Recent progress in the reconstruction of multi-loop amplitudes

Mathematical Structures in Feynman Integrals Siegen, 14 February 2023

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA UNIVERSITY AND INFN · BOLOGNA

Istituto Nazionale di Fisica Nucleare

Tiziano Peraro - University of Bologna and INFN

Motivation

- Theoretical predictions for observables at %-level accuracy
 - search of new physics
 - test SM symmetry breaking mech.
 - high-multiplicity and masses increasingly important

- Crucial understanding of amplitudes and Feynman integrals
 - %-level ~ at least NNLO ~ 2 loops or more
- Exploiting physical and mathematical structures
 - many connections with fields of math.s and computing

Scattering amplitudes

- At the core of theoretical predictions
- Exhibit rich and interesting mathematical structures
- At the loop level, a combination of

$$\mathcal{A} = \int_{-\infty}^{\infty} \left(\prod_{i=1}^{\ell} d^d k_i \right) \frac{\mathcal{N}}{D_1 D_2 D_3 \cdots}$$

$$l_1 \qquad l_2 \qquad l_3 \qquad l_4 \qquad l_3$$
Inverse propagators
$$D_j = l_j^2 - m_j^2$$

Computing loop amplitudes

Write amplitudes as a linear combination of Feynman integrals

• Reduction into a basis of linearly independent master integrals $\{G_j\} \subset \{I_j\}$

Compute the master integrals (MIs)

Analytic vs Algebraic complexity

- Analytic complexity

- understanding space of special functions for amplitudes
- appears in computation of MIs

- Algebraic complexity

- huge intermediate expressions
- appears in most steps if we have "many" loops, legs or scales

🗭 this talk

From amplitudes to Feynman integrals

Integrand reduction

Ossola, Papadopoulos, Pittau (2007)

 Integrands of amplitudes as sums of irreducible contributions (at the integrand level)

$$\frac{\mathcal{N}(k)}{\prod_{j} D_{j}(k)} = \sum_{T} \sum_{\alpha} c_{T,\alpha} \frac{\mathbf{m}_{T}(k)^{\alpha}}{\prod_{j \in T} D_{j}(k)}$$

- the "on-shell" integrands $\mathbf{m}_T(k)^{\alpha}$
 - form a complete integrand basis
 - are in the "nice" form we want
- solve for unknown $c_{T,\alpha}$
 - on multiple cuts $\{D_j = 0\}_{j \in T}$ (linear system)
 - black-box polynomial reconstruction in D_i [T.P. (2019)]

Tensors and form factors

• Alt.: well-known decomposition of amplitudes

$$\mathscr{A} = \sum_{j} F_{j} T_{j}$$

 T_j = tensors structures compatible with gauge, Lorentz and other symmetries, contracted with external polarization states F_j = scalar form factors, computable at any loop order in perturbation theory

Projecting out the form factors

$$F_j = P_j \cdot \mathscr{A}, \qquad P_j = \sum_k \left(T^{\dagger} \cdot T\right)_{jk}^{-1} T_k^{\dagger}$$

• Drawback: traditionally impractical with #legs ≥ 5

Physical tensors and projectors

A "physical" basis of tensors [T.P., Tancredi (2019-20)]:

 $T_j \in$ set of tensor structures spanning the physical space of fourdimensional external momenta and polarizations (tHV scheme)

- Example: **5 gluon** amplitudes
 - 142 *d*-dimensional tensors $T_j = T_j^{\mu_1 \cdots \mu_5} \epsilon_{\mu_1}(p_1) \cdots \epsilon_{\mu_5}(p_5)$
- Considering to 4-dim. momenta and polarizations
 - \rightarrow only allow combinations of four indep. $p_i^{\mu} \rightarrow 32$ independent tensors !!!
 - ➡ we can build simple projectors for the 32 helicity amplitudes

combinations of $g^{\mu
u}, p^{\mu}_{j}$

Physical tensors and projectors

- Another example: 4 fermion scattering $q\bar{q}Q\bar{Q}$
 - infinitely many tensor structures (they increase with the loop order)

- Four dimensional external polarization states
 - \rightarrow only T_1, T_2 are needed at all loops!

