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@ Feynman integrals e

® Feynman integrals are the building blocks for multi-loop
scattering amplitudes.

= [mportant both for collider and gravitational wave

phenomenology.

= A window into the mathematical structure of pQFT.

® They exhibit a rich mathematical structure, with connections

to (algebraic) geometry.

® We would like to understand the underlying mathematics as
well as we can!
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@ 1-loop mtegrals as volumes L

® Example: All 1-loop integrals compute the volumes of some

polytope 1n hyperbolic space. [Davydychev, Delbourgo; Schnetz; ..
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@ Fishnet integrals L

® Here: We focus on fishnet integrals (in D dimensions).
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@ Fishnet integrals L

® They are invariant under the Yangian Y (so(1, D + 1)) of the

conformal group in D (Euclidean) dimensions (with conformal weight 1 at

each external pOint)° [ Chicherin, Kazakov, Lébbert, Miiller, Zhong;
Lobbert, Miczajka, Miiller, Miinkler]

= Conformal (level 0) generators: J* = Z J4
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= [evel 1 generators: JA = %fABC S: . JkaB + Z SJ’J?
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= [nvariance of the integral associated to the fishnet graph G :

JAI, = J4T = 0



@ Fishnet integrals L

O They compute correlators in the D - dimensional fishnet theory:

['FN,D = N, tr [Y(— )D/4X _|_?(_ )D/4Z e )\2 WXZ} [ Giirdogan, Kazakov;

Kazakov, Olivucci]
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® Traintrack integrals compute specific supercomponents of

N =4 amplitudes in D =4 . [Caron-Huot, Larsen;
Bourjaily, He, McLeod, von Hippel, Wilhelm]
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@ Results in D =4

® [adder integrals: (single-valued) classical polylogs (for all loops).

0 —@ 1 [ Davydychev, Ussyukina]

[ Kristensson, Wilhelm, Zhang;

® Two-I rain track: ellipti lvlogs.
O OOP tra trac € P tic p O y Ogs Morales, Spiering, Wilhelm, Yang, Zhang]

® /-loop traintrack: geometry is Calabi-Yau (¢ — 1)-fold.

[ Bourjaily, He, McLeod, von Hippel, Wilhelm]
® Basso-Dixon Formula:

z

1 ~ det ( 0 _0 1 ) [ Basso, Dixon]
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@ Results in D = 2 e

® /-loop ladder integral: bilinear in ¢4+1F7 - functions.

® Basso-Dixon formula in 2D:

[ Derkachov, Kazakov, Olivucci]

® No known resu

ts for multi-variable traintracks.

® Observation: 1-loop can be expressed as elliptic integrals:

0%
| 4 . 1 2 periods of
_ K(] — -K periods of an
1 @3 [a12a34] [. ( ?) (2)] elliptic curve
o
1 ! dx a23a14 2 [ Corcoran, Lébbert,
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Outline

1. Brief overview of Calabi-Yau geometry.

2. 2d hishnets and Calabi-Yau geometry.

3. Yangian-invariant Calabi-Yau periods

4. Fishnet integrals as volumes.






@ Calabi-Yau varieties L

® A Calabi-Yau /-fold 1s an /-dimensional complex Kihler

manifold with a unique nowhere vanishing (¢, 0)-form.

= (p, q)-form: p holomorphic and g anti-holomorphic differentials.

= Uniqueness of (£, 0)-form is equivalent to vanishing of 1st
Chern class.

® A Calabi-Yau /¢-fold 1s uniquely defined by a triple

CO?pleX .malzifoid of (]\47 Q) w) Kihler form; (1, 1)-form (~metric)
e (¢,0)-form (defines complex structure)

® Example: Calabi-Yau 1-fold = elliptic curve

dz ~ /a
<E,dz:?,Adz/\dz> @




@ Calabi-Yau varieties L

® We are typically interested in families of CY varieties:

P 7 & CYZ2
2

= [or each z there 1s a CY variety M, with a given top-form (2, .

® Example: Family of elliptic curves: y* = z(1 — z)(1 — zz)

: : d d
= For each z thereis £, with Q, = = -

y Vol —z)(1 —zx)

= This does not fix the Kihler form! (We can still scale the torus, 1.e.,

its area 1s not fixed!)
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{@ Periods
® We can integrate (), over a basis of cycles of Hy(M,, 7).
= Periods: TI(z) = (To(2),....T0,, 1(2)),  TL(z) = / Q.
I';

® The periods are multivalued functions of 2.

