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Many problems in computational algebra suffer the same problem:

small input

rapid growth

small result

A common remidy is thus to solve a different problem by projecting
s.w. where all objects are small - and hope that this is enough.
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Exact determinants over rings with large objects, e.g.

the ring of integers
polynomials over some (finite) field
field of (univariate) rationals functions

roots of (univariate) polynomials over the same rings
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Instead of computing in a ring R, we can try R/A for some ideal
A. E.g. Z/nZ: all numbers are small, if n is prime, then we get a
field. To get back: a natural candidate is the unique representative
in −n/2 . . . n/2.
Or: R = k[x] and n any (linear) polynomial.
Note: f = q(x− a) + r (euclidean division) iff r = f(a).
Chinese remainder theorem allows to combine results in both cases,
allowing a large n to be made up of small p - or a large degree n
out of many linear ones. (Called evaluation and interpolation)
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Interpolation works only if the result is unique - for all p one can
compute the correct matching result.
Problem: not all problems have unique solutions....
f = (x− 106 + 1)(x− 106 − 1) has 2 roots modulo every prime:
f ≡ (x)(x+ 1) mod 3, f = (x+ 1)(x+ 4) mod 5,
f ≡ (t+ 927)(t+ 929) mod 1009, and
f ≡ (t+ 843)(t+ 845) mod 1013. Which pairs should be
combined?
f has 4 solutions modulo every product of 2 primes.
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We have 2 recipies to obtain large n from small ones

Chinese remaindering/ interpolation

lifting

Lifting generically takes a solution modpk and computes from
there the solution modpl for l > k - avoiding the recombination
problem.
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For the rest of this talk we focus on details for (multivariate)
polynomial rings: the hidden problem of finding a canonical, nice
representative in R of an element given implicitly in R/A.
Here A is only implicit as it is defined by evaluation at strategically
chosen points.
This is “trivial” for some rings - and hard to unkown for others.

Note

Modular techniques apply whenever the projection/ lift is effective
- and a unique solution can be obtained.
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Let R = K(x1, . . . , xd) and

h(x) =
f(x)

g(x)

for some f , g ∈ K[x1, . . . , xd].

Task (Rational Multivariate Interpolation)

Given (suitable) αi ∈ Kd and yi = h(αi) find fi, gi ∈ K and mi,
ni ∈ Nd s.th.

f =
∑

fix
mi and g =

∑
gix

ni .

For this talk we assume that we can choose αi freely and have
access to an oracle (black-box representation of h) computing yi
on demand.
We will use K = Q, Fp.

Claus Fieker

Interpolation, Rational Reconstruction and Modular Algorithms



Introduction Task Univariate Interlude Multivariate

Let R = K(x1, . . . , xd) and

h(x) =
f(x)

g(x)

for some f , g ∈ K[x1, . . . , xd].

Task (Rational Multivariate Interpolation)

Given (suitable) αi ∈ Kd and yi = h(αi) find fi, gi ∈ K and mi,
ni ∈ Nd s.th.

f =
∑

fix
mi and g =

∑
gix

ni .

For this talk we assume that we can choose αi freely and have
access to an oracle (black-box representation of h) computing yi
on demand.
We will use K = Q, Fp.

Claus Fieker

Interpolation, Rational Reconstruction and Modular Algorithms



Introduction Task Univariate Interlude Multivariate

Polynomials

Classical interpolation:

given

αi, yi ∈ K, 1 ≤ i ≤ n, αi pairwise distinct

find the (unique)

f ∈ K[x], deg f < n s.th. f(αi) = yi.

There are many (explicit) formulas known.
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Polynomials

Important

f can be found with Õ(n) operations in K only.

Õ(n): We ignore log?(n) factors in the analysis.

Note

The obvious, classical, solutions take O(n2) or even O(n3)
operations in K.

Assuming n ≫ 0: fast methods are practical.

This comparison is not fair and omits lots of important details.

