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Abstract: The generic 2-loop kite integral has 5 internal masses. Its completion
by a sixth propagator gives a 3-loop tadpole whose substructure involves 12
elliptic curves. I shall show how to compute all such kites and their tadpoles, with
200 digit precision achieved in seconds, thanks to the procedure of the arithmetic
geometric mean for complete elliptic integrals of the third kind. The
number theory of 3-loop tadpoles poses challenges for packages such as HyperInt.

Extending old-fashioned sage advice, from Gabriel Barton, 54 years ago:

GB1: If you know the discontinuity σ of f , use a dispersion relation to get f .

GB2: If you know only its derivative σ′, integrate that against a log.

GB3: For the 2-loop photon propagator, σ′ has logs, so f has tri-logs.

GB4: For the 2-loop electron propagator, σ′ is elliptic, so f is harder to compute.

DB5: To determine a 3-loop tadpole, integrate an elliptic σ′ against a dilog.
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I define the 2-loop scalar kite integral in 4-dimensional Minkowski space as

I(q2;m2
1,m

2
2,m

2
3,m

2
4,m

2
5) = − q

2

π4

∫
d4l

∫
d4k

5∏
j=1

1

p2j −m2
j − iε

, (1)

(p1, p2, p3, p4, p5) = (l, l − q, l − k, k, k − q). (2)

Suppressing masses, I(s) has a cut s ∈ [sL,∞] and a leftmost branch point sL
that is the lowest of the thresholds {s1,2, s4,5, s2,3,4, s1,3,5}, where sj,k = (mj +mk)

2

and si,j,k = (mi + mj + mk)
2. On the top lip of the cut, let =I(s + iε) = πσ(s). It

suffices to know the derivative σ′(s), which gives the dispersion relation

I(q2) = −
∫ ∞
sL

ds σ′(s) log

(
1− q2

s

)
. (3)
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Consider the logarithmically divergent tetrahedral tadpole formed by joining the
external vertices of the kite with an inverse propagator q2−m2

6− iε. Regularization
in 4− 2ε dimensions gives a tadpole

T 5,4,6
1,2,3 =

(
1

3ε
+ 1

)
6ζ3 + 3ζ4 − F 5,4,6

1,2,3 +O(ε), (4)

F 5,4,6
1,2,3 =

∫ ∞
sL

ds σ′(s;m2
1,m

2
2,m

2
3,m

2
4,m

2
5)

(
Li2

(
1− m2

6

s

)
+

1

2
log2

(
m2

s

))
(5)

where m is the scale of dimensional regularization and the dilogarithm is the
analytic continuation of the sum Li2(z) =

∑
n>0 z

n/n2, valid for |z| < 1. The
superscripts in (5) are made redundant by the labelling convention: a superscript
j sits above a subscript k if and only if j is congruent to k modulo 3. Subscripts
identity triangles; superscripts identify vertices. Referring back to the figure, we can
detect 12 elliptic curves inherent in the tertrahedron.

Non-elliptic non-anomalous contributions: In the absence of anomalous thresholds,
the non-elliptic contribution to σ′(s) may be obtained by diligent algebra and application
of Cauchy’s integral theorem. Here I give a compact 5-parameter result.

Denote the square root of the symmetric Källén function by

∆(a, b, c) =
√
a2 + b2 + c2 − 2(ab+ bc+ ca) (6)
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with convenient abbreviations ∆j,k(s) = ∆(s,m2
j ,m

2
k) and ∆i,j,k = ∆j,k(m

2
i ). Then

Dj,k(s) =
r

s− (mj −mk)2
log

(
1 + r

1− r

)
, r =

(
s− (mj −mk)

