Introduction	Task	Univariate	Interlude	Multivariate
000000	O	000000000000000	O	000000000000000

Interpolation, Rational Reconstruction and Modular Algorithms

Claus Fieker

February 14, 2023

Claus Fieker

Introduction	Task	Univariate	Interlude	Multivariate
•00000	O	000000000000000	O	0000000000000000

Many problems in computational algebra suffer the same problem: small input

- rapid growth
- small result

A common remidy is thus to solve a different problem by projecting s.w. where all objects are small - and hope that this is enough.

Introduction	Task	Univariate	Interlude	Multivariate
•00000	O	000000000000000	O	0000000000000000

Many problems in computational algebra suffer the same problem:

- small input
- rapid growth
- small result

A common remidy is thus to solve a different problem by projecting s.w. where all objects are small - and hope that this is enough.

イロト 不得 トイヨト イヨト 二日

Introduction	Task	Univariate	Interlude	Multivariate
•00000	O	000000000000000	O	000000000000000000000000000000000000

Many problems in computational algebra suffer the same problem:

- small input
- rapid growth
- small result

A common remidy is thus to solve a different problem by projecting s.w. where all objects are small - and hope that this is enough.

Introduction	Task	Univariate	Interlude	Multivariate
0●0000	O	000000000000000	O	000000000000000

• Exact determinants over rings with large objects, e.g.

- the ring of integers
- polynomials over some (finite) field
- field of (univariate) rationals functions
- roots of (univariate) polynomials over the same rings

Introduction	Task	Univariate	Interlude	Multivariate
000000	O	000000000000000	O	0000000000000000

Instead of computing in a ring R, we can try R/A for some ideal A. E.g. $\mathbb{Z}/n\mathbb{Z}$: all numbers are small, if n is prime, then we get a field. To get back: a natural candidate is the unique representative in $-n/2 \dots n/2$. Or: R = k[x] and n any (linear) polynomial. Note: f = q(x - a) + r (euclidean division) iff r = f(a). Chinese remainder theorem allows to combine results in both cases, allowing a large n to be made up of small p - or a large degree n out of many linear ones. (Called evaluation and interpolation)

Introduction	Task	Univariate	Interlude	Multivariate
000000	O	000000000000000	O	

Interpolation works ${\bf o}{\rm nly}$ if the result is unique - for all p one can compute the correct matching result.

Problem: not all problems have unique solutions....

$$f = (x - 10^6 + 1)(x - 10^6 - 1)$$
 has 2 roots modulo every prime:

$$f \equiv (x)(x+1) \mod 3$$
, $f = (x+1)(x+4) \mod 5$,

$$f \equiv (t + 927)(t + 929) \mod 1009$$
, and

 $f \equiv (t + 843)(t + 845) \mod 1013$. Which pairs should be combined?

f has 4 solutions modulo every product of 2 primes.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへ⊙

Claus Fieker

Introduction	Task	Univariate	Interlude	Multivariate
000000	O	000000000000000	O	

Interpolation works ${\bf o}{\rm nly}$ if the result is unique - for all p one can compute the correct matching result.

Problem: not all problems have unique solutions....

$$f = (x - 10^6 + 1)(x - 10^6 - 1)$$
 has 2 roots modulo every prime:

$$f \equiv (x)(x+1) \mod 3$$
, $f = (x+1)(x+4) \mod 5$,

$$f \equiv (t + 927)(t + 929) \mod 1009$$
, and

 $f \equiv (t + 843)(t + 845) \mod 1013$. Which pairs should be combined?

f has 4 solutions modulo every product of 2 primes.

Introduction	Task	Univariate	Interlude	Multivariate
000000	O	000000000000000	O	

Interpolation works \mathbf{o} nly if the result is unique - for all p one can compute the correct matching result.

Problem: not all problems have unique solutions....

$$f = (x - 10^6 + 1)(x - 10^6 - 1)$$
 has 2 roots modulo every prime:

$$f \equiv (x)(x+1) \mod 3$$
, $f = (x+1)(x+4) \mod 5$,

$$f \equiv (t + 927)(t + 929) \mod 1009$$
, and

 $f \equiv (t + 843)(t + 845) \mod 1013$. Which pairs should be combined?

f has 4 solutions modulo every product of 2 primes.

Introduction	Task	Univariate	Interlude	Multivariate
0000●0	O	000000000000000	O	000000000000000

We have 2 recipies to obtain large \boldsymbol{n} from small ones

- Chinese remaindering/ interpolation
- lifting

Lifting generically takes a solution $\mod p^k$ and computes from there the solution $\mod p^l$ for l>k - avoiding the recombination problem.

Introduction 00000●	Task O	Univariate 0000000000000000	Interlude O	Multivariate 000000000000000000000000000000000000

For the rest of this talk we focus on details for (multivariate) polynomial rings: the hidden problem of finding a canonical, nice representative in R of an element given implicitly in R/A. Here A is only implicit as it is defined by evaluation at strategically chosen points.

