
Updates from EM - Photoeffect and Runtime analysis

Jean-Marco Alameddine
23.06.2022

CORSIKA general call



Photoeffect

Analytical formula to describe photoeffect has been implemented in PROPOSAL
→ Implementation just needs to be finalized in PROPOSAL
→ Will be included in the next PROPOSAL release
→ Can directly be used in CORSIKA by updating the version

jean-marco.alameddine@tu-dortmund.de 2 / 10



Runtime analysis - General information

Looking at 10 TeV electron-induced showers, 2MeV cuts

Branch 502-examples-need-some-polishing, commit 94875ed4

→ Note: Shower profiles in both C7 and C8 are highly fluctuating

→ Runtime difference between C7 and C8 of an order of magnitude (≈factor 25)

jean-marco.alameddine@tu-dortmund.de 3 / 10



1. Step: Runtime analysis

Runtime profiling of a single 10 TeV shower

Using perf 5.4.0 with a sampling frequency of 1000 samples per second
→ Count how much time is spent in which function

Magnetic field is enabled

TrackWriter has been disabled (otherwise, there is an extra factor of 1.5 in runtime!)

jean-marco.alameddine@tu-dortmund.de 4 / 10



Function name runtime (% of total)

1. proposal::ContinuousProcess::doContinuous 25.4%
→ PROPOSAL::UtilityInterpolant::GetUpperLimit → 9.8%
→ SlidingPlanarExponential::getIntegratedGrammage → 6.6%
→ LeapFrogTrajectory::getPosition → 4.6%
→ PROPOSAL::multiple_scattering → 2.5%

2. PROPOSAL::Interaction::MeanFreePath 19.5%
→ cubic_splines::BicubicSplines::evaluate → 5.9%
→ PROPOSAL::CrossSectionDNDX::GetIntegrationLimits → 8.1%

3. SlidingPlanarExponential::getArclengthFromGrammage 13.4%
→ LeapFrogTrajectory::getPosition → 9.1%
→ LeapFrogTrajectory::getDirection → 2.3%

4. tracking_leapfrog_curved::Tracking::getTrack 11.1%
→ Intersect::nextIntersect → 8.4%

5. LeapFrogTrajectory::getPosition 6.7%
6. proposal::InteractionModel::doInteraction 3.9%
7. ParticleCut::checkCutParticle 3.7%
8. tracking_leapfrog_curved::Tracking::intersect 2.1%

jean-marco.alameddine@tu-dortmund.de 5 / 10



Function name runtime (% of total)

1. proposal::ContinuousProcess::doContinuous 25.4%
→ PROPOSAL::UtilityInterpolant::GetUpperLimit → 9.8%
→ SlidingPlanarExponential::getIntegratedGrammage → 6.6%
→ LeapFrogTrajectory::getPosition → 4.6%
→ PROPOSAL::multiple_scattering → 2.5%

2. PROPOSAL::Interaction::MeanFreePath 19.5%
→ cubic_splines::BicubicSplines::evaluate → 5.9%
→ PROPOSAL::CrossSectionDNDX::GetIntegrationLimits → 8.1%

3. SlidingPlanarExponential::getArclengthFromGrammage 13.4%
→ LeapFrogTrajectory::getPosition → 9.1%
→ LeapFrogTrajectory::getDirection → 2.3%

4. tracking_leapfrog_curved::Tracking::getTrack 11.1%
→ Intersect::nextIntersect → 8.4%

5. LeapFrogTrajectory::getPosition 6.7%
6. proposal::InteractionModel::doInteraction 3.9%
7. ParticleCut::checkCutParticle 3.7%
8. tracking_leapfrog_curved::Tracking::intersect 2.1%