2

s− (mj +mk)2

)1/2

(7)

is analytic in the s-plane with a cut s ∈ [(mj + mk)
2,∞], where its discontinuity

is Dj,k(s+ iε)−Dj,k(s− iε) = −2πi/∆j,k(s). Next, define the real constants

α =
(m2

1 −m2
4)(m

2
2 −m2

5)

m2
3

−m2
3, β =

(m2
1m

2
5 −m2

2m
2
4)(m

2
1 −m2

2 −m2
4 +m2

5)

m2
3

(8)

which help to condense the 5-parameter result. The (possibly complex) constants

s± =
m2

1 +m2
2 − 2m2

3 +m2
4 +m2

5 − α
2

± ∆1,3,4∆2,3,5

2m2
3

(9)

locate leading Landau singularities of triangles that form the kite. With Heaviside
steps denoted by Θ, the non-elliptic contribution is

σ′N(s) = Θ(s− s1,2)σ′1,2(s) + Θ(s− s4,5)σ′4,5(s). (10)
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Putting edges 1 and 2 on-shell, I obtain

∆1,2(s)σ
′
1,2(s) = <

(
(s+ α)D4,5(s) + L4,5 +

∑
i=0,+,−

Ci
D4,5(s)−D4,5(si)

s− si

)
, (11)

C± = αs± + β, C0 = −(m2
1 −m2

2)(m
2
4 −m2

5), s0 = 0, L4,5 = log

(
m4m5

m2
3

)
. (12)

To obtain σ′4,5, exchange (m1,m2) and (m4,m5), noting that this does not alter the
coefficients Ci or the arguments si.

The result in (10,11) holds if both of the conditions

(m1 +m2)(m
2
3 +m1m2) ≥ m1m

2
5 +m2m

2
4 (13)

(m4 +m5)(m
2
3 +m4m5) ≥ m5m

2
1 +m4m

2
2 (14)

are satisfied. However, these are not necessary conditions. The final decision as
to whether the non-elliptic contribution is in need of an anomalous correction is
arbitrated by the elliptic contribution, which is subject to no uncertainty.

Elliptic contribution: This comes from 3-particle intermediate states, giving

σ′E(s) = Θ(s− s2,3,4)σ′2,3,4(s) + Θ(s− s1,3,5)σ′1,3,5(s). (15)
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It contains complete elliptic integrals of the third kind, which I shall divide by
complete integrals of the first kind. For real k2 < 1, let

P (n, k) =
Π(n, k)

Π(0, k)
, Π(n, k) =

∫ π/2

0

dθ

(1− n sin2 θ)
√

1− k2 sin2 θ
(16)

where Π(0, k) = (π/2)/AGM (1,
√

1− k2) is determined by the arithmetic-geometric
mean of Gauss. Then P (n, k) is analytic in the n-plane with a cut n ∈ [1,∞] on
which its principal value is 1− P (k2/n, k).

With s = w2, an integration over the phase space of particles 2, 3 and 4 determines

k2 = 1− 16m2m3m4w

W
, W = (w2

+ −m2
+)(w2

− −m2
−) (17)

with w± = w ±m2 and m± = m3 ±m4. Then I obtain

σ′2,3,4(w
2) =

4πm3m4

AGM (
√

16m2m3m4w,
√
W )
<

( ∑
i=+,−

Ei
P (ni, k)− P (n1, k)

ti − t1

)
(18)
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with coefficients and arguments given, as compactly as possible, by

E± =
m2

2 −m2
3 +m2

5

2m2
5

±
(
m2

4 −m2
5 − w2

2m2
5

)
∆2,3,5

∆4,5(w2)
, (19)

t± =
γ ±∆2,3,5∆4,5(w

2)

2m2
5

, t1 = m2
1, ni =

(w2
− −m2

+)(ti −m2
−)

(w2
− −m2

−)(ti −m2
+)
, (20)

γ = (m2
2 +m2

3 +m2
4 −m2

5 + w2)m2
5 + (m2

2 −m2
3)(m

2
4 − w2). (21)

An AGM procedure speedily evaluates P (n, k) = Π(n, k)/Π(0, k) to high precision:

1. Initialize [a, b, p, q] = [1,
√

1− k2,
√

1− n, n/(2− 2n)]. Then set f = 1 + q.