It is possible to add more information afterwards.
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Fast Methods - Products

It is well known that products can be computed using Karatsuba’s
trick or even using FFTs.
We need for the product of univariate polynomials f and g ∈ K[x]
of degrees n and m operations in K:

Classical: O(nm)

Karatsuba, if n = m: O(nlog2 3)

FFT, if n = m: O(n log n log∗ log n) =: Õ(n)

Why does this matter?
Multiplication is not time-associative!
The order of operations matters - the time can vary by magnitudes.
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Why does this matter?
Multiplication is not time-associative!
The order of operations matters - the time can vary by magnitudes.

Claus Fieker

Interpolation, Rational Reconstruction and Modular Algorithms



Introduction Task Univariate Interlude Multivariate

Product - Tree

Warming up: given fi ∈ K[x], s.th. deg fi = n for all i. Task:
compute the product ∏

fi

Iterative: (. . . (((f1f2)f3)f4) . . . fr)
Clever: (((f1f2)(f3f4)) . . .)

Fact

The total number of K operations for the iterative method is
O(r2n2), while it is Õ(rn) in the 2nd case!
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Why?

Classical: f1f2 takes O(n2) ops, result has degree 2n.
((f1f2)f3) takes O(2n2) ops, result is degree 3n.
Total:

∑r
i=1O(in2) = O(r2n2).

Clever: all products are of polys of same degree.
r/2Õ(n) for the initial products, r/4Õ(2n) for the next level, . . .,

total:
∑log2 r

i=1 r/2iÕ(2i−1n) = Õ(nr)
This matters!
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total:
∑log2 r
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This matters!

Claus Fieker

Interpolation, Rational Reconstruction and Modular Algorithms



Introduction Task Univariate Interlude Multivariate

Why?

Classical: f1f2 takes O(n2) ops, result has degree 2n.
((f1f2)f3) takes O(2n2) ops, result is degree 3n.
Total:

∑r
i=1O(in2) = O(r2n2).

Clever: all products are of polys of same degree.
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Product - Tree

A different way of looking at this:
The expression

∏
fi can be evaluated on a computer using an

evaluation tree, parsing tree, . . ..
Classical: corresponds to a narrow, deep tree, degrading into a line
Clever: is a binary tree of minimal depth.
In either case, the size of the intermediate results correspond to
the level of the tree: growing from leaf to root.
However, the clever method needs more storage, minimally log2 r,
typically r/2.
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Interpolation = Chinese Remainder Theorem

Interpolation: f(ai) = bi (1 ≤ i ≤ n) and deg f < n.
Division with remainder: f = q(x− ai) + bi, so

f ≡ bi mod x− ai

So: CRT will find f s.th. f ≡ bi mod x− ai and f is modulo∏
(x− ai) unique, so deg f < n.

Why? CRT can use product trees!

Claus Fieker

Interpolation, Rational Reconstruction and Modular Algorithms



Introduction Task Univariate Interlude Multivariate

Interpolation = Chinese Remainder Theorem

Interpolation: f(ai) = bi (1 ≤ i ≤ n) and deg f < n.
Division with remainder: f = q(x− ai) + bi, so

f ≡ bi mod x− ai

So: CRT will find f s.th. f ≡ bi mod x− ai and f is modulo∏
(x− ai) unique, so deg f < n.

Why? CRT can use product trees!

Claus Fieker

Interpolation, Rational Reconstruction and Modular Algorithms



Introduction Task Univariate Interlude Multivariate

CRT - Tree

Given ai, bi in K, find f ∈ K[x] s.th. f(ai) = bi or, equivalently
f ≡ bi mod x− ai.
Define gi := x− ai and find f2i−1,2i s.th. f2i−1,2i ≡ b2i−1 and
f2i ≡ b2i, set g2i−1,2i = g2i−1g2i for i = 1, . . . , r/2.
Then iterate: find f4i−3,4i−2,4i−1,4i ≡ f4i−3,4i−2 mod g4i−3,4i−2

and f4i−3,4i−2,4i−1,4i ≡ f4i−1,4i mod g4i−1,4i and
g4i−3,4i−2,4i−1,4i = g4i−3,4i−2g4i−1,4i

