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Why Fermi-Dirac and Bose-Einstein
are distinct?

WE DON’T KNOW




Pauli Exclusion Principle?

Beyond Standard Model ideas
1 Green’s general quantum field: paronic particles
4 Order 1: fermionic/bosonic fields
4 Order>1: parafermionic/parabosonic fileds

4 Messiah-Greenberg Super-Selection: no fermion/boson decays into parafermion/
paraboson (and vice-versa)

4 Paronic: a mixture of fermionic/bosonic and parefermionic/parabosonic states
4 Non-Commutative Quantum Gravity
4 8-Poincaré: distortion of Lorentz symmetry (visible in a two identical particles system)

Both break the anti-/symmetric commutativity with an amplitude G.
In a system of two fermions (i.e., two electrons),

PEP is violated with a probability of /2

VIP-2 GOAL
searching Vlolation of Pauli Exclusion Principle

Limits exists but only for hadron-hadron or hadron-lepton cases!

VIP-2 aims to lepton-lepton case!
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Signal: X-Rays

Ejected K-shell electron Incident radiation

M-shell electron
fills vacancy

L-shell electron

K, x-ray emitted fills vacancy

K. X-ray emitted

Shells
(orbits)




X-ray tube
Veto scintillators
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Data Likelihood
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Bayesian approach

CACZ 0.y, ©)p©.y. ) >4 Priors of @ and y
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are Gaussians:
statistical
fluctuations
around known
values

" Prior of o is flat,

limited from
previous
experiments

+ Systematic

uncertainties
included
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Markov Chain Monte Carlo method

B smallest 95 interval(s)
smallest 90 interval(s)
smallest 66 interval(s)

------ global mode

----------------------- local mode

200 300

are Gaussians:
statistical
fluctuations
around known
values

“ Prior of o Iis flat,

limited from
previous
experiments
Systematic
uncertainties
iIncluded




Modified frequentist: CLs

Z@0,y, ) =L, 10,y, 5)p,y, )

Z@.5.
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Ps = [ S| Sdtg Cls =
Lobs

one-sided Likelihood Test statistic
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Modified frequentist: CLs
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Modified frequentist: CLs
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From & to #%/2




From & to #%/2

/ efficiency simulated:

e Nint . considered X-ray
~— - Nnew 0 - 7.25 %10 absorption + geometry
4 acceptance + SDDs
T efficiency

Number of interactions;
every ~10 interactions, 1 cascade

|
Newly injected electrons!

Z [.At./e (= [At/e for simplicity)
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From & to #%/2

/ efficiency simulated:
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From & to #%/2

/ efficiency simulated:

e Nint . considered X-ray
~— - Nnew 0 - 7.25 % 10 absorption + geometry
4 acceptance + SDDs
T efficiency

Number of interactions;
every ~10 interactions, 1 cascade

|
Newly injected electrons!

Z LAt/e (= IAt/e for simplicity)

| 4
(2 10 e 1
2 Nint 1At 7.25x 1072

Nt is the normalization that decides the order of magnitude of 3%/2
Let’s discuss e—atoms interaction Models!
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Nint by Linear Scattering

D

lu 2u 3u 4u Su 6u

Through Copper Resistance,
we know the average interaction length

Nint = D/p =~ 1.95 x 10°
'Bz 10—31
2
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Nint by Close Encounters

Reservoir Diffusion

Through Diffusion-Transport theory and Copper atomic density,
we Know:

e the average time 7, on atomic encounter for a diffused electron
e the average time 1 of target crossing by an electron

Nt = Tltg =~ 4.29 X 10"
2
IB 0—43
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Outlook

Bayesian

2 Well established: excellent for low statistical signals
> Systematic uncertainty is the combination of different priors for the various factors

CLs

2 Models with little or no sensitivity to the null hypothesis, e.g., if the data fluctuate very low
relative to the expectation of the background-only hypothesis: the lower/upper limit might
be anomalously low; more robust compared to the classic p-value

2> Sensible to small parameter fluctuations

Nint
4 Linear Scattering: due to phonons and lattice irregularities
Safest hypothesis
ﬁ Largely underestimation of how many interactions an electron does
% Close Encounters: a more realistic model of e-atom encounters, but still approximated

12 order of magnitudes larger than Linear Scattering!
2 This is the key element to improve the measurement!
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Nint
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 Close Encounters: a more realistic model of e-atom encounters, but still approximated
12 order of magnitudes larger than Linear Scattering!
2 This is the key element to improve the measurement!

THANK YOU
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TO DO: a quantum N;n+?

How many interactions between Cu atomic and electron fields occur?
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