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Why Fermi-Dirac and Bose-Einstein 
are distinct? 

 
WE DON’T KNOW
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Pauli Exclusion Principle?

VIP-2 GOAL 
searching VIolation of Pauli Exclusion Principle


Limits exists but only for hadron-hadron or hadron-lepton cases!

VIP-2 aims to lepton-lepton case!

Beyond Standard Model ideas

Green’s general quantum field: paronic particles


Order 1: fermionic/bosonic fields

Order>1: parafermionic/parabosonic fileds

Messiah-Greenberg Super-Selection: no fermion/boson decays into parafermion/
paraboson (and vice-versa)

Paronic: a mixture of fermionic/bosonic and parefermionic/parabosonic states


Non-Commutative Quantum Gravity 
θ-Poincaré: distortion of Lorentz symmetry (visible in a two identical particles system)


Both break the anti-/symmetric commutativity with an amplitude β.

In a system of two fermions (i.e., two electrons),


PEP is violated with a probability of β2 /2
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Signal: X-Rays
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VIP-2

Target: Copper strips

WITHOUT CURRENT configuration: regime 
case (stable states: background)

WITH CURRENT configuration (180 A): dynamic 
case (PEP violation through electron capture)


SDD: 32 detectors by SDDs, stably kept  @ 
 °C even with the current in Cu


@LNGS Underground (beneath Gran Sasso 
Mountain – IT): ~1400 m of rock shielding

−170+1
−0



Data model
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26916404 s (~ 312 days)

27110263 s (~ 314 days)

Kα Cu

Kα Ni



Data model
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26916404 s (~ 312 days)

27110263 s (~ 314 days)

Kα Cu

Kα Ni

ℱwoc(θ, y) = y1 × Ni(θ1, θ2)+y2 × Cu(θ3, θ4)+y3 × pol1(θ5)+𝒮 × PEPV(θ4)
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Kα Cu

Kα Ni

Data model
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ℱwc(θ, y, 𝒮) = y1 × Ni(θ1, θ2)+y2 × Cu(θ3, θ4)+y3 × pol1(θ5)+𝒮 × PEPV(θ4)

7729 eV

~ –300 eV with 
respect to Kα Cu 
(electron shielding)

Same Kα Cu 
resolution (i.e., σ 
of the detector)



Data Likelihood
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26916404 s (~ 312 days)

27110263 s (~ 314 days)

Kα Cu

Kα Ni
PEPV

ℒ(𝒟wc, 𝒟woc |θ, y, 𝒮) = Poiss(𝒟wc |ℱwc(θ, y, 𝒮)) × Poiss(𝒟woc |ℱwoc(θ, y × ℛ))

Ratio of data 
acquisition time

[mind: ,   are data,  is the model]Poiss(𝒟 |ℱ) =
ℱ𝒟

𝒟!
e−ℱ 𝒟 ℱ



Bayesian approach
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p(θ, y, 𝒮 |𝒟wc, 𝒟woc) =
ℒ(𝒟wc, 𝒟woc |θ, y, 𝒮)p(θ, y, 𝒮)

∫ dθdyℒ(𝒟wc, 𝒟woc |θ, y, 𝒮)p(θ, y, 𝒮)
Priors of  and  
are Gaussians: 
statistical 
fluctuations 
around known 
values

Prior of  is flat, 
limited from 
previous 
experiments

Systematic 
uncertainties 
included

θ y

𝒮

p(𝒮 |𝒟wc, 𝒟woc) = ∫ p(θ, y, 𝒮 |𝒟wc, 𝒟woc)dθdy



Integrals with 
Markov Chain Monte Carlo method
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Bayesian approach
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Modified frequentist: CLs

t𝒮 = − 2 ln Λ(𝒮) = − 2 ln
ℒ( ̂ ̂θ, ̂ŷ, 𝒮)
ℒ( ̂θ, ŷ, 𝒮̂)

p𝒮 = ∫
∞

tobs

f(t𝒮 |𝒮)dt𝒮 CLs =
p𝒮

1 − p0
< 1 − C.L.

one-sided Likelihood Test statistic

ℒ(θ, y, 𝒮) = ℒ(𝒟wc, 𝒟woc |θ, y, 𝒮)p(θ, y, 𝒮)
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Modified frequentist: CLs

Computation with RooFit

t𝒮 = − 2 ln Λ(𝒮) = − 2 ln
ℒ( ̂ ̂θ, ̂ŷ, 𝒮)
ℒ( ̂θ, ŷ, 𝒮̂)

p𝒮 = ∫
∞

tobs

f(t𝒮 |𝒮)dt𝒮 CLs =
p𝒮

1 − p0
< 1 − C.L.

