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Section 1

Executive summary
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Executive summary

Consider a sequence which starts as

I =0: 1
I =1: 0
/I=2: ©6-6
/=3: 6:-6-6

We would like to understand the general term at / loops.
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Executive summary

We first compute the (/ = 4)-term:

| =0: 1

I =1: 0

| =2: 6-6

| = 3: 6-0-0

| = 4: 99-%2-66
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Executive summary

The general term at | loops is given by

1 1 1 1 1
0- .0- .0- e —0-—-0-—-0
Y1 Yi—2 Yi-3 Y3 Y: Yi
and we have
Y = 1
and the duality
i = Y
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Executive summary

Up to seven loops we therefore have

I =0: 1
I=1: 0
I=2: 6-0
I = 3: 0-0-0
I = 4: 9-9-%-6-6
2
I =5: 9-9-%2-6-%2-9-9
| = 6: 6-6-;-2-9-%3-6-%-9'9
| = 7 9.9.%.9.%.9.%.9.%.9.9
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Executive summary

® Oisthe 0= qdiq in the variable g, the functions Y; are
called Y-invariants.
_@21gd 1a102:
e N=6 72673739729 is the of a

Calabi-Yau operator.

@ Operators like N are related to of Calabi-Yau
Feynman integrals.

@ From the factorisation of N we may construct the e-factorised differential
equation.
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Section 2

Calabi-Yau Feynman integrals
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Calabi-Yau manifolds

Definition
A Calabi-Yau manifold of complex dimension nis a compact Kahler manifold M
with vanishing first Chern class.

v

Theorem (conjectured by Calabi, proven by Yau)

An equivalent condition is that M has a Kéhler metric with vanishing Ricci
curvature.

4
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Calabi-Yau manifolds

Sometimes one defines Calabi-Yau manifolds by the stronger condition that M

has a Kahler metric with local holonomy Hol(p) =

SU(n).

@ This implies the previous condition, but the converse is not true.

@ This requirement excludes for example Abelian surfaces or Enriques

surfaces.

@ This condition implies for the Hodge numbers

h™ =1, and KO =0,

0 0 2 2
1 20 1 1 4 1
0 0 2 2
1 1
K8 surface Abelian surface
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Calabi-Yau manifolds

Theorem

Let X be a hypersurface defined by a homogeneous polynomial P of degree
n+2 in CP™'. If X is smooth, than X is a Calabi-Yau n-fold.

Example

P = aiamaz+(ai+ax+as)(ara+ aaz+azar)y

is homogeneous of degree 3 in the variables [a; : a, : a3]. It defines a
hypersurface in CIP2. The hypersurface is smooth for y ¢ {0, —1,— 3, c0}.
Hence, P defines for generic y a Calabi-Yau one-fold.
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Fantastic Beasts and Where to Find Them

@ Bananas @
@ Fishnets N

H
@ Amoebas ;Xz
@ Tardigrades : i
@ Paramecia

Aluffi, Marcolli, ‘09, Bloch, Kerr, Vanhove, '14
Bourjaily, McLeod, von Hippel, Wilhelm, '18
Duhr, Klemm, Loebbert, Nega, Porkert, '22
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Fantastic Beasts and Where to Find Them

The standard example for this talk will be the family of

)
N/

These integrals depend on one kinematic variable

In two space-time dimensions and with unit powers of the propagators the
integral is given in the Feynman parameter representation by

’
ho1 = /dl+1a5(1—a1—m—a/+1)?

where ¥ is the second graph polynomial.
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Fantastic Beasts and Where to Find Them

Where is the Calabi-Yau manifold?

For the banana integrals it's very simple: The second graph polynomial F is
homogeneous of degree (I+ 1) and defines a hypersurface in CP'. The
hypersurface is smooth for generic values of y, hence ‘F defines a Calabi-Yau
(I—1)-fold in Feynman parameter space.

