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m,¢(3),¢(5),¢(7),... are algebraically independent over Q.
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m,¢(3),¢(5),¢(7),... are algebraically independent over Q.

@ 7 is transcendental (Lindemann 1882)
@ ((3) is irrational (Apéry 1978)
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Euler:
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n§=0C(2n)z =—> cot(7rz)——§+€z +%z —1—%2 NI

m,¢(3),¢(5),¢(7),... are algebraically independent over Q.

@ 7 is transcendental (Lindemann 1882)
@ ((3) is irrational (Apéry 1978)
@ dimg(¢(3),¢(5),¢(7),-..)g = oo (Ball-Rivoal 2000)




Zeta values
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m,¢(3),¢(5),¢(7),... are algebraically independent over Q.

Known facts
@ = is transcendental (Lindemann 1882)
@ ((3) is irrational (Apéry 1978)
@ dimg(¢(3),¢(5),¢(7),...)g = oo (Ball-Rivoal 2000)
Q at least one of ¢(5), ¢(7), ¢(9), ¢(11) is irrational (Zudilin 2004)
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For (n1,...,n,) € Z" with all n; > 1 and n, > 2,

1
C(nl,...,n,)— Z W

1<k <<k

Its weight is n =ny +--- + n,. MZV's span a Q-algebra Z.



Multiple zeta values

For (m,...,n,) € Z" with all n; > 1 and n, > 2,

1

((n]_,...,nr): W

1<k <<k

Its weightis n=ny + ---+ n,. MZV's span a Q-algebra Z. Experiments:

n |23 45 6 7 8 9 10 11 12 13
2"=211 2 4 8 16 32 64 128 256 512 1024 2048
d»*{1 1 12 2 3 4 5 7 9 12 16
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Multiple zeta values

For (m,...,n,) € Z" with all n; > 1 and n, > 2,

1

((n]_,...,nr): W

1<k <<k,

Its weight is n = ny + - -- + n,. MZV's span a Q-algebra Z. Experiments:

n |23 45 6 7 8 9 10 11 12 13
2"=211 2 4 8 16 32 64 128 256 512 1024 2048
d»*{1 1 12 2 3 4 5 7 9 12 16

Conjecture (Zagier)
o If Z, is the span of MZV's of weight n, then Z =@, -, Zn
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Multiple zeta values

For (m,...,n,) € Z" with all n; > 1 and n, > 2,

1

((n]_,...,nr): W

1<k <<k,

Its weight is n = ny + - -- + n,. MZV's span a Q-algebra Z. Experiments:

n |23 45 6 7 8 9 10 11 12 13
2"=211 2 4 8 16 32 64 128 256 512 1024 2048
d»*{1 1 12 2 3 4 5 7 9 12 16

Conjecture (Zagier)
o If Z, is the span of MZV's of weight n, then Z =@, -, Zn
o dimg Z, = dy, where Y, - dnt" = ==

ie. dg=1,d1=0,dr=1,and d, =d,_» + d,_3 for n > 3.
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Multiple zeta values

For (m,...,n,) € Z" with all n; > 1 and n, > 2,

1

((n]_,...,nr): W

1<k <---<k

Its weight is n = ny + - -- + n,. MZV's span a Q-algebra Z. Experiments:

n |23 45 6 7 8 9 10 11 12 13
2"=211 2 4 8 16 32 64 128 256 512 1024 2048
d»*{1 1 12 2 3 4 5 7 9 12 16

Conjecture (Zagier)
e If Z, is the span of MZV's of weight n, then Z = Eano Zn
o dimg Z, = dy, where Y, - dnt" = ==

ie. dg=1,d1=0,dr=1,and d, =d,_» + d,_3 for n > 3.

@ Many relations, but graded dimension is predictable.
@ Linear (in)dependence is easier than algebraic independence.
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e Fix MZV's (1,...,(x. Suppose we have:




e Fix MZV's (1,...,(x. Suppose we have:

@ for all n > 0, a non-zero Q-linear combination

Ih=aPa + -+ a0,

where a$) € Q;




Structure of irrationality proofs

Strategy

@ Fix MZV's (1, ...,(k. Suppose we have:
© for all n > 0, a non-zero Q-linear combination

I, = aE,l)Q 4+ -4 af,k)Q(,

where as,i) e Q;
@ a bound on the linear forms /,, e.g. find a small € > 0 such that

0< I, <e
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Structure of irrationality proofs

Strategy

@ Fix MZV's (1, ...,(k. Suppose we have:
© for all n > 0, a non-zero Q-linear combination

I, = aE,l)Q 4+ -4 af,k)(k,

where af,i) e Q;
@ a bound on the linear forms /,, e.g. find a small € > 0 such that

0< I, <e

© some control on the coefficients a{, e.g. find r such that

D2 € Z, where D, = lem(1,2,...,n).
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Structure of irrationality proofs

Strategy

@ Fix MZV's (1, ...,(k. Suppose we have:
© for all n > 0, a non-zero Q-linear combination

I, = aE,l)Q 4+ -4 af,k)(k,

where af,i) e Q;
@ a bound on the linear forms /,, e.g. find a small € > 0 such that

0< I, <&
© some control on the coefficients a{, e.g. find r such that

D2 € Z, where D, = lem(1,2,...,n).

