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Outline

hy we do what we do (that is, decomposing Feynman integrals)

ew ways of doing that: a fast dive into intersection theory

[J how can we make it better? rational algorithms!
-of-concept implementation over finite-fields

examples that it actually works
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Precision calculations in HEP

LHC High-Luminosity upgrade — % level precision

@® @ least NNLO to match with experimental precision

@ High precision calculation of perturbative scattering amplitudes

algebraic bottlenecks
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Reduction to master integrals

@ not all are linearly independent!
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¥ reduction to a minimal linearly independent set of master integrals

Iz' — Z CijGj

. . p
@ reduction as solution of a large H 191 Y; 0
and sparse |IBP system i O k,ﬂ 21041 25‘2 —

@® very large and sparse system
@ algebraic structure not manifest




Looking for other ways...

Intersection theory

@ allows for a direct decomposition
@ exploits the vector space structure obeyed by
Feynman integrals

we consider n-folds integrals inz = (z, ..., 2,)

integrals “dual” integrals

(OR) = /dzl - dzy, u(lz) pr(z) (L] = /dz1 - dzn u(z) oL(z)

@7 | @p rational functions
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Change of representation

Baikov change of vars Baikov (1996)

kj — Zj
L n n
d 1 Y 1
Iaq, ..., ap] = Hd ki H & dzy...dz, B H T PR)
177 o1 e R
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Intersection numbers

calculation of scalar products between left and right integrals

(PLIPR)

they’re rational!

Mastrolia, Mizera (2018)

_A

Vector space characterized by:
* Dimension v

* Basis \el.(R))and dual basis (el.(L) |
+* Scalar product: intersection number
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n I l n fl | n
§ LT O TTOT n Wy Y Fak  NNr % P AN s 3 v
N i N Aok T A R R BB - N ey

¥ | @) generic vector || el.(R)) }“_ basis vectors

— Feynman integral to reduce — master integrals

decomposition of integrals as

o) = > ey ¢ =3 (C), (e pr)
1=1

* similar formulae
for dual integrals

- F A e T G "‘~<'z-~.,
where we introduced the!
iy W
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Univariate algorithm

we have |-folds integrals 1 Frellesvig et al. (2019)
we have % fop) = [z on(2)
in the variable z u(z)

1 -forms intersection numbers

(orler) = )  Res.—,(¢ ¢R)

¥ where v is the local solution of

(0 +w) = o, W =

around each p & wa

P, ={z]|zis a pole ofw}U{OO}
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* plug the ansatz in the differential equation (0, +w)Y = pr

* solve for the c;

Intersection numbers are always rational functions of the kinematic
‘ invariants and of the dimensional regulator (after sum over poles)
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Multivariate algorithm

g%, basis of master forms
o for the (n — 1) layer

we write n-forms as a function of (n — 1)-forms by
projecting each integral in the (n — 1)-forms basis.
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where 1 is the local solution of

0. Vi + Qi =¢ri, (1=1,...,n)

solved locally with the ansatz

IMax

Vi = Z Cik (Zn — p)" +O((zn — p)™™*)

k=min

T Q solves the differential equation

} and

0. <6§-L)|n_1 — Z 97 <6§€L)|n_1 Pa ={z|zis a pole of 2 } U{oo}
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* ntegrands are rational
* Intersection numbers are rational
“« non-rational contributions in intermediate stages
+ after taking the sum over all residues we see cancellations

non-rational terms in the poles of @ and €2

+ computational bottleneck
+ non-suitable for applications with finite-fields
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p(z)-adic series expansion

88 p-adic numbers YR 7(2)-adic functions

expansion of a rational number as expansion of a rational function as
series expansion of a prime number p ~ Series expansion of a prime

with coefficients given by remainder polynomial p(z) with coefficients given
of integer division by remainder of polynomial division

OO | deg p — 1 | j
f(z) = Z ci(2)p'(2), «ci(z) = cijz’,  Cij € Q
i=min 7=0

Mathematical structures in Feynman integrals, Siegen, 14 February 2023



% & polynomial remainder w.r.t.

B o-s f(2)Jpz)-5 = f(z) mod p(z) —

i.e. substituting p(z) with 0

expansion for 0 = 0 max degp—1
Lf(Z)Jp(z)—(S Z Z 623275@ —|—O(5max 1)
0— 1—=min
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Example: univariate algorithm

GF, Peraro (2022)

summing over all p(z) € P, 2]

P.|z| = {factors of the denominator of w} U{OQ}

{8 ¥ Each addend of the form (¢, | px)  is the sum of all contributions

iy nid” P p (Z
SO to the intersection number coming from the roots of p(z)

,v,;:‘-' _“ : .:‘? : ‘»wf;'h ' i A‘j’,,':
R ;{(;‘k '.'?k )‘: .-:k% ‘..'\qi(“?a‘:‘ v.g . . . .
L T M N
~  {@; | @p).. is computed as the contribution at p = co with the
". A ‘\k:"-“-{' 4 {"*". 3 ;&é .‘L‘ . j‘
‘»"\ ~\ 4‘ e :i)‘ & o ;L‘.\‘cﬁ
SN A T t b I th
!-.Es . x'i s vt‘: % ‘:i'.'."_‘ 5
aatl . “standard” algorithm
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to solve (0, + w)Y = v,

we make an ansatz of the form
max degp—1

P = Z Z ci; 27 p(

1=min

% . we multiply the solution by ¢

—1 degp—1

wng — Z Z CZjZJ

. by the univariate global residue theorem
Weinzierl (2021) (¢ |PR) p(z) =
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—1,degp—1

e
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finite-fields implementation .- c....o o appean

implementation on FiniteFlow of the multivariate recursive algorithm

method based on solution of linear systems and series expansions

=rational operations

list of n-variate intersection numbers we want to reduce, e.qg.:
L L), (R
{(ef” ler), (e le™))

s = o
e § oA
RN . '
: PSR,
' ;:‘i;’"\!- TR e I m I n a Ste
By 5y L]
RA - S
§,w*;g‘; o

R L R
* <§0L ‘ 6]( )>n—1 A <€l.( ) ‘ 6]( )>n—1
we can deduce the intersection

L R L
numbers needed for each step  ® (dzn<€j( )‘n—l) ‘ ej( )>n_1 ¢ <ej( )H”R)
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our implementation Is an Iiteration:
starting from 1-forms, we compute all the necessary
intersection numbers to get the n-forms given as input

analytic input: u(z)
& multivariate algorithm

_.;
f",
fg--------------l
3
£

needs as inputs
* denominator factors p.(z,)

® (n — 1)-variate intersection numbers reconstructed in z, only

* p = 0,00 — Laurent expansion
* all other factors — p(z)-adic expansion
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\ . ‘."'r_'v., N,

. INnput for the
Vi
f

n''- step

* rational reconstruction of &, only in z,, with

everything else set to a number mod p

* identify denominator factors of &, in z,, fully
reconstruct a simple subset of them

(mn—1) - n

avolid reconstructing large
iIntermediate expressions can be done in a small

In all variables 24 . Zn number of evaluations
w e @ E
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examples

successfully reduced to master integrals the following topologies

onhe loop two loops
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Thank you for your attention!
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