Example

The second graph polynomial of the two-loop banana graph (i.e. the sunrise
graph) defines for y ¢ {0,—1,—1, e} the Calabi-Yau one-fold

aiapaz+ (a1 +ax+as3) (a1ax+ apaz + azay)y = 0.
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Section 3

The non-e-factorised differential equation
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Integration-by-parts and differential equations

@ The family of equal mass banana integrals has
. A possible basis is given by

I = (h. 10, h. 1112, h10).

An alternative basis is the derivative basis given by

d dlf1
I hoat, —hoats ooy —=hoa ).
<1...107 1.1 dy 1.1 dylf‘] 1 11>

@ We start from a non-e-factorised differential equation
d = Al

In principle this differential equation can be obtained by using

@ Standard integration-by-parts reduction programs work efficiently for
| <5.
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Integration-by-parts and differential equations

@ The I-loop banana integral has (/4 1) propagators, i.e. the number grows
linearly with /.

@ |IBP-reduction programs work with an auxiliary graph, where every scalar
product involving a loop momentum is expressible as a linear combination
of inverse propagators. The auxiliary graph has

]
Ny = SI(1+3)

propagators, this number with [:

I 11123 4| 5| 6| 7
Ny | 2519|1420 | 27| 35
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The Bessel representation

@ The integral /111 has the integral representation

—£),,—£ ’ t I+1
I1.4.11 — e/ﬁ"{E2/(1 E)y 3 /dt t1+I€J7 (_) K . (t
J \ 7 [K-e ()]

Jv(2): Bessel function of the first kind,
Ky(z): modified Bessel function of the second kind.

Berends, Buza, Bohm, Scharf, '94

@ We may derive the differential equation from this representation.
Vanhove, '14,
B?inisch, Duhr, Fischbach, Klemm, Nega, '21

@ This allows us to obtain the differential equation up to I=15 loops
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Singularities

Apart from the points 0 and o the possible
are obtained by considering all sign choices of

p° = (mEtm+---£m)?
with (/4 1) summands inside the bracket.

The set S() encodes these singularities and is given by squares of odd or
even numbers:

s

{1}

{4}

{1,9}
{4,16}
{1,9,25}
{4,16,36}

a s~ OND-—= O~
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The non-¢e-factorised differential equation

We therefore obtain alternatively:
@ A system of (/+ 1) first-order differential equations

d = Al

@ A homogeneous differential equation of order (/+ 1) for /;_11.

@ An inhomogeneous differential equation of order / for /1 14.

I+ 1)1
L0 = (=1 ( ell
1,11 (—1) VT (T tay)s
acs()
We call L) the of l;_11. The e-dependence of

L") is polynomial. We denote by L("9) the €%-part of L()).
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Section 4

Calabi-Yau operators
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Essentially self-adjoint operators

@ The adjoint operator L* of an operator L is defined to be

L d

/ /
=Ygy = L= XE0T 5n0)

dyl = dyl J

@ An operator L is called self-adjoint, if L* = L.

@ An operator L is called or , if there
exists a function a(y) such that

*

oLl® = La.

The Picard-Fuchs operator L(:0) jg essentially self-adjoint.
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The Frobenius method

@ Consider a homogeneous linear differential equation of order /

Ly = 0.
@ The point y = y; is called a point of if
the indicial equation for the operator L at this point is of the form

(p—po) =0.
@ If y = 0is a point of maximal unipotent monodromy we may write the /
independent solutions Yy, ..., y,_1 as

j o
\I] _ k Z In Z a_ /1 H+PO 30,0 =1

y = 0 is a point of maximal unipotent monodromy for the Picard-Fuchs
operator L("%) with local exponent pg = 1.

