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Motivation

® Feynman integrals are cornerstone of perturbative QFT and necessary for
predictions in collider and gravitational wave experiments.

@® High precision measurements require multi-loop Feynman integral computations.

@® There are many examples at two-loop order where elliptic functions show up.
This means that these Feynman integrals have an associated non-trivial geometry.

@ At higher loops we have examples where even more complicated geometries appear.

—— .

® Another family of Feynman integrals with Calabi-Yau geometry are the ice cone integrals.




Table of Content

1) Recap of Calabi-Yau Geometries ‘ 3

2) Recap of Banana Integrals

[1-5]

3) The Ice Cone Family

4) Conclusion and Remarks



Recap Calabi-Yau Geometries

@ Calabi-Yau manifolds are natural generalizations ~ &
of elliptic curves: ' >

Calabi-Yaus are complex n-dim Kahler manifolds (&, dz Jy, dz A dy) (X,Q,w)
which have a unique holomorphic(n,0)-form ’ ’
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@ Period integrals on Calabi-Yaus can be used to describe their shape and properties:

T: Hy(X)x Hjz(X) — C I R
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@ On Calabi-Yaus we have a monodromy invariant intersection pairing Y. between periods:

IS or HO'X0FII



Recap Calabi-Yau Geometries

@® Periods are governed by differential equations: Picard-Fuchs equation or Gauss-Manin system:

@ Point of maximal unipotent monodromy: o = power series in z
w1 = Wy lOg(Z) + 2

1
W2 = 5@0 10g(2’)2 + > log(z) + X

hierarchic logarithmic structure

@ The boundary conditions of these equations
follow from special monodromies.
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@® Periods are governed by differential equations: Picard-Fuchs equation or Gauss-Manin system:

@ Point of maximal unipotent monodromy:

hierarchic logarithmic structure

@ The boundary conditions of these equations
follow from special monodromies.

® On Calabi-Yaus there exists the phenomenon
Griffiths transversality:

@® There are quadratic relations between periods:

@® We can simplify the inverse Wronskian:
W(2)i,; = {0.w;} 5

Ty = power series in z
w1 = Wy lOg(Z) + >

1
W2 = 5@0 10g(Z)2 + > log(z) + X
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Recap Calabi-Yau Geometries

@ Mirror symmetry exchanges the complex and Kahler A
structure spaces of pairs of mirror Calabi-Yaus (M, W): O O
0 0
RN (M) = hEH(W) A\ MY
hl’l(M) _ hn—l,l(W) ¢ O
O O
1
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@® CY differential operators have a special form in terms of the canonical variable tor ratherg = ¢ [1]

Liq =02,
Loy =02, Normalized periods can be
; 42 1 42 written as iterated integrals w1(q) = I1(1;q)
3.0 =Ygy Vao ~
Y?fl 1 sy wa(q) = 1(1,Y3,1;q)
~ N2 2 : _— .
Laa = V95, by 0 o= ws(q) = 1(1,Y3,1,1;q)
1,1 o

Lr, =60°—0 6 62
>4 TYs1 "Vs0 V5, ¢

Y, r: invariants of CY n-fold
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Recap Banana Integrals




Recap Banana Integrals

W\4 [2]
,\,7— ’ Two dimensions
— w
Equal-mass and generic-mass case
a4

I+1
: , 2 /.2
@ One can associate a CICY geometry to the maximal cuts: M, = {Pl =P,=0cFc X P%i)}, zi =m;/p
1=1

@ From a GKZ approach one can construct inhomogeneous differential egs.: D, 1(z) = q,(z,1log(2))

® Banana integral is linear combination of CY periods & special solutions: I(z) = Z i wi(2)
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@ From a GKZ approach one can construct inhomogeneous differential egs.: D, 1(z) = q,(z,1log(2))
® Banana integral is linear combination of CY periods & special solutions: I(z) = Z i wi(2)
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Recap Banana Integrals

® The additional special solution can be interpreted as iterated Calabi-Yau period:

Using variation of parameters/constants we find:

lban,l(z) ~ ﬂl(z)T/ dz’ VVl(z')_1 Inhom, (z") + WA
0
use quadratic relations

2 / from Griffiths transversality
dz ,
—5 I, (") + WA <

Z

~I(2)TE, /
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iterated CY period
integrals of M;_4 }
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Recap Banana Integrals

® The additional special solution can be interpreted as iterated Calabi-Yau period:

Using variation of parameters/constants we find:

Iyon(2) ~ ﬂl(z)T/ dz’ W;(2")~! Inhom, (') + WA
0

use quadratic relations

Z qs from Griffiths transversality
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Z
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i‘: Function space & S iterated CY period
| ™ ~  integrals of M;_1
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@® We can also express everything through the canonical variable:

l
Iban,l ~ wO(Q) < Z )\kl(17 Y17 I 7}/l—k—1; Q) + 1(17 Yla I 7Y17 1agban; Q)>
k=1

Pure function of
weight |
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lce Cone Integrals

® Now we consider the family of ice cone integrals:

external parameters: Pp1and P2 with p% = p% =0
so we have only s = 2pq - po

internal masses: all equal tom

dimension: two

—~=y With these configurations this is a one-parameter family s/m2.
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® Now we consider the family of ice cone integrals:

PA'.SO ?zgo
: 2 2
external parameters: p1and pawith p; = p5 =0
so we have only s = 2pq - po
_ 2
internal masses: all equal tom W
dimension: two
S= z?n'?t

—~=y With these configurations this is a one-parameter family s/m2.