This is "trivial" for some rings - and hard to unkown for others.

Note

Modular techniques apply whenever the projection/ lift is effective - and a unique solution can be obtained.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

Introduction	Task	Univariate	Interlude	Multivariate
000000	●	000000000000000	O	00000000000000

Let $R = K(x_1, \ldots, x_d)$ and

$$h(\underline{x}) = \frac{f(\underline{x})}{g(\underline{x})}$$

for some $f, g \in K[x_1, \ldots, x_d]$.

Task (Rational Multivariate Interpolation)

Given (suitable) $\underline{\alpha}_i \in K^d$ and $y_i = h(\underline{\alpha}_i)$ find $f_i, g_i \in K$ and $m_i, n_i \in \mathbb{N}^d$ s.th.

$$f = \sum f_i \underline{x}^{m_i}$$
 and $g = \sum g_i \underline{x}^{n_i}$

For this talk we assume that we can choose $\underline{\alpha}_i$ freely and have access to an oracle (black-box representation of h) computing y_i on demand.

э

We will use $K = \mathbb{Q}$, \mathbb{F}_p .

Claus Fieker

Introduction	Task	Univariate	Interlude	Multivariate
000000	●	000000000000000	O	00000000000000

Let
$$R = K(x_1, \ldots, x_d)$$
 and

$$h(\underline{x}) = \frac{f(\underline{x})}{g(\underline{x})}$$

for some f, $g \in K[x_1, \ldots, x_d]$.

Task (Rational Multivariate Interpolation)

Given (suitable) $\underline{\alpha}_i \in K^d$ and $y_i = h(\underline{\alpha}_i)$ find f_i , $g_i \in K$ and m_i , $n_i \in \mathbb{N}^d$ s.th.

$$f = \sum f_i \underline{x}^{m_i}$$
 and $g = \sum g_i \underline{x}^{n_i}$

For this talk we assume that we can choose $\underline{\alpha}_i$ freely and have access to an oracle (black-box representation of h) computing y_i on demand.

We will use $K = \mathbb{Q}$, \mathbb{F}_p .

Claus Fieker

Introduction	Task	Univariate	Interlude	Multivariate
000000	O	•00000000000000	O	000000000000000

Polynomials

Classical interpolation:

given

 $\alpha_i, y_i \in K, \quad 1 \leq i \leq n, \ \alpha_i \text{ pairwise distinct}$

find the (unique)

 $f \in K[x]$, deg f < n s.th. $f(\alpha_i) = y_i$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

There are many (explicit) formulas known.

Claus Fieker

Introduction	Task	Univariate	Interlude	Multivariate
000000	O	•00000000000000	O	000000000000000

Polynomials

Classical interpolation:

given

 $\alpha_i, y_i \in K, \quad 1 \leq i \leq n, \ \alpha_i \text{ pairwise distinct}$

find the (unique)

 $f \in K[x]$, deg f < n s.th. $f(\alpha_i) = y_i$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

There are many (explicit) formulas known.

Claus Fieker

Introduction	Task	Univariate	Interlude	Multivariate
000000	O	○●○○○○○○○○○○○○○	O	000000000000000

Polynomials

Important

- f can be found with $\tilde{O}(n)$ operations in K only.
- $\tilde{O}(n)$: We ignore $\log^{?}(n)$ factors in the analysis.

Note

- The obvious, classical, solutions take O(n²) or even O(n³) operations in K.
- Assuming $n \gg 0$: fast methods are practical.
- This comparison is not fair and omits lots of important details.
- It is possible to add more information afterwards.

Introduction	Task	Univariate	Interlude	Multivariate
000000	O	00●000000000000	O	00000000000000

Fast Methods - Products

It is well known that products can be computed using Karatsuba's trick or even using FFTs.

We need for the product of univariate polynomials f and $g \in K[x]$ of degrees n and m operations in K:

- Classical: O(nm)
- Karatsuba, if n = m: $O(n^{\log_2 3})$
- FFT, if n = m: $O(n \log n \log^* \log n) =: \tilde{O}(n)$

Why does this matter?

Multiplication is **not** time-associative!

The order of operations matters - the time can vary by magnitudes.

Claus Fieker

Introduction	Task	Univariate	Interlude	Multivariate
000000	O	00●000000000000	O	00000000000000

Fast Methods - Products

It is well known that products can be computed using Karatsuba's trick or even using FFTs.

We need for the product of univariate polynomials f and $g \in K[x]$ of degrees n and m operations in K:

- Classical: O(nm)
- Karatsuba, if n = m: $O(n^{\log_2 3})$
- FFT, if n = m: $O(n \log n \log^* \log n) =: \tilde{O}(n)$

Why does this matter?

Multiplication is **not** time-associative!

The order of operations matters - the time can vary by magnitudes.