= Thereis a monodromy-invariant bilinear pairing on periodsz

/ Q. AL ~ TI(2)TSTI(2) 57 = (—1)f

z

® The periods are not all independent, but there 1s a quadratic
relation among them:

1(2)! STI(2) ~ / O, AQ, =0

M



@ Picard-Fuchs ideal [

® For every family of CYs, there 1s a set of differential operators
whose solutions are precisely spanned by the periods!

= They generate an 1deal of differential operators, the Picard-
Fuchs ideal (PFI) of the tamily of CYs.

= For l-parameter families, we only need a single operator, the
Picard-Fuchs operator.

® Advantage: We can obtain the periods as solutions of certain
ditferential equations.

® For certain l-parameter families, the corresponding ditferential
operators have been studied extensively.

= (Calabi-Yau operators. [van Straten; Bogner; ...]



@ The Legendre family L

® Example: Family of elliptic curves: y* =z(1 —2)(1 — zx)

" dx dx ,
()= [ L =2k() M) = [ -k -

(8%

= Bilinear pairing: X = (—01 (1))

[I(2)' ST (2) = 4i [K(2)K(1 — 2) = K(2)K(1 — 2)] = 0
4

I1(2)"S11(2) = 4i [K(2)K(1 — 2) + K(2)K(1 — 2)]

1-loop 2D fishnet integrall

= Picard-Fuchs operator: L = 2*(1 — 2)07 4 z(1 — 22)0, — Z

Lf(z) =0+« f(z) = All,(2) + B1lg(2) A,BeC






@ 2D tishnets e

® Holomorphic factorisation:  x;, = &}, +i&; ap = oy +io;

= G = Sdnnda,

¢ dz; A dx; 1
la(a) = —
a(a) /(H —24 )\/Pg(x,a)Q

j=1
az

O Example: G = a1% as Po(z,a) = (x1 —ay) - (x1 — ay)
a4

® The Yangian also splits holomorphically:

Y(s0(1,3)) = Y(sl(R)) & Y(sl>(R))



@ 2D fishnets and CYs L

® When does y* = Pz(z,a) define a CY ¢-fold?
= The 1st Chern class must vanish.

= This happens if Pg(x,a) has degree 4 in each zy .

= This conditions 1s always satistied for fishnet graphs,
because all vertices are 4-valent!

Conclusion:

To every £-loop fishnet graph GG we can associate a family Mg
of CY {-folds parametrised by a = (ay,...,a,) and
holomorphic (¢, 0)-form

dxi A -+ A dxy

\/Pg(a}, a)

[CD, Klemm, Lébbert, Nega, Porkert]




@ 2D fishnets and CYs L

® The Feynman integral 1s related to the periods:

Coda; A dzy 1
IG(CL)_/ (H — 24 ) VIPa(z,a)l?

g=1

N/ Qe NQa ~ Hg(a)TZHg(&)
Mg

= Generalises the bilinear expression at 1-loop:

1-loop 2D

H(Z)TZH(Z) =4 [K(Z)K(l — 2) T K(Z)K(l o Z)] fishnet integral |

® The periods are obtained by solving the PF differential

equations.

= How can we find them?



@ 2D fishnets and CYs L

® Let J € Y(sly(R)). Yangian-invariance implies:
0=J[g(a)] ~J[Hg(a)SMg(a)] ~ He(a)'SJT He(a)
= J[[g(a)] =0
= Y (sl3(R)) C PFI

® The PFI contains more operators...
® [ssue:
= The Yangian is built on a cyclic ordering of the external points.

= [Fishnet graphs have more symmetries.

= [Example: (o — a1¥ s Aut(G) = 5y



@ 2D fishnets and CYs 7

® For all examples we studied: we obtain the complete PFI if we
add to the Yangian all its Aut(G) permutations.

Conjecture:

The PFI of Mg 1s generated by the Yangian Y (sl3(R)) and all
its Aut(G) permutations.

[CD, Klemm, Lébbert, Nega, Porkert]

® Geometry informs physics, physics informs geometry!

