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• Theoretical predictions for 
observables at %-level accuracy


• search of new physics


• test SM symmetry breaking mech.


• high-multiplicity and masses 
increasingly important

Motivation
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• Crucial understanding of amplitudes and Feynman integrals


• %-level ~ at least NNLO ~ 2 loops or more


• Exploiting physical and mathematical structures 

• many connections with fields of math.s and computing



• At the core of theoretical predictions


• Exhibit rich and interesting mathematical structures


• At the loop level, a combination of

Scattering amplitudes
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𝒜 = ∫
∞

−∞ (
ℓ

∏
i=1

ddki) 𝒩
D1 D2 D3⋯

Dj = l2
j − m2

j

Inverse propagators



• Write amplitudes as a linear combination of Feynman integrals 

• Reduction into a basis of linearly independent master integrals 



• Compute the master integrals (MIs)

{Gj} ⊂ {Ij}

Computing loop amplitudes
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𝒜 = ∑
j

aj Ij

Rational 
coefficients

Integrals in a

“nice/standard” form

Ij = ∑ cjkGk
master integrals

rational coefficients



- Analytic complexity 

• understanding space of special functions for amplitudes


• appears in computation of MIs


- Algebraic complexity 

• huge intermediate expressions


• appears in most steps if we have “many” loops, legs or scales


➡  this talk

Analytic vs Algebraic complexity

5



From amplitudes to

 Feynman integrals



• Integrands of amplitudes as sums of irreducible contributions 
(at the integrand level)


• the “on-shell” integrands 


• form a complete integrand basis


• are in the “nice” form we want


• solve for unknown 


• on multiple cuts  (linear system)


• black-box polynomial reconstruction in    [T.P. (2019)]

mT(k)α

cT,α

{Dj = 0}j∈T

Dj

Integrand reduction
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𝒩(k)
∏j Dj(k)

= ∑
T

∑
α

cT,α
mT(k)α

∏j∈T Dj(k)

Ossola, Papadopoulos, Pittau (2007) 



• Alt.: well-known decomposition of amplitudes


• Projecting out the form factors


• Drawback: traditionally impractical with #legs ≥ 5

Tensors and form factors
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𝒜 = ∑
j

Fj Tj

  = tensors structures compatible with gauge, Lorentz and other 
symmetries, contracted with external polarization states


  = scalar form factors, computable at any loop order in perturbation theory

Tj

Fj

Fj = Pj ⋅ 𝒜, Pj = ∑
k

(T† ⋅ T )−1
jk T†

k



• Example: 5 gluon amplitudes


• 142 -dimensional tensors


• Considering to 4-dim. momenta and polarizations


➡  only allow combinations of four indep. 32 independent tensors !!!


➡  we can build simple projectors for the 32 helicity amplitudes

d

pμ
j ⟶

Physical tensors and projectors
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combinations of gμν, pμ
j

Tj = Tμ1⋯μ5
j ϵμ1

(p1)⋯ϵμ5
(p5)

set of tensor structures spanning the physical space of four-
dimensional external momenta and polarizations (tHV scheme)
Tj ∈

A “physical” basis of tensors   [T.P., Tancredi (2019-20)]:



• Another example: 4 fermion scattering 


• infinitely many tensor structures (they increase with the loop order)


• Four dimensional external polarization states


➡ only  are needed at all loops!

qq̄QQ̄

T1, T2

Physical tensors and projectors
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Independent in 
four dimensions

can be traded with

orthogonal + 
evanescent 

etc…



• Physical tensor structures for four-dimensional external states


• spanned by  ( ) and 


• parity-even tensors contain even powers of , which we can 
effectively replace using 


• parity-odd tensors contain one instance of 

pμ
i i = 1,2,3 vμ

A = ϵνρσμp1νp2ρp3σ

vA
vμ

Avν
A → gμν

vμ
A

Axial couplings: qq̄gZ
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# tensors = # helicity amplitudes = 12

Gehrmann, T.P., Tancredi (2022)]



• Larin scheme


• Levi-Civita tensors “disappear” when contracted with the 
ones appearing in the projectors (inside the definition of )


• First explicit calculation of axial non-singlet 
contributions


• agreement with results derived from vector ones 
[Garland, Gehrmann, Glover, Koukoutsakis, Remiddi (2002)]