Introduction	Task	Univariate	Interlude	Multivariate
000000	O	00●000000000000	O	000000000000000

Fast Methods - Products

It is well known that products can be computed using Karatsuba's trick or even using FFTs.

We need for the product of univariate polynomials f and $g \in K[x]$ of degrees n and m operations in K:

- Classical: O(nm)
- Karatsuba, if n = m: $O(n^{\log_2 3})$
- FFT, if n = m: $O(n \log n \log^* \log n) =: \tilde{O}(n)$

Why does this matter?

Multiplication is **not** time-associative!

The order of operations matters - the time can vary by magnitudes.

Introduction 000000	Task O	Univariate 000●000000000000	Interlude O	Multivariate 000000000000000
Product .	- Tree			

Warming up: given $f_i \in K[x]$, s.th. deg $f_i = n$ for all i. Task: compute the product

 $\int f_i$

Iterative:
$$(\dots (((f_1f_2)f_3)f_4)\dots f_r)$$

Clever: $(((f_1f_2)(f_3f_4))\dots)$

Fact

The total number of K operations for the iterative method is $O(r^2n^2)$, while it is $\tilde{O}(rn)$ in the 2nd case!

◆□ > ◆□ > ◆三 > ◆三 > ● ● ●

Claus Fieker

Introduction 000000	Task O	Univariate 00000000000000	Interlude O	Multivariate 000000000000000
Why?				

Classical: $f_1 f_2$ takes $O(n^2)$ ops, result has degree 2n.

 $((f_1f_2)f_3)$ takes $O(2n^2)$ ops, result is degree 3n. Total: $\sum_{i=1}^r O(in^2) = O(r^2n^2)$. Clever: all products are of polys of same degree. $r/2\tilde{O}(n)$ for the initial products, $r/4\tilde{O}(2n)$ for the next level, ..., total: $\sum_{i=1}^{\log_2 r} r/2^i \tilde{O}(2^{i-1}n) = \tilde{O}(nr)$ **This matters!**

Introduction 000000	Task O	Univariate 00000000000000	Interlude O	Multivariate 000000000000000
Why?				

Classical: $f_1 f_2$ takes $O(n^2)$ ops, result has degree 2n. $((f_1 f_2) f_3)$ takes $O(2n^2)$ ops, result is degree 3n. Total: $\sum_{i=1}^r O(in^2) = O(r^2n^2)$. Clever: all products are of polys of same degree. $r/2\tilde{O}(n)$ for the initial products, $r/4\tilde{O}(2n)$ for the next level, ..., total: $\sum_{i=1}^{\log_2 r} r/2^i \tilde{O}(2^{i-1}n) = \tilde{O}(nr)$ This matters!

イロト 不得 トイヨト イヨト 二日

Introduction	Task	Univariate	Interlude	Multivariate
000000	O	oooo●oooooooooooo	O	000000000000000000000000000000000000
Why?				

Classical: $f_1 f_2$ takes $O(n^2)$ ops, result has degree 2n. $((f_1 f_2) f_3)$ takes $O(2n^2)$ ops, result is degree 3n. Total: $\sum_{i=1}^r O(in^2) = O(r^2n^2)$. Clever: all products are of polys of same degree. $r/2\tilde{O}(n)$ for the initial products, $r/4\tilde{O}(2n)$ for the next level, ..., total: $\sum_{i=1}^{\log_2 r} r/2^i \tilde{O}(2^{i-1}n) = \tilde{O}(nr)$ This matters!

Introduction	Task	Univariate	Interlude	Multivariate
000000	O	000000000000000	O	000000000000000000000000000000000000
Why?				

Classical: $f_1 f_2$ takes $O(n^2)$ ops, result has degree 2n. $((f_1 f_2) f_3)$ takes $O(2n^2)$ ops, result is degree 3n. Total: $\sum_{i=1}^r O(in^2) = O(r^2n^2)$. Clever: all products are of polys of same degree. $r/2\tilde{O}(n)$ for the initial products, $r/4\tilde{O}(2n)$ for the next level, ..., total: $\sum_{i=1}^{\log_2 r} r/2^i \tilde{O}(2^{i-1}n) = \tilde{O}(nr)$ This matters!

Introduction	Task	Univariate	Interlude	Multivariate
000000	O	ooooeoooooooooooo	O	000000000000000000000000000000000000
Why?				

Classical: $f_1 f_2$ takes $O(n^2)$ ops, result has degree 2n. $((f_1 f_2) f_3)$ takes $O(2n^2)$ ops, result is degree 3n. Total: $\sum_{i=1}^r O(in^2) = O(r^2 n^2)$. Clever: all products are of polys of same degree. $r/2\tilde{O}(n)$ for the initial products, $r/4\tilde{O}(2n)$ for the next level, ..., total: $\sum_{i=1}^{\log_2 r} r/2^i \tilde{O}(2^{i-1}n) = \tilde{O}(nr)$ This matters!