2. Set m = ab and then r = p2 +m. Compute a vector of new values as follows:
[(a+ b)/2,

√
m, r/(2p), (r− 2m)q/(2r)]. Then replace [a, b, p, q] by those new

values. Then add q to f .

3. If |q/f | is sufficiently small, then return P (n, k) = f , else go to step 2.

This converges very quickly, for n /∈ [1,∞]. On the cut with n ≥ 1, replace n by
n′ = k2/n < 1, to obtain the principal value <P (n, k) = 1− P (n′, k).
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Criterion for an anomalous contribution: If there is an anomalous contribution,
it occurs above the higher of the two-particle thresholds. Without loss of generality,
suppose that s4,5 ≥ s1,2. Then

σ′(s) = σ′N(s) + σ′E(s) + CA
Θ(s− s4,5)

∆4,5(s)
<
(

2πi∆4,5(s−)

s− s−

)
(22)

with CA 6= 0 if and only if (m1+m2)(m
2
3+m1m2) < m1m

2
5+m2m

2
4 and at least one

of ∆1,3,4 and ∆2,3,5 is imaginary, in which case CA = ±1 is the sign of the imaginary
part of ∆4,5(s−).

This value of CA is required by the elliptic contribution at high energy. With
Lk = m2

k log(s/m2
k), the large-s behaviour

s2σ′(s) = 2L3 +
∑

k=1,2,4,5

(Lk +m2
k) + O

(
log(s)

s

)
(23)

invariably holds. The elliptic contribution σ′E in (22) is oblivious to the anomalous
threshold problem. Its high-energy behaviour determines CA, ensuring (23).
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Zero-mass limits: As m3 → 0 with m1 6= m4 and m2 6= m5,

∆1,2(s)σ
′
1,2(s)→ <

(
(2s− s3)D4,5(s) + L̂4,5 +

∑
i=0,3

Ci
D4,5(s)−D4,5(si)

s− si

)
, (24)

s3 = −(m2
1m

2
5 −m2

2m
2
4)(m

2
1 −m2

2 −m2
4 +m2

5)

M
, M = (m2

1 −m2
4)(m

2
2 −m2

5), (25)

L̂4,5 = log

(
m2

4m
2
5

M

)
, C3 = −

(
m2

1

u
−m2

2u

)(
m2

4

u
−m2

5u

)
, u =

m2
1 −m2

4

m2
2 −m2

5

.

(26)

As m3 → 0 with m1 = m4 and m2 6= m5

∆2,4(s)σ
′
1,2(s)→ <

(
(3s−m2

2 − 2m2
4 −m2

5)D4,5(s) + log

(
m4m

3
5

(m2
2 −m2

5)
2

)
+ (m2

2 −m2
4)(m

2
4 −m2

5)
D4,5(s)−D4,5(0)

s

)
. (27)

The degenerate case with m1 = m4 and m2 = m5 will be considered after adding
contributions from three-particle cuts.
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As m3 → 0, the three-particle cuts yield logarithms:

σ′2,3,4(w
2)→ <

(∑
i=±

Ei
P̂2,4(ti, w)− P̂2,4(m

2
1, w)

ti −m2
1

)
, (28)

P̂j,k(t, w) =
(m2

k − t)v(t)

(w −mj)2 − t
log

(
v(t) + v(m2

k)

v(t)− v(m2
k)

)
, v(t) =

(
(w −mj)

2 − t
(w +mj)2 − t

)1/2

. (29)

With m1 = m4 and m2 = m5 all four thresholds collide as m3 → 0, giving [DB1990]

σ′(s)→ Θ(s− s4,5)
2µ(y4) + 2µ(y5)− 8µ(y4y5)

∆4,5(s)
, (30)

µ(y) = log |1− y|+ y log |y|
1− y

, yk =
−2m2

k

s−m2
4 −m2

5 + ∆4,5(s)
. (31)