}CLs expected in 
case of  
but measured 

𝒮 = 0
𝒮

CLs expected with 
measured 𝒮

line of p-value = 0.1

one-sided Likelihood Test statistic

90% of C.L.

ℒ(θ, y, 𝒮) = ℒ(𝒟wc, 𝒟woc |θ, y, 𝒮)p(θ, y, 𝒮)
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Modified frequentist: CLs

Computation with RooFit

t𝒮 = − 2 ln Λ(𝒮) = − 2 ln
ℒ( ̂ ̂θ, ̂ŷ, 𝒮)
ℒ( ̂θ, ŷ, 𝒮̂)

p𝒮 = ∫
∞

tobs

f(t𝒮 |𝒮)dt𝒮 CLs =
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}CLs expected in 
case of  
but measured 

𝒮 = 0
𝒮

CLs expected with 
measured 𝒮

line of p-value = 0.1

one-sided Likelihood Test statistic

90% of C.L.

ℒ(θ, y, 𝒮) = ℒ(𝒟wc, 𝒟woc |θ, y, 𝒮)p(θ, y, 𝒮)

Background Hypothesis 
as Asimov Dataset 

(generated ideal dataset most likely 
representing the model)



From  to 𝓢 β2/2
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𝒮 ≃
β2

2
⋅ Nnew ⋅

Nint
10

⋅ 7.25 × 10−2



From  to 𝓢 β2/2
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𝒮 ≃
β2

2
⋅ Nnew ⋅

Nint
10

⋅ 7.25 × 10−2

efficiency simulated: 
considered X-ray 
absorption + geometry 
acceptance + SDDs 
efficiency

Newly injected electrons! 

 (   for simplicity)
runs

∑
i

IiΔti /e = IΔt/e

Number of interactions; 
every ~10 interactions, 1 cascade
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From  to 𝓢 β2/2
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efficiency simulated: 
considered X-ray 
absorption + geometry 
acceptance + SDDs 
efficiency

Newly injected electrons! 

 (   for simplicity)
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∑
i
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Number of interactions; 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𝒮 ≃
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 is the normalization that decides the order of magnitude of 

Let’s discuss –atoms interaction Models!

Nint β2/2
e



 by Linear ScatteringNint
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D

e

1μ 2μ 3μ 4μ 5μ 6μ

Through Copper Resistance, 
we know the average interaction length μ

Nint = D/μ ≃ 1.95 × 106

⇒
β2

2
⪅ 10−31



Through Diffusion-Transport theory and Copper atomic density, 
we know:


• the average time  on atomic encounter for a diffused electron

• the average time  of target crossing by an electron

τE
T

Diffusion

 by Close EncountersNint
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T

e

Reservoir

τE

Nint = T/τE ≃ 4.29 × 1017

⇒
β2

2
⪅ 10−43



Outlook
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Bayesian 
Well established: excellent for low statistical signals

Systematic uncertainty is the combination of different priors for the various factors


CLs 
Models with little or no sensitivity to the null hypothesis, e.g., if the data fluctuate very low 
relative to the expectation of the background-only hypothesis: the lower/upper limit might 
be anomalously low; more robust compared to the classic p-value

Sensible to small parameter fluctuations


 
Linear Scattering: due to phonons and lattice irregularities


Safest hypothesis

Largely underestimation of how many interactions an electron does 


Close Encounters: a more realistic model of -atom encounters, but still approximated

12 order of magnitudes larger than Linear Scattering!


This is the key element to improve the measurement! 

Nint

e
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Bayesian 
Well established: excellent for low statistical signals

Systematic uncertainty is the combination of different priors for the various factors


CLs 
Models with little or no sensitivity to the null hypothesis, e.g., if the data fluctuate very low 
relative to the expectation of the background-only hypothesis: the lower/upper limit might 
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Linear Scattering: due to phonons and lattice irregularities


Safest hypothesis

Largely underestimation of how many interactions an electron does 


Close Encounters: a more realistic model of -atom encounters, but still approximated

12 order of magnitudes larger than Linear Scattering!


This is the key element to improve the measurement! 

THANK YOU

Nint

e



BACKUPS



TO DO: a quantum ?Nint
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e ⟩

Cui ⟩

How many interactions between Cu atomic and electron fields occur?