イロン 不得 とうほう イロン 二日

Claus Fieker

Introduction	Task	Univariate	Interlude	Multivariate
000000	O	00000000000000	O	00000000000000000
Why?				

Classical:
$$f_1f_2$$
 takes $O(n^2)$ ops, result has degree $2n$.
 $((f_1f_2)f_3)$ takes $O(2n^2)$ ops, result is degree $3n$.
Total: $\sum_{i=1}^r O(in^2) = O(r^2n^2)$.
Clever: all products are of polys of same degree.
 $r/2\tilde{O}(n)$ for the initial products, $r/4\tilde{O}(2n)$ for the next level, ...,
total: $\sum_{i=1}^{\log_2 r} r/2^i \tilde{O}(2^{i-1}n) = \tilde{O}(nr)$
This matters!

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Claus Fieker

Introduction 000000	Task O	Univariate 0000●0000000000	Interlude O	Multivariate 000000000000000
Why?				

Classical:
$$f_1f_2$$
 takes $O(n^2)$ ops, result has degree $2n$.
 $((f_1f_2)f_3)$ takes $O(2n^2)$ ops, result is degree $3n$.
Total: $\sum_{i=1}^r O(in^2) = O(r^2n^2)$.
Clever: all products are of polys of same degree.
 $r/2\tilde{O}(n)$ for the initial products, $r/4\tilde{O}(2n)$ for the next level, ...,
total: $\sum_{i=1}^{\log_2 r} r/2^i \tilde{O}(2^{i-1}n) = \tilde{O}(nr)$
This matters!

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Claus Fieker

Introduction 000000	Task O	Univariate 00000€0000000000	Interlude O	Multivariate 000000000000000
	-			

Product - Tree

A different way of looking at this:

The expression $\prod f_i$ can be evaluated on a computer using an evaluation tree, parsing tree,

Classical: corresponds to a narrow, deep tree, degrading into a line Clever: is a binary tree of minimal depth.

In either case, the size of the intermediate results correspond to the level of the tree: growing from leaf to root.

However, the clever method needs more storage, minimally $\log_2 r$, typically r/2.

Interpolation = Chinese Remainder Theorem

Interpolation: $f(a_i) = b_i$ $(1 \le i \le n)$ and deg f < n. Division with remainder: $f = q(x - a_i) + b_i$, so

$$f \equiv b_i \bmod x - a_i$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

So: CRT will find f s.th. $f \equiv b_i \mod x - a_i$ and f is modulo $\prod(x - a_i)$ unique, so deg f < n. Why? CRT can use product trees!

Claus Fieker

Interpolation = Chinese Remainder Theorem

Interpolation: $f(a_i) = b_i$ $(1 \le i \le n)$ and deg f < n. Division with remainder: $f = q(x - a_i) + b_i$, so

$$f \equiv b_i \bmod x - a_i$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

So: CRT will find f s.th. $f \equiv b_i \mod x - a_i$ and f is modulo $\prod(x - a_i)$ unique, so deg f < n. Why? CRT can use product trees!

Claus Fieker

Introduction 000000	Task O	Univariate 0000000●00000000	Interlude O	Multivariate 0000000000000000

CRT - Tree

Given a_i , b_i in K, find $f \in K[x]$ s.th. $f(a_i) = b_i$ or, equivalently $f \equiv b_i \mod x - a_i$. Define $g_i := x - a_i$ and find $f_{2i-1,2i}$ s.th. $f_{2i-1,2i} \equiv b_{2i-1}$ and $f_{2i} \equiv b_{2i}$, set $g_{2i-1,2i} = g_{2i-1}g_{2i}$ for i = 1, ..., r/2. Then iterate: find $f_{4i-3,4i-2,4i-1,4i} \equiv f_{4i-3,4i-2} \mod g_{4i-3,4i-2}$ and $f_{4i-3,4i-2,4i-1,4i} \equiv f_{4i-1,4i} \mod g_{4i-1,4i}$ and $g_{4i-3,4i-2,4i-1,4i} \equiv g_{4i-3,4i-2}g_{4i-1,4i}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

Clearly, this works, but why bother?

Claus Fieker

Introduction 000000	Task O	Univariate 0000000●00000000	Interlude O	Multivariate 0000000000000000

CRT - Tree

Given a_i , b_i in K, find $f \in K[x]$ s.th. $f(a_i) = b_i$ or, equivalently $f \equiv b_i \mod x - a_i$. Define $g_i := x - a_i$ and find $f_{2i-1,2i}$ s.th. $f_{2i-1,2i} \equiv b_{2i-1}$ and $f_{2i} \equiv b_{2i}$, set $g_{2i-1,2i} = g_{2i-1}g_{2i}$ for i = 1, ..., r/2. Then iterate: find $f_{4i-3,4i-2,4i-1,4i} \equiv f_{4i-3,4i-2} \mod g_{4i-3,4i-2}$ and $f_{4i-3,4i-2,4i-1,4i} \equiv f_{4i-1,4i} \mod g_{4i-1,4i}$ and $g_{4i-3,4i-2,4i-1,4i} \equiv g_{4i-3,4i-2}g_{4i-1,4i}$...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

