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Motivation

* Theoretical predictions for
observables at %-level accuracy

e search of new physics
e test SM symmetry breaking mech.

* high-multiplicity and masses
Increasingly important

* Crucial understanding of amplitudes and Feynman integrals
e %-level ~ at least NNLO ~ 2 loops or more
* Exploiting physical and mathematical structures

 many connections with fields of math.s and computing



Scattering amplitudes

* At the core of theoretical predictions
* Exhibit rich and interesting mathematical structures

* At the loop level, a combination of

Inverse propagators
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Computing loop amplitudes

 Write amplitudes as a linear combination of Feynman integrals
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* Reduction into a basis of linearly independent master integrals
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 Compute the master integrals (Mls)



Analytic vs Algebraic complexity

- Analytic complexity
e understanding space of special functions for amplitudes

e appears in computation of Mls

- Algebraic complexity
* huge intermediate expressions

e appears in most steps if we have “many” loops, legs or scales

= this talk



From amplitudes to
Feynman integrals



Integrand reduction

Ossola, Papadopoulos, Pittau (2007)

* Integrands of amplitudes as sums of irreducible contributions
(at the integrand level)
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» the “on-shell” integrands m(k)“

 form a complete integrand basis

e arein the “nice” form we want

« solve for unknown ¢,
. on multiple cuts {Dj = O}jeT (linear system)

« black-box polynomial reconstruction in Dj [T.P. (2019)]



Tensors and form factors

e Alt.: well-known decomposition of amplitudes
d= QKT
J

7}- = tensors structures compatible with gauge, Lorentz and other

symmetries, contracted with external polarization states

Fj = scalar form factors, computable at any loop order in perturbation theory

* Projecting out the form factors
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» Drawback: traditionally impractical with #legs > 5



Physical tensors and projectors

A “physical” basis of tensors [T.P.,, Tancredi (2019-20)]:

7} & set of tensor structures spanning the physical space of four-

dimensional external momenta and polarizations (tHV scheme)
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 Example: 5 gluon amplitudes

* Considering to 4-dim. momenta and polarizations

= oOnly allow combinations of four indep. pj” — 32 independent tensors !!!

= we can build simple projectors for the 32 helicity amplitudes



Physical tensors and projectors

* Another example: 4 fermion scattering qZ]QQ

* infinitely many tensor structures (they increase with the loop order)
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 Four dimensional external polarization states

= only 7, 1, are needed at all loops!
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Axial couplings: ggg/

Gehrmann, T.P.,, Tancredi (2022)]

 Physical tensor structures for four-dimensional external states

» spanned by p/* (i = 1,2,3) and v = €"""p,,p,,ps,,

 parity-even tensors contain even powers of v,, which we can
. . y U
effectively replace using viv, — g*

« parity-odd tensors contain one instance of v*

A

# tensors = # helicity amplitudes = 12
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Axial couplings: qgg/Z @ 2 loops

Gehrmann, T.P.,, Tancredi (2022)]
 Larin scheme

l
rHys — ge””p“mpn

» Levi-Civita tensors “disappear” when contracted with the
ones appearing in the projectors (inside the definition of v,)

* First explicit calculation of axial non-singlet
contributions

e agreement with results derived from vector ones
[Garland, Gehrmann, Glover, Koukoutsakis, Remiddi (2002)]

 New results for axial singlet contributions

* include finite top-loop contributions in 1, — oo limit

« checked UV and IR consistency up to @(I/mtz) SE—
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Finite fields and rational
reconstruction



Finite fields and rational reconstruction

* A successful idea for dealing with algebraic complexity
[Kant (2014), von Manteuffel, Schabinger (2014), T.P. (2016)]

 Reconstruct analytic results from numerical evaluations

* intermediate steps are numbers instead of complicated expressions

 Evaluations over finite fields zp (computing modulo a prime p)

Zp ={0,1,....,p—1}

e Use machine-size integers p < D064 (fast and exact)

* Collect numerical evaluations and infer analytic result form them
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Finite fields and rational reconstruction

Applicable to any rational algorithm
Sidesteps appearance of large intermediate expressions
Massively parallelizable

* numerical evaluations are independent of each other

e algorithm-independent parallelization strategy
Yielded some of the most impressive multi-loop results to date

Examples of known codes using it:
FinRed, FiniteFlow, FireFly+Kira, Fire, Caravel
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FiniteFlow

T.P. (2019)
* Builds numerical algorithms via a high-level interface

 Combines core algorithms into a computational graph

input
node

e graph evaluation implemented in C++

 Usable as a Mathematica package

* build efficient implementations of
custom algorithms

evaluate @ %
a;

* reconstruct analytic results

* Produced many cutting-edge
multi-loop results
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IBP reduction to master integrals

* |BPs are large and sparse linear systems

« they reduce Feynman integrals IJ to a lin. indep. set of Mls Gj
Ij = Z Ck Gk
jk
e amplitudes can be reduced mod IBPs

d=3 ali=) a4G= ) AG Wwithd =) aq
j jk | k

J

. final results for A, often much simpler than Cij

= solve IBPs numerically and compute Aj
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Coefficients of the ¢-expansion

e If MIs are known in terms of special functions f;