@® Naively, we expect that the banana integrals play a prominent role for ice cone
integrals since they explicitly appear in their diagrams.

@ Our strategy to compute ice cone integrals has three steps:
i) Find a good basis of master integrals such that the differential equations are simple.
i) Compute master integrals in terms of banana integrals.

iii) Use monodromy considerations to obtain the correct linear combination.



Bananas in Ice Cones

@® Consider the following representation of the ice cone: P=O

d*k _
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Bananas in Ice Cones

@® Consider the following representation of the ice cone:

d*k _
I(Z) :/ I(l 1) k2
= | = pr =) (o pa)? =) e )

@® We analyze the maximal cuts in with the Baikov representation:

S

du I—1
0 _ ]{ 70-1)
1ce, cut (u L mQZIZ) (’LL _ m2/:13) ban, cut (u) (1 B $)2

m2 T
Landau variable
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@® Consider the following representation of the ice cone:
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Bananas in Ice Cones

@® Consider the following representation of the ice cone:

d*k _
I(l) :/ I(l 1) k2
= | = pr =) (o pa)? =) e )

@® We analyze the maximal cuts in with the Baikov representation:

du I—1
Ii(cle): cut — % Ik()an )cut (’LL)
| (= ) (u — ) > PR
N R R
\ / \ Landau variable

have two choose two CY periods
different residues

—~=y \We see now that two copies of the cut banana integrals appear in the cuts of ice cone:

[ [—1 [—1
{I(gu)t, ice} — {Il()an, )Cut(m2w)7‘[l()an, )cut(mQ/x)} ’ 2(l o 1)

® For good basis of master integrals introduce appropriate numerators such that the two

residues decouple. II-u-"
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Master Integrals and DEQs

® We found that a good basis of master integrals is given by: 1]

trivial master integrals:

L —— i (- - /)

simple
algebraic & log

constant
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Master Integrals and DEQs

® We found that a good basis of master integrals is given by:

trivial master integrals:

constant

non-trivial master integrals:

\% + \%x Nuwesa bor
— — -

correspond to the two
copies of the bananas
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Master Integrals and DEQs

® We found that a good basis of master integrals is given by: 1]

trivial master integrals:

4_@—’ k0 @ /C@

~ 7~

simple

constant )
algebraic & log

non-trivial master integrals:

\% i \?’Q D“m\‘OLD“ G'\'o.w wu&‘ﬁv “
—— —— e’

\——\r_-J

correspond to the two vanishes in two
copies of the bananas dimensions

@® For this basis we can (conjecturally) write down the full GM system in two dimensions.
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Master Integrals and DEQs

@® The only non-trivial part of the GM system takes the simple form:

@ﬁ GM\" V()L + N Iy + O(d — 2)

d
—I; = GM!"V(1/5)L + N Iy + O(d — 2)

~~—=3 As in the banana case the master integrals of the ice cone family are iterated CY period integrals.

log( ')
Z;L ~ W;rlzl—l/o 12 I, («")da’ +Vvl+—193L
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@® To fix the boundary condition we notice:

Double extension
et = (0 —1)° I =
['we,l [,1 ( ) Ebaﬂal 1511 0 of CY operator

® From analytic properties of ice cone integral we get a generating series for boundary constants ¢;':

Cl—:—l k+1 — = (I + )
MLy

A
*....._....v;./-x—-"""“"_ S l t! - &
X=- 00 xeo K=t X0 el 1+Z(_1) Hcllu =T(1-8)%"""  T-class ? -I-u-"
¢ 1+2
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Bananas vs. Ilce Cones

maximal cut geometry:
(I —1)-dimensional CY M;_,

Tnan, ~ @o(g (Zwl Yi,.o o Yiko13q)

—|—I(1, Yl, ce ,Yl, 1,gban; q))

pure function of weight [

»Cban,l — (9 — 1)£CY,Z—1

single extension

generating series: —

+ I'-class

maximal cut geometry:
two (I — 2) -dimensional CYs M;_»

T, ~ wolg (ch TV Yk i)
—l![(l,Yl,...,Y1,1ygice;Q)>

pure function of weight [

['ice,l — (9 — 1)2£CY,Z—2

double extension

generating series: TI'(1 — t)%e™ 27"
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Conclusion

® Unterstanding CY geometries is essential for understanding higher loop Feynman integrals.

Riemann sphere elliptic curve Calabi-Yau

What about other geometries?

@ Using CY techniques we can solve so far three
different families of Feynman graphs:

@ But still we have many open questions:

@ €-factorized differential equation, uniform weight functions, integration kernels
@® Other families with underlying Calabi-Yau geometry?

® Mathematical definition of iterated Calabi-Yau periods similar to elliptic polylogs

. TUTI
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