Stefan Weinzierl (Uni Mainz) e-factorised differential equations February 13, 2023 23/45



The mirror map

@ The holomorphic solution Yy and the single-logarithmic solution yy are
used to define a change of variables from y to 7T (or q):

tzﬂ, g=c¢e

Yo

2T0IT

@ In the context of Calabi-Yau manifolds the map from y to T is called the

Candelas, De La Ossa, Green, Parkes, '91

@ In the special case of / = 2 the map corresponds to the transformation
from y to the modular parameter T of an elliptic curve.
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The Y-invariants

@ Define recursively by

d 1

No=1, Nyg=y———
° Ty (emiy N ()

N
The operators N; have the property that
Ni(yi) = 0 fori<j.

° (oty,0, ..., 0_1):

o .

Remark: From the definition it follows immediately that Yy = 1.
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Integral power series

Definition
A power series

Z any"
n=0

is called N-integral, if the substitution y = Ny’ leads to a power series in the
new variable y” with integer coefficients.
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Calabi-Yau operators

A differential operator is called a Calabi-Yau operator if
@ Lis self-dual.

© The point y = 0 is a point of maximal unipotent monodromy and the local
exponent at y is an integer.

© The holomorphic solution y, as a power series in y is N-integral.
© The variable g as a power series in y is N-integral.
@ All functions (o, 0p,...,0y_1) as power series in y are N-integral.

M. Bogner, '13

The Picard-Fuchs operator L('%) js a Calabi-Yau operator.
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The special local normal form

@ The differential operator L can be written in the g-coordinate as

1 1 1 1 1 1 1
L = BO— 60— 06— ...— 06— 00—
Y1 Y2 Yz Yz Y2 Y1 Yo

where f is a function of g.
@ With Y; =1 and Y; = Y)_; this simplifies to

1 1 1
L = 2— — .. —0—07—.
B Y3 Ys Yo Yo

@ The operator

1 1
. —0—07
Yo Y3 Y3 Ya

is called the of the operator L.

M. Bogner, '13
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Section 5

The ansatz
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lterated integrals

Recall that g = exp(2mit). We define by
dgs [ dg 7 d
I(f,fa, s fiT) = lim R / q1/ S / 99 (11) o (T2) o fo ()
Go—0 i J an
0 0

R regularises trailing zeros (removes all In(qo)-terms).

Differentiation chops off the first function:

1 d

d
—I(fi,fo,....f;T) = q—I(f1,b,....f0;T) = f1(T)I(Foy..., T; 7T
2md (1727 n) qdq(12 n) 1()(2 n)
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The ansaiz

@ Weset D=2—2¢.

@ Instead of y we work with the variable 7T (or q).
@ We now

M = (Mo,Mi,....M)",

which put the differential equation into an e-factorised form.
@ M, is proportional to the /-loop tadpole integral:

/
My = ¢€h. 10.
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The ansatz

@ /111 has Picard-Fuchs operator L() the €°-part L("9) s of the form

1 1 1 1
19 = BeP——0——...—06—6
P Y2 Y3 Y3 Y2

@ M, should start at order €.

o L(10) l1...11 modulo € and modulo tadpoles.

@ This suggests
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The ansatz

@ We construct a derivative basis. The of L("9) in the variable
q suggests for the master integrals M> — M

1 d
M = —— — M1 +]
! {2niedr ! 1+Junk},
o
v - 1 d,, fi
T 7y |emiean T &, ’

with a priori unkown but €-independent functions Fj;(t).
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Summary of the ansatz

/
Mo = €h. 10
i
€
My = —h 11
Yo
j—1
1 1 d .
M = ———Mi_1— ) Fi1xMk for j>2
! Y1 | 2niedt k; G=1)
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The differential equation

The ansatz leads to the differential equation

0 0 0 0

0 Fi1 1 0

0 Faq Fa2 Yo
1d . 0 Fa1 Faz Fa3
2mie dt

0 Fyayn Fu-22 Fu23 Fu2a
Fo—1y1 Fu—ne  Fu-ns  Fu-1)a

* * * *

@ The first / rows are in an e-factorised form.