Next, consider cases with m3 > 0 and one of the other masses vanishing. Without
loss of generality, take it to be m4. As m4 → 0, logarithms from (29) appear in

σ′2,3,4(w
2)→ <

(∑
i=±

Ei
P̂2,3(ti, w)− P̂2,3(m

2
1, w)

ti −m2
1

)
. (32)
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The logarithms for two-particle cuts are modified, as m4 → 0, to give

∆1,2(s)σ
′
1,2(s)→ <

(
(s+ α)D̂5(s) + L̂5 +

∑
i=0,+,−

Ci
D̂5(s)− D̂5(si)

s− si

)
, (33)

D̂5(s) =
1

s−m2
5

log

(
1− s

m2
5

)
, L̂5 = log

(
m2

5

m2
3

)
. (34)

An elliptic contribution persists if two non-adjacent edges have vanishing mass.
As m1 → 0 and m5 → 0,

(w2 −m2
4)σ
′
2,3,4(w

2) → −4πm3m4<R(w2,m2
2,m

2
3,m

2
4)

AGM (
√

16m2m3m4w,
√
W )

, (35)

R(s, b, c, d) = P (n̂, k)− ρP (n0, k) + (ρ− 1)P (n3, k), (36)

n̂ =
w2
− −m2

+

w2
− −m2

−
,

n0
n̂

=
m2
−

m2
+

,
n3
n̂

=
t3 −m2

−
t3 −m2

+

, t3 =
(bd− cs)(b− c+ d− s)

(b− c)(d− s)
, (37)

ρ =

(
d− s

b− c+ d− s

)(
(b+ c)(d− s) + (b− c)(b+ d)

bd− cs

)
, (38)

R(s, c, c, d) = 2P (n̂, k)− 2P (n0, k), R(s, d, d, d) =
s− 9d

6d
, (39)

with a rational result for R in the QED case m2 = m3 = m4 [DB1990].
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Tadpoles and number theory

The rescaling mk → κmk gives F → F + 12ζ3 log(κ) for the finite part F .
To standardize, I set m = max(mk) = 1.

I define a tetrahedral tadpole to be perfect if and only if the Källén function
vanishes at each of its 4 vertices, thereby avoiding all resolutions of square roots.
Promoting the subscripts and superscripts of F to arguments that denote the 6
masses, I define the two-parameter family of perfect tadpoles:

F̂ (x, y) = F
(1−y,1−x,|x−y|)
(x,y,1) = F̂ (y, x) = F̂ (1− x, 1− y) (40)

with symmetries restricting distinct cases to x ≥ y ≥ 1−x ≥ 0 and hence x ∈ [12 , 1].
In [DB1999] I identified tetralogarithms in two perfect binary tadpoles, obtaining

F̂ (1, 0) = F
(1,1,0)
(1,1,0) = 17ζ4 + 16U3,1, F̂ (1, 1) = F

(0,0,0)
(1,1,1) = 12ζ4, (41)

U3,1 =
∑

m>n>0

(−1)m+n

m3n
= 1

2ζ4 + 1
2ζ2 log2(2)− 1

12 log4(2)− 2 Li4(
1
2). (42)
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Fast elliptic determination of a perfect tadpole

Now consider the elliptic route to evaluating F̂ (12 ,
1
2). With (m3,m6) = (1, 0) and

m1 = m2 = m4 = m5 = 1
2 , I obtained

F̂ (12 ,
1
2) = 1

2

∫ ∞
1

ds (σ̂′N(s) + σ̂′E(s)) log2(s), (43)

w2σ̂′N(w2) = Θ(w − 1)

(
2 log

(
r + 1

r − 1

)
− 4r log(2)

)
, r =

w√
w2 − 1

, (44)

w2σ̂′E(w2) =
4π(1− P (n, k))Θ(w − 2)

AGM(2
√
w, (w − 1)

√
w2 + 2w)

