNNs)

Picture Features Pixels Dense Output

catness  0.10
dogness 0.85
horseness 0.05
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Convolutional neural networks (CNNs)

encoder

Picture Features Pixels Dense Output
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dogness 0.85
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Transposed CNNs

encoder

Picture Features Pixels Dense Output

catness  0.10
dogness 0.85
horseness 0.05
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Transposed CNNs

encoder

Picture Features Pixels Dense Output

catness  0.10
dogness 0.85
horseness 0.05

volume
beta
mass
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Model Qutput: p (<1);>)

0.018

0.016

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0.035

0.03

0.025

8 An ML approach to the classification of phase transitions in many flavor QCD

5
V=24°x6
B =4.638

.002

m

<>

0.018

0.016

0.014

0.012

0.008

0.006

0.004

0.002

P<E>)

0.1 0.2 0.3 0.4

0.6

0.2

0.3

P<PYi>)

0.035

0.03

0.025

0.1 0.2 0.3 0.4

0.2

0.3



layer shape
input units = 3
Dense units = 64
Dense units = 265
Dense units = 1024
Reshape shape = (32,32)
ConvlDTranspose filters = 64, kernel size = 2
ConvlDTranspose | filters = 128, kernel size =5
Conv1DTranspose filters = 27E.'>, kernel size = 10,
activation = softmax
output GlobalAveragePoolinglD
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Dropout (rate = 0.2)
between all layers
loss: categorical
crossentropy
implemented in
Tensorflow Keras
model maps 3
parameters

(Ng, 8, my) to 275
histogram bins



reweighted chiral condensate
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ML-reweighted chiral condensate
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ML-reweighted chiral condensate
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ML-reweighted chiral condensate
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five flavor phase diagram
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Ny =5, V =243 x 6, m; = 0.003
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An equation-of-state-meter
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H. Petersen et al., 2016: An equation-of-state-meter of QCD transition from deep learning,
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An equation-of-state-meter with Transformers
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layer shape
input units = (500, 275)
filters = 50, kernel size = 10,
Conv2D strides = (5, 10)
filters = 10, kernel size = 3,
Conv2D strides = (2,2)
Pooling GlobalAveragePooling2D
Dense units = 32
Dense units = 16
output | units = 2, activation = sigmoid
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activation = relu for all layers
Dropout (rate = 0.2)
between all layers

loss: binary crossentropy
implemented in Tensorflow
Keras

model maps (500 x 275)
pixels to firstordernes /
crossoverness



1% order chiral phase transition observed for small m;, Nf =5, N; = 6 in HISQ
good interpolation of p (<1p;>) in Ny, my and 8

“phase transition of the phase transition” described by decoder-only CNN ML
model

Work in progress: m. extraction via “EOS-meter”
add N, dependence (done now)

next: add N and N, dependence to ML model
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