Axial couplings: $q\bar{q}gZ$

Gehrmann, T.P., Tancredi (2022)]

- Physical tensor structures for four-dimensional external states
 - spanned by p_i^μ (i = 1,2,3) and $v_A^\mu = \epsilon^{\nu\rho\sigma\mu}p_{1\nu}p_{2\rho}p_{3\sigma}$
 - parity-even tensors contain even powers of v_A , which we can effectively replace using $v_A^\mu v_A^\nu \to g^{\mu\nu}$
 - **parity-odd** tensors contain one instance of v_A^{μ}

Axial couplings: $q\bar{q}gZ$ @ 2 loops

Gehrmann, T.P., Tancredi (2022)]

• Larin scheme

$$\gamma^{\mu}\gamma_{5} \rightarrow \frac{\iota}{6} \epsilon^{\mu\nu\rho\sigma} \gamma_{\nu}\gamma_{\rho}\gamma_{\sigma}$$

- Levi-Civita tensors "disappear" when contracted with the ones appearing in the projectors (inside the definition of v_A)
- First explicit calculation of axial non-singlet contributions
 - agreement with results derived from vector ones
 [Garland, Gehrmann, Glover, Koukoutsakis, Remiddi (2002)]
- New results for axial singlet contributions
 - include finite top-loop contributions in $m_t \rightarrow \infty$ limit
 - checked UV and IR consistency up to $\mathcal{O}(1/m_t^2)$

Finite fields and rational reconstruction

Finite fields and rational reconstruction

- A successful idea for dealing with algebraic complexity [Kant (2014), von Manteuffel, Schabinger (2014), T.P. (2016)]
- Reconstruct analytic results from numerical evaluations
 - intermediate steps are numbers instead of complicated expressions
- Evaluations over finite fields \mathcal{Z}_p (computing modulo a prime p)

$$\mathscr{Z}_p = \{0, 1, \dots, p-1\}$$

- Use machine-size integers $p < 2^{64}$ (fast and exact)
- Collect numerical evaluations and infer analytic result form them

Finite fields and rational reconstruction

- Applicable to any rational algorithm
- Sidesteps appearance of large intermediate expressions
- Massively parallelizable
 - numerical evaluations are independent of each other
 - algorithm-independent parallelization strategy
- Yielded some of the most impressive multi-loop results to date
- Examples of known codes using it: FinRed, FiniteFlow, FireFly+Kira, Fire, Caravel

FiniteFlow

- Builds numerical algorithms via a high-level interface
- Combines core algorithms into a computational graph
 - graph evaluation implemented in C++
- Usable as a Mathematica package
 - build efficient implementations of custom algorithms
 - reconstruct analytic results
- Produced many cutting-edge multi-loop results

IBP reduction to master integrals

- IBPs are large and sparse linear systems
- they reduce Feynman integrals I_j to a lin. indep. set of MIs G_j

$$I_j = \sum_{jk} c_k G_k$$

• amplitudes can be reduced mod IBPs

$$\mathscr{A} = \sum_{j} a_{j} I_{j} = \sum_{jk} a_{j} c_{jk} G_{k} = \sum_{j} A_{j} G_{j} \quad \text{with } A_{j} = \sum_{k} a_{k} c_{kj}$$

- final results for A_k often much simpler than c_{ii}
- \Rightarrow solve IBPs numerically and compute A_j