Clearly, this works, but why bother

Claus Fieker

Introduction 000000	Task O	Univariate 0000000●00000000	Interlude O	Multivariate 000000000000000

CRT - Tree

Given a_i , b_i in K, find $f \in K[x]$ s.th. $f(a_i) = b_i$ or, equivalently $f \equiv b_i \mod x - a_i$. Define $g_i := x - a_i$ and find $f_{2i-1,2i}$ s.th. $f_{2i-1,2i} \equiv b_{2i-1}$ and $f_{2i} \equiv b_{2i}$, set $g_{2i-1,2i} = g_{2i-1}g_{2i}$ for i = 1, ..., r/2. Then iterate: find $f_{4i-3,4i-2,4i-1,4i} \equiv f_{4i-3,4i-2} \mod g_{4i-3,4i-2}$ and $f_{4i-3,4i-2,4i-1,4i} \equiv f_{4i-1,4i} \mod g_{4i-1,4i}$ and $g_{4i-3,4i-2,4i-1,4i} = g_{4i-3,4i-2}g_{4i-1,4i}$ Clearly, this works, but why bother?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

Claus Fieker

Introduction 000000	Task O	Univariate 0000000●0000000	Interlude O	Multivariate 000000000000000000000000000000000000

Single CRT

Given $a, b \in K[t]$, deg a, deg b = n - 1, $f, g \in K[t]$, coprime, deg f. deg g = n, solve the CRT problem: Find $h \equiv a \mod f$ and $h \equiv b \mod g$. Find u and v s.th. $1 = \gcd(f, g) = uf + vg$ using the Euclidean algorithm.

Then $h \equiv vga + ufb$ (Note: vg = 1 - uf, saving a multiplication). So, this needs

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

- $\blacksquare \ 1 \ {\rm gcd} \ {\rm degree} \ n$
- 4 products: 2 degree n by n and 2 degree 2n by n
- 1 division: degree 3n by 2n

All can be done **fast**, ie $\tilde{O}(n)$

Doing this iteratively: same problem as the product.

(univariate) Interpolation: Summary

Given \boldsymbol{n} points, the interpolation polynomial can be found using

 $\tilde{O}(n)$

operations in K. If neccessary, points can be added later - without starting from scratch.

In reality, I do not use fast methods until the degree is large (enough) of course.

The "same" tree can be used for multi-point evaluation.

Claus Fieker

(univariate) Interpolation: Summary

Given n points, the interpolation polynomial can be found using

 $\tilde{O}(n)$

operations in K.

If neccessary, points can be added later - without starting from scratch.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

In reality, I do not use fast methods until the degree is large (enough) of course.

The "same" tree can be used for multi-point evaluation.

(univariate) Interpolation: Summary

Given n points, the interpolation polynomial can be found using

 $\tilde{O}(n)$

operations in K.

If neccessary, points can be added later - without starting from scratch.

In reality, I do not use fast methods until the degree is large (enough) of course.

The "same" tree can be used for multi-point evaluation.

Introduction	Task	Univariate	Interlude	Multivariate
000000	O	0000000000000000	O	000000000000000000000000000000000000

Rational Interpolation

This is an application of rational reconstruction or, in $\mathbb{Q},$ Farey lifting.

Task Given $y_i = f(lpha_i)/g(lpha_i)$, $1 \leq i \leq n$

find $f, g \in K[x]$.

Here we need additional restrictions: $\deg f \leq n_f, \, \deg g \leq n_g$ and $n_f + n_g < n.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Claus Fieker

Introduction	Task	Univariate	Interlude	Multivariate
000000	O	0000000000●0000	O	000000000000000000000000000000000000

Rational Interpolation

Theorem

There exist "unique" $f, g \in K[x]$ solving the interpolation problem:

$$y_i = \frac{f(\alpha_i)}{g(\alpha_i)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

subject to deg $f \le n_f$, deg $g \le n_g$. Furthermore, f and g can be found in $\tilde{O}(n)$ operations in K.

Claus Fieker

Introduction	Task	Univariate	Interlude	Multivariate
000000	O	00000000000●000	O	000000000000000

Rational Interpolation

Idea:

- First find $\tilde{f} \in K[x]$ s.th. $\tilde{f}(\alpha_i) = y_i$,
- then find f, g s.th. $f \equiv g\tilde{f} \mod \prod x \alpha_i$

The first is (just) univariate interpolation, the second step is using (essentially) the extended Euclidean algorithm, stopping when the remainder is small enough.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

Note: implicit here is $g(\alpha_i) \neq 0$

Introduction 000000	Task O	Univariate 000000000000●00	Interlude O	Multivariate 00000000000000

EEA

Simplifying: $a := \prod x - a_i$ and $b \in K[x]$ sth. $b(a_i) = b_i$, we want $f, g \in K[x]$ sth. $\frac{f}{g}(a_i) = b(a_i) = b_i$

This implies:

 $f\equiv gb \bmod a$

Task

Given a, b find f and g sth.

$$\frac{f}{g} = b \iff f \equiv bg \bmod a$$

Also known as rational reconstruction or, Farey lifting.