, n =
w2 − 2w

(w − 1)2
,
k2

n
=

(w + 1)2

w2 + 2w
(45)

and readily discovered a new reduction of a perfect tadpole to tetralogarithms

F̂ (12 ,
1
2) = 30ζ3 log(2)− 16ζ4 − 32U3,1. (46)
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Relations between tadpoles




















J
J
J
J
J
J
J
J
J

��
�
��
�

HH
H

HH
H

1
2

1
2

1 1
2

1
2

0



















J
J
J
J
J
J
J
J
J

��
�
��
�

HH
H

HH
H

1
1
2

0 1
1
2

1
2




















J
J
J
J
J
J
J
J
J

��
�
��
�

HH
H
HH

H

1
2

1
2

1 1
2

1
2

1

Figure 2: The perfect tadpoles F̂ (12 ,
1
2), F̂ (1, 12) and Ĝ(12) in relation (48)

In addition to the two-parameter family F̂ (x, y) in (40) there is a one-parameter

family Ĝ(x) = F
(x,1−x,1)
(x,1−x,1) of perfect tadpoles, with x ∈ [0, 12 ] and Ĝ(0) = 17ζ4+16U3,1.

I used the efficient AGM of Gauss to obtain 200 digits of

Ĝ(12) = −
∫ ∞
1

ds (σ̂′N(s) + σ̂′E(s)) Li2(1− s) (47)

to which all routes are elliptic. This revealed the intriguing empirical relation

2F̂ (12 ,
1
2) + 2F̂ (1, 12) + Ĝ(12) = 42ζ4 + 24ζ3 log(2). (48)
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A non-elliptic route to F̂ (1, 12) leads to multiple polylogarithms in an alphabet
of forms, dx/(x− ai), with ai ∈ {0, 1,−1,−2}. Then the linear relation determines

Ĝ(12) = 47ζ4 + 40U3,1 + 4ζ3 log(2)− 12G (49)

G = 2ζ2Li2(
1
4) + 3ζ2 log2(2) + 4

∑
m>n>0

(−1)m(−1
2)n

m2n2
(50)

with 10000 digits now obtainable in 2 seconds.

Binary tadpoles, with mk ∈ {0, 1}, evaluate to multiple polylogarithms in an
alphabet containing sixth roots of unity, with λ = (1 +

√
−3)/2 appearing if three

massive edges meet at a vertex, where ∆i,j,k =
√
−3. For example, with 5 unit edges

F
(1,1,0)
(1,1,1) =

109

6

(π
3

)4
+ 16<

(
Li22(λ)

6
+
∑

m>n>0

λ3m+2n

m3n

)
. (51)

There are linear relations between binary tadpoles, as here:

3F
(1,1,1)
(0,0,0) = F

(0,0,0)
(1,1,1) + 2F

(1,0,0)
(1,1,0) , (52)

3F
(0,0,0)
(1,1,0) = F

(0,0,0)
(1,0,0) + 2F

(0,0,0)
(1,1,1) , (53)

F
(1,1,1)
(1,1,1) + F

(1,0,0)
(1,0,0) = F

(1,1,0)
(1,1,0) + F

(1,1,1)
(0,0,0) . (54)
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Number fields of the alphabets of tadpoles

So far, one might guess that a tadpole with rational masses evaluates to multiple
tetralogarithms in an alphabet whose number field is no larger than the compositum
of the quadratic number fields associated by Gunnar Källén to the vertices of the
tetrahedron, namely the field Q(∆1,3,4,∆2,3,5,∆1,2,6,∆4,5,6).

Yet that is not the case. The imperfect binary tadpole F
(1,0,0)
(1,1,0) involves <Li22(λ),

but the Källén function vanishes at each of its 4 vertices.

Faced with this rather limited, yet potent, evidence, I arrive at three suggestions,
each too weak to be dignified as a well-tested conjecture.

1. Every tetrahedral tadpole with rational masses reduces to multiple or single
tetralogarithms whose alphabet lies in an algebraic number field.