35.7% of runtime spent directly in PROPOSAL

However, the 8.1% spent in PROPOSAL::CrossSectionDNDX::GetIntegrationLimits are unnecessary!
→ This will be fixed in the next PROPOSAL release so this runtime can be saved! (see PROPOSAL PR #295)

jean-marco.alameddine@tu-dortmund.de 6 / 10

https://github.com/tudo-astroparticlephysics/PROPOSAL/pull/295


Function name runtime (% of total)

1. proposal::ContinuousProcess::doContinuous 25.4%
→ PROPOSAL::UtilityInterpolant::GetUpperLimit → 9.8%
→ SlidingPlanarExponential::getIntegratedGrammage → 6.6%
→ LeapFrogTrajectory::getPosition → 4.6%
→ PROPOSAL::multiple_scattering → 2.5%

2. PROPOSAL::Interaction::MeanFreePath 19.5%
→ cubic_splines::BicubicSplines::evaluate → 5.9%
→ PROPOSAL::CrossSectionDNDX::GetIntegrationLimits → 8.1%

3. SlidingPlanarExponential::getArclengthFromGrammage 13.4%
→ LeapFrogTrajectory::getPosition → 9.1%
→ LeapFrogTrajectory::getDirection → 2.3%

4. tracking_leapfrog_curved::Tracking::getTrack 11.1%
→ Intersect::nextIntersect → 8.4%

5. LeapFrogTrajectory::getPosition 6.7%
6. proposal::InteractionModel::doInteraction 3.9%
7. ParticleCut::checkCutParticle 3.7%
8. tracking_leapfrog_curved::Tracking::intersect 2.1%

20% of runtime spent in functions transforming from grammage to distance (and vice versa)
→ Maybe one can make assumptions (like local densities) to save runtime?
→ However, this will probably bring (steplength) limitations...

jean-marco.alameddine@tu-dortmund.de 7 / 10



Function name runtime (% of total)

1. proposal::ContinuousProcess::doContinuous 25.4%
→ PROPOSAL::UtilityInterpolant::GetUpperLimit → 9.8%
→ SlidingPlanarExponential::getIntegratedGrammage → 6.6%
→ LeapFrogTrajectory::getPosition → 4.6%
→ PROPOSAL::multiple_scattering → 2.5%

2. PROPOSAL::Interaction::MeanFreePath 19.5%
→ cubic_splines::BicubicSplines::evaluate → 5.9%
→ PROPOSAL::CrossSectionDNDX::GetIntegrationLimits → 8.1%

3. SlidingPlanarExponential::getArclengthFromGrammage 13.4%
→ LeapFrogTrajectory::getPosition → 9.1%
→ LeapFrogTrajectory::getDirection → 2.3%

4. tracking_leapfrog_curved::Tracking::getTrack 11.1%
→ Intersect::nextIntersect → 8.4%

5. LeapFrogTrajectory::getPosition 6.7%
6. proposal::InteractionModel::doInteraction 3.9%
7. ParticleCut::checkCutParticle 3.7%
8. tracking_leapfrog_curved::Tracking::intersect 2.1%

24.5% of runtime spent in functions dealing with LeapFrog
→ Could this be optimized? Has this been optimized?

jean-marco.alameddine@tu-dortmund.de 8 / 10



First interpretation: No obvious, single source, where a lot of runtime is spent

Idea: Maybe we make too many steps (compared to CORSIKA 7), which causes everything to be slow
→ Idea: Look at the steplengths that are made within CORSIKA 8
→ Make a histogram of all calls to proposal::ContinuousProcess::doContinuous with the associated

steplengths!

jean-marco.alameddine@tu-dortmund.de 9 / 10



Two clearly separated structures can be seen

Comparison with CORSIKA 7 would be very interesting
→ Currently talking to Dominik B. to extract step length information from CORSIKA 7

jean-marco.alameddine@tu-dortmund.de 10 / 10



Appendix

Showers without magnetic field are about 30% faster

There are less small steps made for charged particles

jean-marco.alameddine@tu-dortmund.de : 0 / 0


	Appendix