Claus Fieker

Introduction 000000	Task O	Univariate 00000000000000000	Interlude O	Multivariate 000000000000000

EEA

Simplifying: $a := \prod x - a_i$ and $b \in K[x]$ sth. $b(a_i) = b_i$, we want $f, g \in K[x]$ sth. $\frac{f}{g}(a_i) = b(a_i) = b_i$

This implies:

 $f\equiv gb \bmod a$

Task

Given a, b find f and g sth.

$$\frac{f}{g} = b \iff f \equiv bg \bmod a$$

Also known as rational reconstruction or, Farey lifting.

Claus Fieker

Introduction 000000	Task O	Univariate 000000000000●0	Interlude O	Multivariate 000000000000000000000000000000000000

Monagan

Given $a, b \in K[x]$, Monagan defines the extended euclidean algorithm via $R_0 = (a, 0), R_1 = (b, 1), R_i = (r_i, t_i)$ and then $q_i = r_{i-1} \operatorname{div} r_i$ and $R_{i+1} = (r_{i-1} - q_i r_i, t_{i-1} - q_i t_i)$.

Fact

• If
$$r_{i+1} = 0$$
, then $r_i = \text{gcd}(a, b)$

$$\forall i : \deg r_i + \deg t_i + \deg q_i = \deg a$$

$$\forall i: bt_i \equiv r_i \bmod a \iff b \equiv \frac{r_i}{t_i} \bmod a$$

Claus Fieker

Introduction 000000	Task O	Univariate 0000000000000●	Interlude O	Multivariate 000000000000000000000000000000000000

Monagan ctd.

Generically, $\deg q_i = 1$, Monagan suggests using i sth. $\deg q_i$ is maximal as "the" solution:

$$\frac{f}{g} = \frac{r_i}{t_i}$$

If deg a is large enough $(\deg a > 2(\deg f + \deg g))$ this i is unique and all works.

If the degrees of $f \ {\rm and} \ g$ are known, then this can be used as a stopping condition as well and all works.

Monagan uses the fast \gcd methods to achieve a runtime $\ddot{O}(n)$ again.

Introduction	Task	Univariate	Interlude	Multivariate
000000	O	oooooooooooooooooooooooooooooooooooo	O	000000000000000000000000000000000000

Monagan ctd.

Generically, $\deg q_i = 1$, Monagan suggests using i sth. $\deg q_i$ is maximal as "the" solution:

$$\frac{f}{g} = \frac{r_i}{t_i}$$

If deg a is large enough $(\deg a > 2(\deg f + \deg g))$ this i is unique and all works.

If the degrees of f and g are known, then this can be used as a stopping condition as well and all works.

Monagan uses the fast \gcd methods to achieve a runtime $\tilde{O}(n)$ again.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

Introduction	Task	Univariate	Interlude	Multivariate
000000	O	000000000000000	●	00000000000000

Rational Reconstruction

A similar construction is applied to supplement the CRT for rational solutions.

Given prime numbers p_i and values y_i , find f, $g \in \mathbb{Z}$ s.th.

$$g \mod p_i \neq 0$$
 and $gy_i \equiv f \mod p_i$.

If 2|f| < A, 0 < g < B and $AB \le M = \prod p_i$ then this is unique. This can be phrased as a lattice problem, solved using LLL or using continued fractions via the extended Euclidean algorithm. Again, the runtime is $\tilde{O}(\log M)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

Claus Fieker

Introduction	Task	Univariate	Interlude	Multivariate
000000	O	00000000000000	O	•000000000000000000000000000000000000

Polynomials I

To warm up: $f = \sum f_i \underline{x}_i^{m_i}$ for $m_i \in \mathbb{N}^d$. Given $S \subset \mathbb{N}^d$, $|S| = n < \infty$, $m_i \in S$ (so S is a superset of the support of f).

Theorem

Then, given pairwise distinct $\underline{\alpha}_i \in K^d$ and $y_i \in K$ we (mostly) can find the unique f s.th.

$$f(\underline{\alpha}_i) = y_i$$

using linear algebra in time $O(n^{\omega})$.

(The mostly refers to things like f(x, y) = xy where choosing $\underline{\alpha}_i = (0, i)$ is not going to work. If the evaluation points are "random" the Schwartz-Zippel Lemma implies the "mostly") If only the degree b (or a bound) is known, we need $n = b^d$, ...

500

Claus Fieker

Introduction 000000	Task O	Univariate 0000000000000000	Interlude O	Multivariate 0●00000000000000000000000000000000000
Polynomial	c			

F OIVHOIHIAIS H

Using the (unique) univariate case, we can obtain a different algorithm - with a sometimes better complexity.