• New results for axial singlet contributions 

• include finite top-loop contributions in  limit


• checked UV and IR consistency up to 

vA

mt → ∞

𝒪(1/m2
t )

Axial couplings:  @ 2 loopsqq̄gZ
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γμγ5 →
i
6

ϵμνρσγνγργσ

Gehrmann, T.P., Tancredi (2022)]



Finite fields and rational 
reconstruction



• A successful idea for dealing with algebraic complexity 
[Kant (2014), von Manteuffel, Schabinger (2014), T.P. (2016)]


• Reconstruct analytic results from numerical evaluations 

• intermediate steps are numbers instead of complicated expressions


• Evaluations over finite fields  (computing modulo a prime )


• Use machine-size integers  (fast and exact)


• Collect numerical evaluations and infer analytic result form them

𝒵p p

p < 264

Finite fields and rational reconstruction
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𝒵p = {0,1,…, p − 1}



• Applicable to any rational algorithm


• Sidesteps appearance of large intermediate expressions 


• Massively parallelizable 


• numerical evaluations are independent of each other


• algorithm-independent parallelization strategy 


• Yielded some of the most impressive multi-loop results to date


• Examples of known codes using it: 
FinRed, FiniteFlow, FireFly+Kira, Fire, Caravel

Finite fields and rational reconstruction
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• Builds numerical algorithms via a high-level interface


• Combines core algorithms into a computational graph


• graph evaluation implemented in C++

FiniteFlow
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T.P. (2019)

• Usable as a Mathematica package


• build efficient implementations of 
custom algorithms


• reconstruct analytic results


• Produced many cutting-edge 
multi-loop results



• IBPs are large and sparse linear systems


• they reduce Feynman integrals  to a lin. indep. set of MIs 


• amplitudes can be reduced mod IBPs  

• final results for  often much simpler than 


➡ solve IBPs numerically and compute 

Ij Gj

Ak cij

Aj

IBP reduction to master integrals
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Ij = ∑
jk

ck Gk

𝒜 = ∑
j

aj Ij = ∑
jk

aj cjk Gk = ∑
j

Aj Gj with Aj = ∑
k

ak ckj



• If MIs are known in terms of special functions 


• we plug these into the amplitude


• we first reconstruct the coefficients only in  (for numerical ) to 
evaluate the expansion of the amplitude (and then we reconstruct in ) 

fk

ϵ x
x

Coefficients of the -expansionϵ
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Gj = ∑
k

gjk(ϵ, x) fk + 𝒪(ϵ)

𝒜 = ∑
k

uk(ϵ, x) fk + 𝒪(ϵ)

uk(ϵ, x) =
0

∑
j=−p

u( j)
k (x) ϵ j + 𝒪(ϵ)

dimensional regulator

kinematic variables + masses

ϵ =
x =



• Reconstructed results come out collected and GCD-simplified 


• partial fractioning is known to yield simplifications 


• multivariate partial fractions require some care  
(uniqueness of result, avoiding spurious denominators)


• modern implementations use some algebraic geometry  
[Abreu, Dormans, Cordero, Ita, Page, Sotnikov (2019) 
Boehm, Wittmann, Wu, Xu, Zhang (2020) 
Heller, von Manteuffel (MultivariateApart,2021)] 
 
 
 
 
with an appropriate monomial ordering (qj > xk)

Partial fractions
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1/dj(xi) → qj ⇒ reduction mod ⟨q1d1(xi) − 1,…, qndn(xi) − 1⟩



• Simplifying the reconstruction


• guess denominator factors 
e.g. from the “letters”  from univariate slices  ( random integers)


• reconstruct in one variable or two


• univariate/bivariate partial fraction


• reconstruct in all other variables


• applied e.g. to  @ 2 loops and other processes 
[Badger, Brønnum-Hansen, Chicherin, Gehrmann, Hartanto, Henn, Marcoli, Moodie, Zoia, T.P. (2021)]

lk xi = aiτ + bi ai, bi =

3g + 2γ

Partial fractions and reconstruction
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Partial fractioned results 
are often much simpler…

… but require prior 
analytic knowledge 

of full result

u(xi) =
n(xi)

∏k lk(xi)αk



IBPs and syzygies



• Feynman integrals obey linear relations, e.g. IBPs 


• Very large and sparse linear system 
 yields reduction to MIs


• Often a huge bottleneck!


