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Motivation

Feynman integrals are highly constrained by basic physical principles, but the concrete
implications of these principles are not yet fully understood

= What are the full implications of principles like locality and causality for the analytic structure
of Feynman integrals and scattering amplitudes?
Feynman integrals have also been empirically observed to exhibit intriguing analytic properties

= The sequential discontinuities of Feynman integrals often obey generalized versions of the
Steinmann relations [Drummond, Foster, Giirdogan (2017)] [Caron-Huot, Dixon, von Hippel, AJM, Papathanasiou (2018)]
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[Steinmann (1960)] (see also Dixon'’s talk)
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Constraints from Landau Analysis

Can we derive these types of properties of
Feynman integrals directly from Landau analysis?

We bring to this question a well-developed understanding of the types of iterated integrals
that are known to appear in Feynman integrals

o The first class of iterated integrals that naturally arise are multiple polylogarithms




Multiple Polylogarithms

o Multiple polylogarithms come equipped with a motivic coaction, which can be used to
systematically expose their analytic structure

o In particular, the symbol of a polylogarithmic Feynman integral Z(p) transparently
encodes its salient analytic properties:

first discontinuity  second discontinuity
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second derivative  first derivative



Constraints from Landau Analysis

Motivated by the two ways of understanding the information encoded in the symbol, we
pursue two general strategies for constraining the analytic structure of Feynman integrals:

Constrain their derivatives by studying their behavior when expanded near branch points

[Hannesdottir, AJM, Schwartz, Vergu (2021)]

asymptotic analysis

Constrain their allowed sequences of discontinuities by studying where

singularities—and therefore branch points—can appear in these integrals
[Pham (1967)] [Hannesdottir, AJM, Schwartz, Vergu (2022)]

homological analysis
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In the remainder of the talk, we'll see how these strategies work in examples involving generic masses



Constraining Derivatives



Landau Analysis Review

o The locations where Feynman integrals can become singular and develop branch cuts are
described by solutions to the Landau Equations [Landau (1959

O‘e(qz - m?) =0 Z Qeqt =0

ecloop

o Near a branch points that is approached as some kinematic variable ¢ — 0, the leading
non-analytic behavior of a Feynman integral is expected to take the form

I(p, — 0) ~C(p)pTlog” ¢ + ...



( All-Mass Example )

Consider the class of Feynman integrals with generic masses in D dimensions

o Near a branch point that corresponds to an /-loop diagram with £ nonzero Feynman
parameters, these integrals are expected to behave as [Landau (1959)]

I(p. o — 0) ~ Cp)prloge ifyeZ,v>0 ’YZKD—E—I
’ C(p)p” otherwise 2
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Consider the class of Feynman integrals with generic masses in D dimensions

o Near a branch point that corresponds to an /-loop diagram with £ nonzero Feynman
parameters, these integrals are expected to behave as [Landau (1959)]

I(p. o — 0) ~ Cp)prloge ifyeZ,v>0 ’YZKD—E—I
’ C(p)p” otherwise 2

For example, two-particle thresholds and pseudothresholds
are associated with the bubble Landau diagram
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( All-Mass Example )

o The branch cuts that develop near the two-particle thresholds of all-mass Feynman
integrals in different dimensions thus behave as

D=3 A\ ~ log ¢ D=4

D=5 ~ plogp D=6
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( All-Mass Example )

o The branch cuts that develop near the two-particle thresholds of all-mass Feynman
integrals in different dimensions thus behave as

D=3 A\ ~ log ¢ D=4

D=5 ~ plogp D=6
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If we can predict the leading-order behavior of Feynman integrals near a given
branch point, what constraints does this put on the symbol of this integral?




Constraining Derivatives

Study the order at which non-analytic
behavior appears when polylogarithms
are expanded around the branch
points in their symbol

N

v
Compare these expansions
to put new constraints on
the positions of branch
points in the symbols of
Feynman integrals

\\\ -~ Approximate the value of Feynman
- integrals near their branch points




Logarithmic Singularities of Symbols

o For example, we can study the contribution coming from a generic polylogarithm that
involves a symbol term in which a single letter becomes singular as ¢ — 0:

a1(p) @+ @ am-1(p) @ 9 © am1(p) © -+ @ an(p)
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o Writing this contribution as an iterated integral over a generic integration contour that
ends on the ¢ = 0 surface, we find a leading non-analytic contribution
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as ¢ — 0, where we have dropped all analytic contributions
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o For example, we can study the contribution coming from a generic polylogarithm that
involves a symbol term in which a single letter becomes singular as ¢ — 0:
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o Writing this contribution as an iterated integral over a generic integration contour that
ends on the ¢ = 0 surface, we find a leading non-analytic contribution

~ " Mlogy + ...

as ¢ — 0, where we have dropped all analytic contributions

Non-analytic contributions are power-suppressed by the number of letters after p:
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New Constraints on Symbol Letters

We conclude that any generic polylogarithmic integral with leading behavior
Z(p,o = 0) ~ ¢Tloge
(1) cannot involve symbol letters that vanish as ¢ — 0 in the last v entries:

8(I(p,(p)) :Zal®"'®an,7®an77+l®...®an

no logarithmic branch
points at ¢ =0

(7i) must have at least one term in which a logarithmic branch point at ¢ = 0 appears in the

n — 7 entry (and nowhere else):
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[Hannesdottir, AJM, Schwartz, Vergu (2021)]
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We recall that the logarithmic branch cuts in odd-dimensional all-mass Feynman integrals
D-—3 .
were suppressed by ¢ 2 near two-particle thresholds:

 appears in last entry

= ~J é
D=3 A log ¢ of the symbol

 appears in second-to-last

D=5 entry of the symbol

~ plogy =

o The one-loop n-gon symbols in n dimensions are known at one loop for all n
[Schlafli (1860)] [Aomoto (1977)] [Davydychev, Delbourgo (1998)]

o Our analysis correctly predicts the position of all logarithmic branch points that
appear in these one-loop symbols



Singularities of Symbols

We can similarly analyze symbol terms in which algebraic branch points at ¢ — 0 occur in
the symbol, as well as terms in which multiple branch points occur:

a1 ®a P Q@ - Qap_1 & ay

Location of Branch Points | Leading Non-Analytic Behavior
Um = ~ " log g
Am—rtl =+ = Ay = ~ "™ log" ¢
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This provides us with a dictionary between the leading behavior of Feynman integrals near
their branch points and where these branch points can appear in generic symbols



Constraining Discontinuities



Sequential Discontinuities

Having learned about the locations in the symbol at which specific branch points can
appear, we now explore the possible sequences of discontinuities that can appear



Sequential Discontinuities

Having learned about the locations in the symbol at which specific branch points can
appear, we now explore the possible sequences of discontinuities that can appear

o To do so, we first recall that each solution to the Landau equations comes with an
associated on-shell graph, or Landau diagram
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( All-Mass Example )

For example, the all-mass triangle integral in three dimensions is given by

D2
m n? Y12 + Y23 y1s + VD Y23 + Y13 y12 + ivVD
' log { — , +log | — :
7= ms — 4D Y12 + Y23 Y13 — iv'D Y23 + Y13 Y12 — ivD
p3 VD
ma +log (_ Y13 + Y12 Y23 + Z\F) n m}
D1 Y13 + Y12 yas — iVD

in the region where y12 > 1, y13 < —1, y23 > 1, and D < 0, where

(pi +p;)? —mi —m}
Yij = D] 2 D=1-yl) — Y35 — Y3 — 212 Y23 Y13 -

In this integral:
o the triangle Landau diagram encodes to the algebraic branch point at D =0

o the three bubble Landau diagrams encode the logarithmic branch points at y;; = 1



(AII—Mass Example) P2

mi
p3
We can derive constraints on the discontinuities of Feynman integrals po
by understanding how these singularity surfaces intersect pham (1967)] P
D3 -
p1
mg3

ae >0

o We are generally most interested in the a-positive parts of these singularity surfaces,
as it is only these singularities that will be encountered on the physical sheet



From Homology to Discontinuity Relations
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From Homology to Discontinuity Relations
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o Due to the tangential intersection, nontrivial relations exist between different
compositions of these paths

o This implies new relations between the discontinuities of Z
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From Homology to Discontinuity Relations
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o Due to the tangential intersection, nontrivial relations exist between different
compositions of these paths
o This implies new relations between the discontinuities of Z
Disca o Discy Z = Disca Z

o It can be checked that this identity is indeed satisfied by the triangle integral



Hierarchical Discontinuities

-

This proof generalizes to any pair of codimension-one singularities in the physical region,
as long as a sequence of graph contractions Gz — G, — G, exists:

Discy, o Disce, Z = Discg, T

(we must also require that these singularities involve at least one nonzero « per loop)

o In the triangle integral example, this sequence of contractions was given by

where the first graph is associated with the original Feynman integral, and the others represent
Landau diagrams

[Pham (1967)] [Hannesdottir, AJM, Schwartz, Vergu (2022)]



Generalized Steinmann Relations

One can similarly prove a generalized version of the Steinmann relations:

Whenever two Landau diagrams Gz, and G, are not related by contraction, we have

Discz, o Discg, ZT=0

if the corresponding solutions to the Landau equations cannot be simultaneously satisfied

[Pham (1967)] [Hannesdottir, AJM, Schwartz, Vergu (2022)]
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Conclusions

In this talk, two general strategies were highlighted for deriving constraints on Feynman integrals:

o The asymptotic behavior of polylogarithmic Feynman integrals near their branch points can
be used to put constraints on the locations of these branch points in iterated integrals

o The manner in which different singularity surfaces intersect in Feynman integrals can be
used to derive constraints on their allowed sequences of discontinuities

While rigorous results have currently only been worked out for all-mass integrals, we expect progress
can also be made in cases involving degenerate or vanishing masses using the same strategies

o Note that these all-mass results already apply whenever a Feynman integral can be contracted
to all-mass Landau diagrams

In addition to teaching us about the mathematical structure of perturbative quantum field theory,
these results provide constraints that will prove useful in the future for bootstrap methods
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these results provide constraints that will prove useful in the future for bootstrap methods

Thanks!