. . .
Clearly, this works, but why bother?
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Single CRT

Given a, b ∈ K[t], deg a, deg b = n− 1, f , g ∈ K[t], coprime,
deg f . deg g = n, solve the CRT problem:
Find h ≡ a mod f and h ≡ b mod g.
Find u and v s.th. 1 = gcd(f, g) = uf + vg using the Euclidean
algorithm.
Then h ≡ vga+ ufb (Note: vg = 1− uf , saving a multiplication).
So, this needs

1 gcd degree n

4 products: 2 degree n by n and 2 degree 2n by n

1 division: degree 3n by 2n

All can be done fast, ie Õ(n)
Doing this iteratively: same problem as the product.
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(univariate) Interpolation: Summary

Given n points, the interpolation polynomial can be found using

Õ(n)

operations in K.
If neccessary, points can be added later - without starting from
scratch.
In reality, I do not use fast methods until the degree is large
(enough) of course.
The “same” tree can be used for multi-point evaluation.
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Rational Interpolation

This is an application of rational reconstruction or, in Q, Farey
lifting.

Task

Given
yi = f(αi)/g(αi) , 1 ≤ i ≤ n

find f , g ∈ K[x].

Here we need additional restrictions: deg f ≤ nf , deg g ≤ ng and
nf + ng < n.
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Rational Interpolation

Theorem

There exist “unique” f , g ∈ K[x] solving the interpolation
problem:

yi =
f(αi)

g(αi)

subject to deg f ≤ nf , deg g ≤ ng.
Furthermore, f and g can be found in Õ(n) operations in K.
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Rational Interpolation

Idea:

First find f̃ ∈ K[x] s.th. f̃(αi) = yi,

then find f , g s.th. f ≡ gf̃ mod
∏

x− αi

The first is (just) univariate interpolation, the second step is using
(essentially) the extended Euclidean algorithm, stopping when the
remainder is small enough.
Note: implicit here is g(αi) ̸= 0
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EEA

Simplifying: a :=
∏

x− ai and b ∈ K[x] sth. b(ai) = bi, we want
f , g ∈ K[x] sth.

f

g
(ai) = b(ai) = bi

This implies:
f ≡ gb mod a

Task

Given a, b find f and g sth.

f

g
= b ⇐⇒ f ≡ bg mod a

Also known as rational reconstruction or, Farey lifting.
Claus Fieker
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Monagan

Given a, b ∈ K[x], Monagan defines the extended euclidean
algorithm via R0 = (a, 0), R1 = (b, 1), Ri = (ri, ti) and then
qi = ri−1 div ri and Ri+1 = (ri−1 − qiri, ti−1 − qiti).

Fact

If ri+1 = 0, then ri = gcd(a, b)

∀i : deg ri + deg ti + deg qi = deg a∑
deg qi = deg a

∀i : bti ≡ ri mod a ⇐⇒ b ≡ ri
ti
mod a
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Monagan ctd.

Generically, deg qi = 1, Monagan suggests using i sth. deg qi is
maximal as “the” solution:

f

g
=

ri
ti

If deg a is large enough (deg a > 2(deg f + deg g)) this i is unique
and all works.
If the degrees of f and g are known, then this can be used as a
stopping condition as well and all works.
Monagan uses the fast gcd methods to achieve a runtime Õ(n)
again.
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Rational Reconstruction

A similar construction is applied to supplement the CRT for
rational solutions.
Given prime numbers pi and values yi, find f , g ∈ Z s.th.

g mod pi ̸= 0 and gyi ≡ f mod pi.