Coefficients of the ϵ -expansion

• If MIs are known in terms of special functions f_k

$$G_j = \sum_k g_{jk}(\epsilon, x) f_k + \mathcal{O}(\epsilon)$$

- $\epsilon = dimensional regulator$
- x = kinematic variables + masses

• we plug these into the amplitude

$$\mathscr{A} = \sum_{k} u_{k}(\epsilon, x) f_{k} + \mathscr{O}(\epsilon)$$

• we first reconstruct the coefficients **only** in *c* (for numerical *x*) to evaluate the expansion of the amplitude (and then we reconstruct in *x*)

$$u_k(\epsilon, x) = \sum_{j=-p}^{0} u_k^{(j)}(x) \,\epsilon^j + \mathcal{O}(\epsilon)$$

Partial fractions

- Reconstructed results come out collected and GCD-simplified
- partial fractioning is known to yield simplifications
- multivariate partial fractions require some care (uniqueness of result, avoiding spurious denominators)
- modern implementations use some algebraic geometry [Abreu, Dormans, Cordero, Ita, Page, Sotnikov (2019) Boehm, Wittmann, Wu, Xu, Zhang (2020) Heller, von Manteuffel (MultivariateApart,2021)]

 $1/d_i(x_i) \rightarrow q_i \Rightarrow \text{reduction mod } \langle q_1 d_1(x_i) - 1, \dots, q_n d_n(x_i) - 1 \rangle$

with an appropriate monomial ordering $(q_i > x_k)$

Partial fractions and reconstruction

Partial fractioned results are often much simpler...

... but require prior analytic knowledge of full result

- Simplifying the reconstruction
 - guess denominator factors e.g. from the "letters" l_k from univariate slices $x_i = a_i \tau + b_i$ ($a_i, b_i =$ random integers)
 - reconstruct in one variable or two
 - univariate/bivariate partial fraction
 - reconstruct in all other variables
 - applied e.g. to $3g + 2\gamma$ @ 2 loops and other processes [Badger, Brønnum-Hansen, Chicherin, Gehrmann, Hartanto, Henn, Marcoli, Moodie, Zoia, T.P. (2021)]

IBPs and syzygies

IBP reduction

Chetyrkin, Tkachov (1981), Laporta (2000)

• Feynman integrals obey linear relations, e.g. IBPs

$$\int \left(\prod_{j} d^{d} k_{j}\right) \frac{\partial}{\partial k_{j}^{\mu}} v^{\mu} \frac{1}{D_{1}^{\nu_{1}} D_{2}^{\nu_{2}} \cdots} = 0, \qquad v^{\mu} \in \{p_{i}^{\mu}, k_{i}^{\mu}\}$$

Very large and sparse linear system
 ⇒ yields reduction to MIs

$$I_j = \sum_k c_{jk} G_k$$

- Often a huge bottleneck!
- Very active research on direct decomposition approaches

➡ see e.g. Gaia's and Pierpaolo's talks

Lowering the complexity of IBP systems

• IBP relations contain higher-powers of propagators

$$0 = \int \frac{\partial}{\partial k_j^{\mu}} v^{\mu} \frac{1}{D_1^{\nu_1} D_2^{\nu_2} \cdots} = -\nu_1 \int \left(v^{\mu} \frac{\partial D_1}{\partial k_j^{\mu}} \right) \frac{1}{D_1^{\nu_1 + 1} D_2^{\nu_2} \cdots} + \cdots$$

- many of these don't contribute to the amplitude
- can we build a system without them? [Gluza, Kajda, Kosower (2011)]

$$\sum_{j} \int \frac{\partial}{\partial k_{j}^{\mu}} v_{j}^{\mu} \frac{1}{D_{1}^{\nu_{1}} D_{2}^{\nu_{2}} \cdots} = 0, \qquad v_{j}^{\mu} = \sum_{m} \alpha_{jm} p_{m}^{\mu} + \sum_{n} \beta_{jn} k_{n}^{\mu}$$
$$\sum_{j} v_{j}^{\mu} \frac{\partial D_{i}}{\partial k_{j}^{\mu}} = \gamma_{i} D_{i}, \qquad \text{for all } i \text{ with } \nu_{i} > 0$$