Fishnet integral  —— Periods of Mg

!

Yangian + graph  em— PFI of Mg

symmetries
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2- & 3-loop traintracks v

® We reproduce in this way results for 1-parameter ladder and

fishnet graphs to high loop order!

® New results: 2- and 3-loop traintrack in general kinematics:

ao as a4

Ic(a) = |Fo(a)|* ¢c (2)

Ccross ratios

[CD, Klemm, Lébbert, Nega, Porkert]



octp) 9-loop ladder v

® Periods of a I-parameter family of CY 2-folds (K3 surfaces) can

always be expressed in terms of products of elliptic integrals!
[ Doran; Bogner]

= The two-loop ladder integral can be expressed In terms of
elliptic integrals!

32 _ _
- (K, K_+K_K,)’
\a12a34a24|
_ 1/ | _ Q23014
K:|: —K(§( T 1—2)) & — 9105

[CD, Klemm, Lébbert, Nega, Porkert]

® For higher loops, no representation in terms of elliptic
integrals 1s expected to exist.
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@ Yanglan-lnvarlant perlods ﬂ

® Y(slx(R)) C PFI implies that the periods are Yangian-invariants!

= Do we get all invariants (for this particular representation)?

® No! Example: The following 8-point integrals are both Yangian-

Invariant:

a as
as A3 a4 ai a4
ag ar Qg as as

a7 g

® We get all invariants with a prescribed symmetry group of the
form Aut(G).

= Why all? The PFI is generated by Y (sl3(R)) and Aut(G),

and the periods form a complete set of solutions.



{\\J Yangian-invariant periods

® The periods compute the 1D fishnet integrals!
1 D=1 1

¥, T @ o G T

= [Fishnet integral in 1D: IE7 (a) = / Qa
RL

® ‘Double-copy’ formula for 2D fishnets?

Ia(a) ~ /M 06 ATe ~ Tg(a) SHe(a)

N/QG
I';

= Similar to KLT relation for string amplitudes.

= [n fact, 1t 1s the single-valued map, just like in string theory!

[cf. Stieberger, Taylor; Schlotterer, Schnetz; Brown, Dupont; ...]
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@ Yanglan-lnvarlant perlods u

® Basso-Dixon formula for 1D fishnet/ Yangian-invariant periods:
CY 3-fold /4 Yangian-invariant periods:

—

$ (To (2), Ty (2), Tz (=), Tls(2)

CY 4-fold / 5 Yangian-invariant periods:
—

(D01 (2), Doa(2), Dos(2), Dia(2), D23(z))

II;(z 11;(z
Dij (Z) = det (8ZHE;()Z) azHg ()Z))

1 relation from II(z)' XII(2) = 0: D13(2) = Dga(2) [cf. Almkvist]

® In general: the periods associated to M x N fishnets (M < N')
are M x M determinants of of the (derivatives) periods of

(M + N —1)-loop ladders graphs.

= PBasso-Dixon formula for Yangian-invariant CY periods!



78\ . . . . '
{@ Yangian-invariant periods e
® We can combine the ‘double-copy’ formula with the Basso-
Dixon formula in 1D and 2D:
1252 (a) = Ten(a) SenTex (a)

1D-BD
~ det (8’“HLad (CL) ) T EFN det (8ZHFN (a))

2 det (akfgfd, (a))

[f)\(} det <8kHLad/ (CL)TZLad/ alHLad/ (CL))

= Highly non-trivial relation between CY periods!

= Not even the loop orders of the ladder integrals involved are
the same!






@ Fishnets as volumes L

® In4D:

1 X

oo = gt 2 ~va(LAY)

X;

= No known extension beyond 1-loop.

® In 2D: Which metric shall we use?

= ()c defines a complex structure on Mg, but no Kihler
structure!

= We have no canonical choice of metric to compute a volume...



