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Physics Motivation

e Galaxy populated by clumps of dark matter
-» N-body simulations*

e Assuming WIMP dark matter:
xx— SM SM (—y)

= A signal like this could already be 075 e . 0
detected among Fermi-LAT sources** E [MeV]
B
1 2 3 4
logyg mpm/GeV

e The Fermi-LAT 4FGL source catalog can help constrain the
properties of dark matter
1. Create realistic set of subhalo simulations
2. Assess detectability
3. Look for subhalo-like spectra among unclassified sources
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e Machine Learning is a powerful tool for classification tasks***
- \We employ a neural network to effectively classify DM subhalos
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Physics Motivation
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The Fermi-LAT 4FGL source catalog can help constrain the
properties of dark matter

1. Create realistic set of subhalo simulations
2. Assess detectability

3. Look for subhalo-like spectra among unclassified sources

Machine Learning is a powerful tool for classification tasks
- \We employ a neural network to effectively classify DM subhalos
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DM Subhalos
Fermi-LAT classified

y - ray spectra Preliminary
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Energy [MeV]
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SImu"atIons . DM model dependent
Subhalo Population
Prefactor PPPC 4 DM ID
PPPC 4 DM ID: Cirelli et al. (2012) , B > —
DM annihilation spectra for each mass, <0-U> dN

-J

and pri.mary annihilation channel, 8 ST MpM dE
assuming WIMPs

CLUMPY Vi3: Hcitten et al. (2018) 0 CLUMPY
J-factor and sky position °Q”v""9o Halo model dependent
of galactic subhalos % 0

https://clumpy.gitlab.io/CLUMPY/

. Initial / Bench k Set
fermipy: wood et al. il Wikt

. . Halo model DM only
(Fermi-LAT collaboration, 2017) RO 80 GeV
Simulate detector effects (ov) 1072 cm® 57!

Final state bb

=» Benchmark classification training set for comparing subhalos with
4FGL catalog

Realistic scenario with simulations as close as possible to real sources
Number of detectable subhalos sufficient for ML approach



INPUT

HIDDEN LAYER

Kathrin Nippel

OUTPUT

Machine Learning Approach
Bayesian Neural Network Classification

e Replace individual weight of Dense NN with weight distributions

Shape of distribution allows for uncertainty estimation of outputs
BNN learns posterior distribution p (w\D) by approximating variational
weight distribution gp (w) using the KL-divergence

KL(q(w)llp(wlD)) = [ dw g(u)log pgirz)»

= w q(w)lo _aw) cons
_/d g(w)l gp(D\w)p(w) - '

. o = KL(¢q(w)||p(w)) — [ dw q(w)log(p(D|w)) + const
Assuming multivariate, .
diagonal Gaussians
= Z log

i

o ZUZJ 2

Op,i + 05.1' + (/lp.,i, - /lq.i)Q 1
q,t

e In practice: Use the Flipout estimator (Wen et al.,, 2018)

Performs a Monte Carlo approximation of the distribution integrating over
the weight and bias to minimize the KL-divergence
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Neural Networks for y-Ray Source
Classification Butter et al. (2022) 2112.01403)

4t Butter et al. (2022)

0. cretd .
e Classification of AGN (BLL vs FSRQ) Aiv:2112.01403
within Fermi-LAT 4FGL-DR2 based

on spectra only
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e Use Bayesian Neural Network for
reliable uncertainty estimates of
classification 0.0k
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e Accuracy: 88.9%
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Preliminary Results

Subhalo vs 4FGL Classification

Confusion matrix

e Classification accuracy
simulated subhalos vs real

0.8
PSR

0.6

4FGL data compatible with
classifications among real o
<5}
source types & AGNY bz
Acc:
e Limits of accuracy: I R g1
. . . 0.28 2.16 0.401
Statistical fluctuation and o
Preliminary
imbalance within data = Z ”
z g A
<
Predicted

- Achieved sweet spot between realistic data set and efficient neural
network
Trained network can give reliable estimate on which unclassified
sources in 4FGL are compatible with DM subhalo model at hand
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Preliminary Results

Subhalo vs 4FGL Prediction Uncertainty
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- Achieved sweet spot between realistic data set and efficient neural

network

Trained network can give reliable estimate on which unclassified
sources in 4FGL are compatible with DM subhalo model at hand
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Data
‘ 4FGL AcN [ DMsubhatos |
Train on Test on
\ 4FGL acN [ DMsuphalos ||
\ 4FGL A6N | DMsubhatos |
‘ 4FGL AGN | DMsubhates | ]
—
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Preliminary Results

4FGL UnID Sources Classified as Subhalos
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e k-fold cross validation approach to training and testing on AGN/PSR

e Fraction of misclassification of known sources smaller than unIDs
classified as subhalo
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astro-ph-leaks
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BUT | MAY BE WRONG THIS IS JUST MY
OWN UNDERSTANDING AT THE
MOMENT.

astro-ph-leaks
° @LeaksPh L 4

Are we seeing new physics already?
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Conclusions & Outlook

Using CLUMPY, PPPC 4 DM ID and fermipy, we have constructed a set of
realistic DM subhalo simulations for a given model

We have carefully evaluated the detectability using complete
simulations of 12 years of Fermi-LAT data and used this to compare to
the 4FGL-DR3 source catalog

We use a Bayesian Neural Network classification approach to
Estimate the uncertainty of y-ray classifier predictions
Conservatively gauge a number of DM subhalo candidates among unclassified
4FGL sources

This approach can be extended to any DM model

10
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ROI counts map

* see also Calore et al. (2017) 1611.03503
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Simulations
Detector Effects

Next Step: Assess detectability and simulate flux detected by Fermi-LAT

Use fermipy for simulating 12 years of Fermi-LAT data

Input: Individual subhalo with given EN\" E\”
position in sky & flux fitted with ¢ = o IR exXp | — oA
‘PLSuperExpCutoff'* 0 0
!
Define ROI around subhalo
{
Fit source among background (diffuse + isotropic) & point sources
(4FGL-DR3)
‘ |
Detection threshold TS = 2log (£/Ly) > 25

Result: Realistic training set consisting of the flux of each subhalo with same
systematics as astrophysical sources + detection significance 11