• Very active research on direct decomposition approaches 


➡ see e.g. Gaia’s and Pierpaolo’s talks

⇒

IBP reduction
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Chetyrkin, Tkachov (1981), Laporta (2000)

∫ (∏
j

ddkj) ∂
∂kμ

j
vμ 1

Dν1
1 Dν2

2 ⋯
= 0, vμ ∈ {pμ

i , kμ
i }

Ij = ∑
k

cjk Gk



• IBP relations contain higher-powers of propagators 


• many of these don’t contribute to the amplitude


• can we build a system without them? [Gluza, Kajda, Kosower (2011)] 

• syzygy equations for polynomials 
αjm = αjm(Di), βjm = βjm(Di), γj = γj(Di)

Lowering the complexity of IBP systems 
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0 = ∫
∂

∂kμ
j

vμ 1
Dν1

1 Dν2
2 ⋯

= − ν1 ∫ (vμ ∂D1

∂kμ
j ) 1

Dν1+1
1 Dν2

2 ⋯
+ ⋯

∑
j

∫
∂

∂kμ
j

vμ
j

1
Dν1

1 Dν2
2 ⋯

= 0, vμ
j = ∑

m

αjmpμ
m + ∑

n

βjnkμ
n

∑
j

vμ
j

∂Di

∂kμ
j

= γi Di, for all i with νi > 0



• A syzygy equation has the form


• can be solved via linear algebra by making an ansatz for  
[see also Schabinger (2012)]


• if  are generators of the solutions, then any solution

gj

g(1), …, g(M)

Syzygy equations
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f(z) ⋅ g(z) =
n

∑
j=1

fj(z) gj(z) = 0

known 
polynomials

unknown 
polynomials

g(z) =
M

∑
j=1

pj(z) g( j)(z)
arbitrary 

polynomials



• Integration by Parts

IBPs in the Baikov representation
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I = ∫ (
ℓ

∏
i=1

ddki) 1
Dν1

1 ⋯Dνn
n

= C ∫ dz1⋯dzn
B(z1, …, zn)γ

zν1
1 ⋯zνn

n

Baikov polynomial, B = γ = (d − ℓ − e − 1)/2

0 = ∑
j

∫
∂

∂zj (Bγ
aj(z1, …, zn)

zν1
1 ⋯zνn

n )
0 = ∑

j
∫ (

∂aj

∂zj
+

γ
B

aj
∂B
∂zj

− νj
aj

zj ) Bγ

zν1
1 ⋯zνn

n

dim. shifted higher powers



(i) and (ii) have simple closed-form solutions 
[Böhm, Georgoudis, Larsen, Schulze, Zhang (2018)] 
 
Three alternative approaches:


1. plug (ii) into (i) and solve


2. combine (i) and (ii) with alg. geometry (module intersections) 
[Böhm, Georgoudis, Larsen, Sch ̈onemann, Zhang]


3. put solutions of (i) in a matrix and Gauss-eliminate higher-powers 
[von Manteuffel] 
• exploit fast linear solvers over f.f. + rational reconstruction

• avoid reconstruction of complicated solutions

IBPs in the Baikov representation
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0 = ∑
j

∫ (
∂aj

∂zj
+

γ
B

aj
∂B
∂zj

− νj
aj

zj ) Bγ

zν1
1 ⋯zνn

n

Ita (2016), Larsen, Zhang (2016)

(i) ∑
j

aj
∂B
∂zj

= b0 B (ii) aj = zj bjSyzygy eq.s 



• Syzygies yield new parametric identities for each sector


• then proceed as in traditional Laporta alg.


• Identities can be used in integrand bases 
(see e.g. numerical unitarity [Ita et al. (2016)])


• Can be combined with traditional Laporta identities


• e.g. to fix incomplete reductions or avoid complex syzygy solutions


• Up to ∼ 10x improvements in efficiency

IBPs in the Baikov representation
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• Amplitudes and loop integrals


• are at the core of theoretical predictions


• exhibit rich and interesting mathematical structures


• Math. structures are exploited by modern methods


• integrand reduction, tensor decomposition, new reduction techiques, 
finite fields and rational reconstruction…


• Many interesting future directions


• direct decomposition of integrals, ansatzes for amplitudes, bases of 
functions, improvements to reconstruction…

Conclusions
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