• syzygy equations for polynomials $\alpha_{jm} = \alpha_{jm}(D_i), \ \beta_{jm} = \beta_{jm}(D_i), \ \gamma_j = \gamma_j(D_i)$

Syzygy equations

A syzygy equation has the form

- can be solved via linear algebra by making an ansatz for g_{j} [see also Schabinger (2012)]

• if $\mathbf{g}^{(1)}, \dots, \mathbf{g}^{(M)}$ are generators of the solutions, then any solution

$$\mathbf{g}(\mathbf{z}) = \sum_{j=1}^{M} p_j(\mathbf{z}) \mathbf{g}^{(j)}(\mathbf{z})$$
arbitrary
polynomials

IBPs in the Baikov representation

$$I = \int \left(\prod_{i=1}^{\ell} d^d k_i \right) \frac{1}{D_1^{\nu_1} \cdots D_n^{\nu_n}} = C \int dz_1 \cdots dz_n \frac{B(z_1, \dots, z_n)^{\gamma}}{z_1^{\nu_1} \cdots z_n^{\nu_n}}$$

 $B = \text{Baikov polynomial}, \gamma = (d - \ell - e - 1)/2$

Integration by Parts

$$0 = \sum_{j} \int \frac{\partial}{\partial z_{j}} \left(B^{\gamma} \frac{a_{j}(z_{1}, \dots, z_{n})}{z_{1}^{\nu_{1}} \cdots z_{n}^{\nu_{n}}} \right)$$

$$0 = \sum_{j} \int \left(\frac{\partial a_{j}}{\partial z_{j}} + \frac{\gamma}{B} a_{j} \frac{\partial B}{\partial z_{j}} - \nu_{j} \frac{a_{j}}{z_{j}} \right) \frac{B^{\gamma}}{z_{1}^{\nu_{1}} \cdots z_{n}^{\nu_{n}}}$$

dim. shifted higher powers

IBPs in the Baikov representation

$$0 = \sum_{j} \int \left(\frac{\partial a_j}{\partial z_j} + \frac{\gamma}{B} a_j \frac{\partial B}{\partial z_j} - \nu_j \frac{a_j}{z_j} \right) \frac{B^{\gamma}}{z_1^{\nu_1} \cdots z_n^{\nu_n}}$$

Ita (2016), Larsen, Zhang (2016)

Syzygy eq.s (i)
$$\sum_{j} a_{j} \frac{\partial B}{\partial z_{j}} = b_{0} B$$
 (ii) $a_{j} = z_{j} b_{j}$

(i) and (ii) have simple closed-form solutions [Böhm, Georgoudis, Larsen, Schulze, Zhang (2018)]

Three alternative approaches:

- 1. plug (ii) into (i) and solve
- 2. combine (i) and (ii) with alg. geometry (module intersections) [Böhm, Georgoudis, Larsen, Sch"onemann, Zhang]
- 3. put solutions of (i) in a matrix and Gauss-eliminate higher-powers [von Manteuffel]
 - exploit fast linear solvers over f.f. + rational reconstruction
 - avoid reconstruction of complicated solutions

IBPs in the Baikov representation

- Syzygies yield new parametric identities for each sector
 - then proceed as in traditional Laporta alg.
- Identities can be used in integrand bases (see e.g. numerical unitarity [Ita et al. (2016)])
- Can be combined with traditional Laporta identities
 - e.g. to fix incomplete reductions or avoid complex syzygy solutions
- Up to \sim 10x improvements in efficiency

Conclusions

- Amplitudes and loop integrals
 - are at the core of theoretical predictions
 - exhibit rich and interesting mathematical structures
- Math. structures are exploited by modern methods
 - integrand reduction, tensor decomposition, new reduction techiques, finite fields and rational reconstruction...
- Many interesting future directions
 - direct decomposition of integrals, ansatzes for amplitudes, bases of functions, improvements to reconstruction...