If 2|f | < A, 0 < g < B and AB ≤ M =
∏

pi then this is unique.
This can be phrased as a lattice problem, solved using LLL or using
continued fractions via the extended Euclidean algorithm.
Again, the runtime is Õ(logM).
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Polynomials I

To warm up: f =
∑

fix
mi
i for mi ∈ Nd.

Given S ⊂ Nd, |S| = n < ∞, mi ∈ S (so S is a superset of the
support of f).

Theorem

Then, given pairwise distinct αi ∈ Kd and yi ∈ K we (mostly) can
find the unique f s.th.

f(αi) = yi

using linear algebra in time O(nω).

(The mostly refers to things like f(x, y) = xy where choosing
αi = (0, i) is not going to work. If the evaluation points are
“random” the Schwartz-Zippel Lemma implies the “mostly”)
If only the degree b (or a bound) is known, we need n = bd. . .
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Polynomials II

Using the (unique) univariate case, we can obtain a different
algorithm - with a sometimes better complexity.
We illustrate this in 2 variables.
Choosing αi,j = (µi, νj) we can, fixing j, use the univariate case to
find fj ∈ K[x1] s.th. fj(µi) = f(µi, νj).
Now using the interpolation over K(x1) to solve f(x1, µj) = fj we
can find the unique solution.
Initially f ∈ K(x1)[x2] only, but since by assumption the solution
f ∈ K[x1, x2] is unique, we’re done.
This takes Õ(d) operations in K to find fj and then Õ(d)
operations in K(x1) to find f .
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Polynomials III

A hybrid approach: choosing αi = (µi, ν2, . . . , νd) we can find
f1(x1) = f(x1, ν2, . . . , νd) giving, generically, the degrees D1 ⊂ N
in which x1 occurs in f .
Repeating this with αi = (ν1, . . . , µi, . . . , νd) we can find all degree
sets Di for xi, this then gives a superset for the support of f as
S ⊆

∏
Di.

This can be much smaller than the generic case. Using the linear
algebra then is efficient.
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Polynomials IV - Linear Recurrence

Choosing clever evaluation points we can obtain a sparse algorithm.
Let αi,j = βj(p

i
1, . . . , p

i
d) for suitable numbers pi and βj ∈ K.

Then yi,j = f(αi,j), 1 ≤ j ≤ d defines many univariate
interpolation problems. We find fi ∈ Q[z] s.th. fi(βj) = yi,j , so
fi(z) = f(zpi1, . . . , zp

i
d). Analysing the coefficients fi,l of fi we see

that

fi,l =
∑

|mt|=l

ct
∏
k

(pik)
mt,k

=
∑

|mt|=l

ct
∏
k

(p
mt,k

k )i =:
∑

|mt|=l

ctβ
i
t

Here we have 2 sets of unknowns: the ct and the mt. The degrees
l however are known from the fi!
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Polynomials IV - Linear Recurrence

fi,l =
∑

|mt|=l

ctβ
i
t

For each l, this is well known to be a linear recurrence (of unknown
length). Using the Berlekamp-Massey algorithm we can obtain a
recurrence of degree < n from 2n terms. This finds an auxiliary
polynomial T ∈ K[z] s.th.

T (z) =
∏

(z − βt)

Problem: find mt from βt . . .
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Ben-Or, Tiwari

Using pairwise coprime (or distinct primes) pi ∈ Z (for K = Q),
the exponents mt can be recovered from the βt using factorisation!
The number of evaluation points depends on the degree of fi,
hence the total degree, and the number of mt of the same degree.
We need deg fi many βj and 2#{mt | |mt| = l} many i, so
2 deg fi#{mt} many in total.
We note that, due to the high powers of pi used, the rational
coefficients will be huge.
Once the exponents, the monomials, are known, linear algebra will
find the coefficients.
This can be done degree-by-degree.
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Soo Go

To combine Ben-Or/ Tiwari with modular algorithms, Soo Go
came up with a trick:
Let bi be a bound on the degree of xi in f . Let p = k