X = kinematic variables + masses

C;j = 2 gjk(€9 X)fk @(6) ¢ = dimensional regulator
k

* we plug these into the amplitude

A = Z u(€,x)f, + O(e)
k

» we first reconstruct the coefficients only in € (for numerical x) to
evaluate the expansion of the amplitude (and then we reconstruct in x)
0

u(€,x) = Z ulgj)(x) e/ + O(¢)
J==D
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Partial fractions

 Reconstructed results come out collected and GCD-simplified
* partial fractioning is known to yield simplifications

* multivariate partial fractions require some care
(uniqgueness of result, avoiding spurious denominators)

* modern implementations use some algebraic geometry
[Abreu, Dormans, Cordero, lta, Page, Sotnikov (2019)
Boehm, Wittmann, Wu, Xu, Zhang (2020)
Heller, von Manteuffel (MultivariateApart,2021)]

1/d(x;) - q; = reduction mod {(q,d,(x,) — 1....,q,d,(x) — 1)

with an appropriate monomial ordering (qj > X;)
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Partial fractions and reconstruction

are often much simpler... §

A\ )
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Partial fractioned results '

Simplifying the reconstruction

guess denominator factors
e.g. from the “letters” [, from univariate slices x; = a,z + b, (a;, b, = random integers)

reconstruct in one variable or two

univariate/bivariate partial fraction u(xi =

reconstruct in all other variables

applied e.g. to 3g + 2y @ 2 loops and other processes

[Badger, Bronnum-Hansen, Chicherin, Gehrmann, Hartanto, Henn, Marcoli, Moodie, Zoia, T.P. (2021)]
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IBPs and syzygies



IBP reduction

Chetyrkin, Tkachov (1981), Laporta (2000)

 Feynman integrals obey linear relations, e.g. IBPs

0 1
J(Hdd@> _/AVM =0 Vi e {pl{u, kl'u}
j 0kj D' D52+

* Very large and sparse linear system = 2 cix Gy

= vyields reduction to Mls J -
e Often a huge bottleneck!
e \ery active research on direct decomposition approaches

= see e.g. Gaia’s and Pierpaolo’s talks
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Lowering the complexity of IBP systems

* |BP relations contain higher-powers of propagators

N S . D, 1
= EV opr- O\ D§UI+1>D52,,,+"'

* many of these don’t contribute to the amplitude

» can we build a system without them? [Gluza, Kajda, Kosower (2011)]
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* syzygy equations for polynomials
Ay = X(Dy)y Py = Di(Dy), ¥; = vA(D))



Syzygy equations
* A syzygy equation has the form

f(z) - g(z) = Zﬂz) g(2) =

~" known N g “unknown ™

\_polynomials /

\_ polynomials /

« can be solved via linear algebra by making an ansatz for g;
[see also Schabinger (2012)]

o if g(l), Cens g(M) are generators of the solutions, then any solution

M
8(z) = ) p2)g”(z)

: arbitrary
j=1

polynomials
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IBPs In the Baikov representation

4
1 B(z, ..., 2,)"
B J IIddkl v Uy ¢ szl.°°dzn (Z11/ v )
1 Dll...Dnn le...Znn

B = Baikov polynomial,y = (d—-¢ —e —1)/2

* Integration by Parts

a(zl,...,zn)
0=
Z.[OZ] ( 2y 2" )
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J J J 1 n
dim. shifted 4/) \‘ﬁ higher powers
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IBPs In the Baikov representation

Ita (2016), Larsen, Zhang (2016)

(i) and (ii) have simple closed-form solutions
[Bohm, Georgoudis, Larsen, Schulze, Zhang (2018)]

Three alternative approaches:
1. plug (i) into (i) and solve

2. combine (i) and (ii) with alg. geometry (module intersections)
[Bohm, Georgoudis, Larsen, Sch'onemann, Zhang]

3. put solutions of (i) in a matrix and Gauss-eliminate higher-powers
[von Manteuffel]
* exploit fast linear solvers over f.f. + rational reconstruction

e avoid reconstruction of complicated solutions
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IBPs In the Baikov representation

Syzygies yield new parametric identities for each sector

* then proceed as in traditional Laporta alg.

|dentities can be used in integrand bases
(see e.g. numerical unitarity [Ita et al. (2016)])

Can be combined with traditional Laporta identities

e e.g. to fix incomplete reductions or avoid complex syzygy solutions

Up to ~ 10x improvements In efficiency
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Conclusions

 Amplitudes and loop integrals
» are at the core of theoretical predictions
* exhibit rich and interesting mathematical structures

* Math. structures are exploited by modern methods

* integrand reduction, tensor decomposition, new reduction techiques,
finite fields and rational reconstruction...

 Many interesting future directions

» direct decomposition of integrals, ansatzes for amplitudes, bases of
functions, improvements to reconstruction...
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