o O o

Y3

*

0 0

0 0

0 0

0 0
Yi-2 0
Fu—1yu-1) 1

*

@ Determine the functions Fj; such that the (/+ 1)-th row is in e-factorised

form.
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The differential equation

The condition that in the (/+ 1)-th row only terms of order €' are present leads

to

@ differential equations

)

2mie dt

Stefan Weinzierl (Uni Mainz)

from self-duality

0 0 0 0

0 F11 1 0

0 Y2
0 F31 Faz Fa3
0 Fu—2)2  F(-2)3
0 Fu-1)2 = Fu-1)s
* *

o O o

Ya

F1-2)4
Fi-1)4
*

e-factorised differential equations

0 0
0 0
0 0
0 0
Yi—2 0
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The differential equation

@ The equations for F;’s have a natural triangular structure and can be
solved systematically.

@ We arrive at the

M = eAM
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Section 6

Boundary values
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Boundary values

@ In addition to the differential equation in e-factorised form we need
boundary values at a specific kinematic point.

@ As boundary point we choose y = 0 corresponding to T = icc or ¢ = 0.

@ With the help of one obtains

/ o I—j e\ :
( / ) (_1),y,€r(1 +&) 7/ r(1—¢)"™Tr(1+je)

M = (141
1ly—0 (1+ )]; rA—(+1)e)

@ The boundary values are multiple zeta values and of weight n at order €”.
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Remark

@ For Feynman integrals evaluating to multiple polylogarithms we may
define a transcendental weight and have the notion of master integrals of

@ If we try to extend this concept beyond multiple polylogarithms, a
reasonable minimal assumption is that the definition of transcendental
weight in the more general case should be compatible with the restriction
of the kinematic space to a sub-space.

@ Having an e-factorised differential alone is not enough to guarantee
uniform weight, the boundary constants have to be of uniform weight as
well.
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Sideremark

@ Specialise to | = 2: We know about two bases, which put the differential
equation into an e-factorised form:

@ The basis (Mo, M1, M2) constructed in this talk.
@ A second basis constructed from the requirement that the period matrix on
the maximal cut is proportional to the identity matrix.

@ The latter basis does not have boundary constants of uniform weight.

Frellesvig, S.W., '23
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Section 7

Results
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Results: Six loops

The e-expansion of the master integral M; starts at order £°:
My = M 1 e’M® 0 (e?)
The first term in the e-expansion is given by

M®) = 112002 — 20160sLq — 336085/ (1, Ya, Y3) + (1, Yo, Ya, Yo, 1,10
1 3 q

The first few terms of the g-expansion of M1(6’6) read (Lg = In(q))

6,6
mEo 112085 — 56045 L3 — 2016L5Lq + 718 +210q(~320s + 48LaLq — 3L% +8L3)
105
+5 q° (20803 — 189205 Lq + 87LG — 5213 — 18015 — 72Lg + 192)
+0(q%)

Stefan Weinzierl (Uni Mainz) e-factorised differential equations February 13, 2023 43/45



Results: Six loops

1.5x107
200000
1.0x107
B R 5 s0x10°
= -200000F =
400000
-5.0x10°
600000
200 -100 o 100 200 300 400 200 -100 0 100 200 300 400
= x=p?

Expansion around y = 0 converges at six loops for \p2\ > 49mP.
Agrees with results from pySecDec.

The geometry of this Feynman integral is a
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Conclusions

@ There are (many) Feynman integrals related to Calabi-Yau geometries.

@ The /-loop equal-mass banana integral corresponds to a Calabi-Yau
(1—1)-fold.
@ We have shown that an e-factorised differential equation with boundary

values of uniform weight exists for the family of equal-mass banana
integrals.

@ We expect this to hold for other Calabi-Yau Feynman integrals as well.
@ We profited from research in mathematics on Calabi-Yau operators.
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