We illustrate this in 2 variables.

Choosing $\underline{\alpha}_{i,j} = (\mu_i, \nu_j)$ we can, fixing j, use the univariate case to find $f_i \in K[x_1]$ s.th. $f_i(\mu_i) = f(\mu_i, \nu_i)$.

Now using the interpolation over $K(x_1)$ to solve $f(x_1, \mu_i) = f_i$ we can find the unique solution.

Initially $f \in K(x_1)[x_2]$ only, but since by assumption the solution $f \in K[x_1, x_2]$ is unique, we're done. This takes O(d) operations in K to find f_i and then O(d)

operations in $K(x_1)$ to find f.

Introduction	Task	Univariate	Interlude	Multivariate
000000	O	000000000000000	O	000000000000000000000000000000000000

Polynomials III

A hybrid approach: choosing $\underline{\alpha}_i = (\mu_i, \nu_2, \dots, \nu_d)$ we can find $f_1(x_1) = f(x_1, \nu_2, \dots, \nu_d)$ giving, generically, the degrees $D_1 \subset \mathbb{N}$ in which x_1 occurs in f.

Repeating this with $\underline{\alpha}_i = (\nu_1, \dots, \mu_i, \dots, \nu_d)$ we can find all degree sets D_i for x_i , this then gives a superset for the support of f as $S \subseteq \prod D_i$.

This can be much smaller than the generic case. Using the linear algebra then is efficient.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

Polynomials IV - Linear Recurrence

Choosing clever evaluation points we can obtain a sparse algorithm. Let $\underline{\alpha}_{i,j} = \beta_j(p_1^i, \ldots, p_d^i)$ for suitable numbers p_i and $\beta_j \in K$. Then $y_{i,j} = f(\underline{\alpha}_{i,j})$, $1 \leq j \leq d$ defines many univariate interpolation problems. We find $f_i \in \mathbb{Q}[z]$ s.th. $f_i(\beta_j) = y_{i,j}$, so $f_i(z) = f(zp_1^i, \ldots, zp_d^i)$. Analysing the coefficients $f_{i,l}$ of f_i we see that

$$f_{i,l} = \sum_{|m_t|=l} c_t \prod_k (p_k^i)^{m_{t,k}} \\ = \sum_{|m_t|=l} c_t \prod_k (p_k^{m_{t,k}})^i =: \sum_{|m_t|=l} c_t \beta_t^i$$

Here we have 2 sets of unknowns: the c_t and the m_t . The degrees l however are known from the $f_i!$

Claus Fieker

Introduction Task Univariate Interlude Multivariate

Polynomials IV - Linear Recurrence

$$f_{i,l} = \sum_{|m_t|=l} c_t \beta_t^i$$

For each l, this is well known to be a linear recurrence (of unknown length). Using the Berlekamp-Massey algorithm we can obtain a recurrence of degree < n from 2n terms. This finds an auxiliary polynomial $T \in K[z]$ s.th.

$$T(z) = \prod (z - \beta_t)$$

イロト 不得 トイヨト イヨト

3

Problem: find m_t from $\beta_t \dots$

Claus Fieker

Introduction 000000	Task O	Univariate 0000000000000000	Interlude O	Multivariate 00000€00000000
	T '			

Ben-Or, Tiwari

Using pairwise coprime (or distinct primes) $p_i \in \mathbb{Z}$ (for $K = \mathbb{Q}$), the exponents m_t can be recovered from the β_t using factorisation! The number of evaluation points depends on the degree of f_i , hence the total degree, and the number of m_t of the same degree. We need deg f_i many β_j and $2\#\{m_t \mid |m_t| = l\}$ many i, so $2 \deg f_i \#\{m_t\}$ many in total. We note that, due to the high powers of p_i used, the rational

coefficients will be huge.

Once the exponents, the monomials, are known, linear algebra will find the coefficients.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

This can be done degree-by-degree.

Introduction	Task	Univariate	Interlude	Multivariate
000000	O	oooooooooooooooo	O	000000000000000000000000000000000000
Soo Go				

To combine Ben-Or/ Tiwari with modular algorithms, Soo Go came up with a trick:

Let b_i be a bound on the degree of x_i in f. Let $p = k \prod_{i=1}^d p_i + 1$ be a prime where p_i are pairwise coprime, $p_i \ge b_i$ and k > 0suitable. Primes in arithmetic progressions imply k can be found. Now let $\mathbb{F}_p^* = \langle z \rangle$ for some (arbitrary) generator z. Choosing $\alpha_i = z^{(p-1)/p_i}$ we can recover the exponents m_t from the roots:

Introduction 000000	Task O	Univariate 000000000000000	Interlude O	Multivariate 000000€000000
Soo Go				

$$\alpha_i = z^{(p-1)/p_i}$$

Since z is primitive, $\beta_t=z^{a_t}$ and

$$\beta_t = \prod (z^{(p-1)/p_i})^{m_i} = z^{\sum m_i(p-1)/p_i} = z^{a_t}$$

so

$$\sum m_i(p-1)/p_i \equiv a_t \mod p-1$$

and

$$\sum m_i(p-1)/p_i \equiv a_t \bmod p_i$$

but $(p-1)/p_i \equiv 0 \mod p_j$, so m_i can trivially be found!