@ Mirror symmetry L

® Mirror symmetry: CY /-folds come in pairs (M, W) s.t.
dim HP9(M) = dim H*P4(W)
HP9(M) = cohomology classes of (P, ¢)-forms

® Mirror symmetry exchanges complex and Kihler structures:

MS
HV Y (M)  ——  HYYW)

Parametises complex Parametises Kihler
structures on M structures on W
MS Basis of
0O — W= Imt,(z))e€;
Z > ) @ et
: L1;(= log-d1 luti
Mirror map: tz(z) = Z( ) ~ log z; + 0(22) 8 dlverge.nt >0 u.tlons
11g (Z) holomorphic solution




The classical volume L

Fishnet graph G

— ~~

Complex structure Kihler structure
QG on MG W@ on WG

® C(lassical volume:

14
Vola (We) = / =L (%(2) = Tm t;(2)
WG

Cl R R
é' Z C wtzl ) tzg(z)

1. - : :
= (, ...;, are (explicit computable) Intersection numbers.
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Coctp) Fishnets as volumes L
N/
® | loop:
Ttoop(a) ~ K()K(1 - 2) + K(Z)K(1 - 2) = 2[K(2)[* BFE)
T(Z) _ ’iK(l B Z)/K(Z) i100p,0(2)|% overall scale  Vola. (Wiioop)
® 2 loops:
Iotoop(a) ~ (K4 K-+ K_K.)* = 4K | @)
T(Z) — ZK_|_/K_ ’1_[2—100p,0(z)‘2 VOICI.(WZ—loop)
® 3 loops:

IS-IOOp(a) Cad |H3-loop,0(z)‘2 VO]CI.(WS—loop)



@ The quantum volume L

® For / > 3, the volume receives instanton corrections:

= (Quantum volume:

H(;(Z)TZH(;(Z) ~ |HG70(Z) ‘2 VOlq(Wc;)

~ [T o(2)]? Volg, (Wg) + O(e 1 (2))

= The same notion of quantum volume appears 1n string theory
and geometry. [cf. e.g. Lee, Lerche, Weigand]

® Instanton corrections are absent for elliptic curves and K3
surfaces.

= The classical and quantum volumes agree for £ =1, 2.



@ Pure functions? L

® Ior l-parameter families, the periods close to z = 0 behave like:

1
(k —1)

HGJ{(Z) — HGJ(Z) ' logk_l 2+ O(Z) (For fishnets, z 1s

the cross ratio)

. They can be WT itten dS [CD, Klemm, Nega, Tancredi]:

HG,k(Z) — HG,l (Z) I(YOa Yi,..., Ye_o; Q) [terated integrals
letters = Y-invariants of the CY  [cf. Bogner]

1

](Y(),Yl,..-,Yk_Q;Q) — (k— 1)

' logk_l q+ O(q) Pure functions?

® Interesting observation: quadratic relations among CY periods
turn into simple shuffle relations among iterated integrals!

H(Z)TZH(Z) — O < |_|_|(1d X S)Adec = ( [cf. Nega’s talk]
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@ Pure functions?

l.0(2) = T () (AN
g (2) Slg (2) ~ e o(2)[? Noly(We)

® To be compared with 4D box:

Pure functions?

Bloch-Wigner

4 L dilog

gy = — <

Pure function

® Does the same work for more parameters?

= Works for K3/ 2-loop, currently checking 3 loops!



Summary

Physics CY geometry
— f -loop fishnet graph G — Family of CY /-folds Mg

— Feynman integrand {2 A Qc - (£,0)-form Q¢
— Cross ratios of external points — Independent moduli

— Yangian and graph symmetries — Picard Fuchs ideal

- Yangian invariants — Periods

— Basso-Dixon formula — Alternating products of PF
operators.

- Feynman integral I5(a) — Quantum volume of W




@ Conclusions L

® 2D Yangian-invariant fishnet integrals are closely related to
Calabi-Yau geometries!

® This gives a new way to compute these integrals:

= Computation of these fishnet integrals 1s reduced to the
computation of the periods.

= Periods are obtained form PF differential equations.

= PI differential equations are generated by Yangian and
permutation symmetries.

® Bonus: first Interpretation of a multi-loop integral as a volume.

= Recelves instanton corrections starting from 3 loops.
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@ Conclusions

® Implications of Yangian symmetry for geometry?

= Basso-Dixon formula for periods?

® Implications for integrability of fishnet theories?
= Fxplanation of instanton corrections at 3 loops?

= Are there other Yangian ivariants besides the periods?

® s there a similar story for 4D fishnet integrals?

= Volume interpretation in 4D?

= Role of mirror symmetry in this context?
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7 N\ ,
@ 1-loop integrals as volumes