∏d
i=1 pi + 1

be a prime where pi are pairwise coprime, pi ≥ bi and k > 0
suitable. Primes in arithmetic progressions imply k can be found.
Now let F∗

p = ⟨z⟩ for some (arbitrary) generator z. Choosing

αi = z(p−1)/pi we can recover the exponents mt from the roots:
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Soo Go

αi = z(p−1)/pi

Since z is primitive, βt = zat and

βt =
∏

(z(p−1)/pi)mi = z
∑

mi(p−1)/pi = zat

so ∑
mi(p− 1)/pi ≡ at mod p− 1

and ∑
mi(p− 1)/pi ≡ at mod pi

but (p− 1)/pi ≡ 0 mod pj , so mi can trivially be found!
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Rational Interpolation I

Warming up, using linear algebra again: given yi = h(αi) for
h = f/g, f =

∑
fix

mi and g =
∑

gix
ni , we again get a linear

equation: ∑
fiα

mi
j = yj

∑
giα

ni
j

if supersets for the support {mi|i} for f and {ni|i} for g are
known. The cost is (cubic) in the size of the supersets. Thus, as
before, if only degree bounds are used, this is inefficient - unless
the problem is really dense.
Note: the solution is not unique - we can normalise the rational
function as we want.

Claus Fieker

Interpolation, Rational Reconstruction and Modular Algorithms



Introduction Task Univariate Interlude Multivariate

Rational II - Recursive, dense

Assume h(0) is defined, then g(0) ̸= 0 and wlog. g(0) = 1.
Let αi = (µi, ν2, . . . , νd).
Use the univariate rational to get

fν(x1)

gν(x1)
= h(x1, ν2, . . . , νd).

Normalise gν(0) = 1, then gν = g(x1, ν2, . . . , νd).
This now is a “simple” multivariate polynomial interpolation
problem for f and g, to be solved by any means.
Similarly to the hybrid approach for polynomials, we can use this
too to find the degree sets for each variable (at cost
Õ(

∑
degxi

h)).
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Rational II - Recursive, dense, shift

To achieve g(0) ̸= 0, we apply the algorithm to h(x+ β) for any β
s.th. h(β) is defined.
This “shift” destroys the sparsity of h.
Depending on the overall algorithm, the sparsity can be recovered
in the polynomial interpolation step.
We need 2 deg fν evaluation points for fν and then more for the
rest.
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Rational III - Sparse

Similar to the Ben Or, Tiwari, Soo Go method, we can operate
here.
Assume first h(0) is defined, thus g(0) ̸= 0. As above, wlog.
g(0) = 1.
Evaluating at αi,j = βj(p

i
1, . . . , p

i
d) for i fixed, using the rational

univariate case, we find hi(z) = fi(z)/gi(z) and then proceed as in
the multivariate polynomial case for f and g separately.
However, if g(0) = 0 we cannot do this (directly) and shifting
destroys the sparsity.
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Rational III - Sparse

Observation: The leading monomial in f(x) and f(x+ β) is
identical! In fact, the entire homogenous component of highest
degree is unchanged.
Thus we can use Ben Or, Tiwari, Soo Go to find the maximal
homogenous component H - and then proceed to recover
f(x+ β)−H(x+ β). Recursively, we can recover the sparse f
and g.
Let D be (a bound for) the largest number of homogenous parts.
The costs are O(4 deg hD) evaluation points, and DÕ(2 deg h) to
find all fi, then Õ(2D) for each Berlekamp-Massey, O(Dω) to find
the coefficients as well as the univariate factorisation.
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Final Remarks

Unless bounds/ properties are known, reconstruction is not
guaranteed to find the “correct” result

Methods can be nested: using modular methods to compute
rational reconstructions over Q or Fp(x)

Each level in the product trees can be evaluated in parallel

The lifting can be extended to deal with “wrong” evaluation
values, coming from bad primes

The univariate case can be extended to allow addition of more
points - until we are happy with the result.
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