Claus Fieker

Introduction	Task	Univariate	Interlude	Multivariate
000000	O	000000000000000	O	000000000000000000000000000000000000

Rational Interpolation I

Warming up, using linear algebra again: given $y_i = h(\underline{\alpha}_i)$ for h = f/g, $f = \sum f_i \underline{x}^{m_i}$ and $g = \sum g_i \underline{x}^{n_i}$, we again get a linear equation:

$$\sum f_i \underline{\alpha}_j^{m_i} = y_j \sum g_i \underline{\alpha}_j^{n_i}$$

if supersets for the support $\{m_i|i\}$ for f and $\{n_i|i\}$ for g are known. The cost is (cubic) in the size of the supersets. Thus, as before, if only degree bounds are used, this is inefficient - unless the problem is really dense.

Note: the solution is not unique - we can normalise the rational function as we want.

Introduction	Task	Univariate	Interlude	Multivariate
000000	O	000000000000000	O	000000000000000000000000000000000000

Rational II - Recursive, dense

Assume h(0) is defined, then $g(0) \neq 0$ and wlog. g(0) = 1. Let $\alpha_i = (\mu_i, \nu_2, \dots, \nu_d)$.

Use the univariate rational to get

$$\frac{f_{\underline{\nu}}(x_1)}{g_{\underline{\nu}}(x_1)} = h(x_1, \nu_2, \dots, \nu_d).$$

Normalise $g_{\underline{\nu}}(0) = 1$, then $g_{\underline{\nu}} = g(x_1, \nu_2, \dots, \nu_d)$. This now is a "simple" multivariate polynomial interpolation problem for f and g, to be solved by any means. Similarly to the hybrid approach for polynomials, we can use this too to find the degree sets for each variable (at cost $\tilde{O}(\sum \deg_{x_i} h))$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Claus Fieker

Rational II - Recursive, dense, shift

To achieve $g(0) \neq 0$, we apply the algorithm to $h(\underline{x} + \underline{\beta})$ for any $\underline{\beta}$ s.th. $h(\beta)$ is defined.

This "shift" destroys the sparsity of h.

Depending on the overall algorithm, the sparsity can be recovered in the polynomial interpolation step.

We need $2\deg f_{\underline{\nu}}$ evaluation points for $f_{\underline{\nu}}$ and then more for the rest.

Introduction	Task	Univariate	Interlude	Multivariate
000000	O	00000000000000	O	000000000000000000000000000000000000

Rational III - Sparse

Similar to the Ben Or, Tiwari, Soo Go method, we can operate here.

Assume first h(0) is defined, thus $g(0) \neq 0$. As above, wlog. g(0) = 1. Evaluating at $\alpha_{i,j} = \beta_j(p_1^i, \dots, p_d^i)$ for *i* fixed, using the rational univariate case, we find $h_i(z) = f_i(z)/g_i(z)$ and then proceed as in the multivariate polynomial case for *f* and *g* separately. However, if g(0) = 0 we cannot do this (directly) and shifting

destroys the sparsity.

Introduction 000000	Task O	Univariate 000000000000000	Interlude O	Multivariate 000000000000●0

Rational III - Sparse

Observation: The leading monomial in $f(\underline{x})$ and $f(\underline{x} + \underline{\beta})$ is identical! In fact, the entire homogenous component of highest degree is unchanged.

Thus we can use Ben Or, Tiwari, Soo Go to find the maximal homogenous component H - and then proceed to recover $f(\underline{x} + \underline{\beta}) - H(\underline{x} + \underline{\beta})$. Recursively, we can recover the sparse f and g.

Let D be (a bound for) the largest number of homogenous parts. The costs are $O(4 \deg hD)$ evaluation points, and $D\tilde{O}(2 \deg h)$ to find all f_i , then $\tilde{O}(2D)$ for each Berlekamp-Massey, $O(D^{\omega})$ to find the coefficients as well as the univariate factorisation.

Introduction	Task	Univariate	Interlude	Multivariate
000000	O	00000000000000000	O	000000000000000●
Final Rem	harks			

- Unless bounds/ properties are known, reconstruction is not guaranteed to find the "correct" result
- Methods can be nested: using modular methods to compute rational reconstructions over \mathbb{Q} or $\mathbb{F}_p(\underline{x})$
- Each level in the product trees can be evaluated in parallel
- The lifting can be extended to deal with "wrong" evaluation values, coming from bad primes
- The univariate case can be extended to allow addition of more points - until we are happy with the result.