2. If the tadpole is perfect, the alphabet is rational.

3. If the tadpole is imperfect, the alphabetic field may include the Källén field.
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Experimentum crucis: I evaluated the totally massive imperfect tadpole F
(1,1,1)

( 12 ,
1
2 ,

1
2 )

with Källén field Q(
√
−3). Seeking a reduction to multiple tetralogarithms in an

alphabet {0, 1,−1,−2, λ}, with λ = (1+
√
−3)/2, I achieved an empirical evaluation

F
(1,1,1)

( 12 ,
1
2 ,

1
2 )

= 3ζ3 log(2)− 4U3,1 + 10ζ4 + 10Cl22(π/3)− 1
2Ĝ(12) (55)

with a Clausen value Cl2(π/3) = =Li2(λ), from the Källén field, and a perfect
tadpole Ĝ(12) already evaluated in the rational alphabet {0, 1,−1,−2}. Then, thanks
to Gauss, it took less than a minute to validate (55) at 600-digit precision.

Tests and benchmarks for kites and tadpoles

1. Elliptic terms do not depend on the order of phase-space integrations.

2. The derivative of the discontinuity of a kite satisfies the sum rule∫ ∞
sL

ds σ′(s) log

(
s

sL

)
= 6ζ3. (56)

3. The high energy behaviour of s2σ′(s) holds irrespective of anomalous thresholds.

4. The same tadpole is obtained by integrating over 6 distinct kites.
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These tests were invariably passed, at high precision, in a plethora of cases.

Benchmark 1: A useful benchmark was established by Stefan Bauberger and
Manfred Böhm, who gave 6 decimal digits of B1 = I(50 + iε; 1, 2, 3, 4, 5)/50, with all
4 cuts opened. For B1, I obtain the value
+0.173901219069555460362391997806756419040779085211744093645075

-0.118080028202009293890731446888246675922194086181504660940640*I

Benchmark 2: Stephen Martin computed 8 digits ofB2 = −I(10+iε; 1, 3, 5, 2, 4)/10,
in a non-anomalous case with only one open cut. For B2, I obtain the value
+0.718335353533534129653528554796276560425262176802655670356407

+0.390162199972762321424365961074218884677858368327292408622989*I
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Figure 3: Tadpoles for benchmarks B3, B4 and B5
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The benchmarks of Figure 3 are ambitious targets for adept users of HyperInt.

Benchmark 3: The first example in Figure 3 is the simplest perfect tadpole with 6
distinct non-zero rational masses. I suggest that its alphabet may be rational. For
its finite part B3 = F̂ (56 ,

1
3), I obtain

13.3861455348739022697615450327228552185248654855497464708212

Benchmark 4: The second example was conjecturally evaluated in the alphabet
{0, 1,−1,−2, λ}. The benchmark for B4 = F

(1,1,1)

( 12 ,
1
2 ,

1
2 )

is

16.6059542811980228081648880073141697347243824321176643541089

Benchmark 5: The third example has two imperfections. I suggest that its

alphabetic field may include Q(
√
−3,
√

5). The benchmark for B5 = F
( 12 ,

1
2 ,

1
2 )

(1,1,1) is

16.5896999071871022548891317280131669711968061643643361121466
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Comments and summary

1. Elliptic substructure of 2-loop kites and 3-loop tadpoles is not a problem.
The time taken to evaluate a complete elliptic integral, of whatever kind, is
commensurate with the time for a logarithm and less than the time for a
dilogarithm. Thanks to Gauss, elliptic integrals should be embraced, not feared.

2. Anomalous terms are not problematic. They submit to Gauss, at high energy.

3. The number theory of tadpoles is subtle. They may be polylogarithmic, even
in totally massive cases to which every route is elliptic.

4. I have given far-reaching suggestions on the number theory of tadpoles and
benchmarks for users of HyperInt to investigate those suggestions analytically.
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