Note: prime number theorem =—> lim,_ o D,%/" = e.
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Structure of irrationality proofs

Strategy
@ Fix MZV's (1, ...,(k. Suppose we have:
© for all n > 0, a non-zero Q-linear combination
Ih=aP¢+- +a¢,
where af,i) e Q;

@ a bound on the linear forms /,, e.g. find a small € > 0 such that

0< I, <e

© some control on the coefficients a{, e.g. find r such that

D2 € Z, where D, = lem(1,2,...,n).
Note: prime number theorem =—> lim,_ o D,%/" = e.

e Now assume (3,...,(x € Q, say in %Z.
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Structure of irrationality proofs

Strategy
@ Fix MZV's (1, ...,(k. Suppose we have:
© for all n > 0, a non-zero Q-linear combination
Ih=aP¢+- +a¢,
where af,i) e Q;

@ a bound on the linear forms /,, e.g. find a small € > 0 such that

0< I, <e

© some control on the coefficients a{, e.g. find r such that

D2 € Z, where D, = lem(1,2,...,n).
Note: prime number theorem =—> lim,_ o D,%/" = e.

@ Now assume (3,...,C(k € Q, say in %Z. Then

gD} I, > 1, hence e'e > 1.
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Structure of irrationality proofs

Strategy

@ Fix MZV's (1, ...,(k. Suppose we have:
© for all n > 0, a non-zero Q-linear combination

Ih=aPa+--+a%¢,

where as,i) e Q;
@ a bound on the linear forms /,, e.g. find a small € > 0 such that

0< I, <e

© some control on the coefficients a{, e.g. find r such that

D:a¥) € Z, where D, = lem(1,2,...,n).

Note: prime number theorem =—> lim,_ o D,%/" = e.

@ Now assume (3,...,C(k € Q, say in %Z. Then
gD} I, > 1, hence e'e > 1.

Contradiction if r and € are sufficiently small, so that e"e < 1.
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Beuker's integral:

/01 /01 /ol < _(:)iy(nf l__xyy))z)zfll 2" dxdy dz

I

- anC(?)) + bn
with a, € Z and D3b, € Z, bounded by

0<lh<e” e=(V2-1)"



Irrationality of ((3)

Beuker's integral:

o [ L[ e

= a,((3)+ b

with a, € Z and D,?b,7 € Z, bounded by

0<lh<e", e=(W2-1)"*
Numerical application:

e3e=0591--- <1,
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Irrationality of ((3)

Beuker's integral:

o [ L[ e

= a,((3)+ b

with a, € Z and ngn € Z, bounded by

0<lh<e", e=(W2-1)"*
Numerical application:
e3e=0591--- <1,

hence ((3) is irrational!
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Mo,nv = {curves of genus 0 with N ordered marked points}
{N ordered marked points on P'}/PGL,

{(tr,...,tn3) €AN3 [ t; # 5,4, # 0,1}



The moduli space My y

Mo,nv = {curves of genus 0 with N ordered marked points}
= {N ordered marked points on P!}/ PGL,
= {(tn,. - tv3) €AV [ £ 5,1 £ 0,1}

Let n:= N — 3. A connected component of Mg n(R) is the simplex
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The moduli space My y

Mo,nv = {curves of genus 0 with N ordered marked points}
= {N ordered marked points on P!}/ PGL,
{(t1,....tn-3) € AN3 | t; £ 1, 1, # 0,1}

Let n:= N — 3. A connected component of Mg n(R) is the simplex

Example: N =5, n=2
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A recipe: periods of moduli spaces My y

Examples of period integrals on Mg y:

/ I @ - ) [](t - t) dty... . dt,
80 ;

i<j

for some a;, bj, ¢;j € Z such that the integral converges.
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A recipe: periods of moduli spaces My y

Examples of period integrals on Mg y:
[ e Ta- 8 Tl o) da...de,
6 " j i<j
for some a;, bj, ¢;j € Z such that the integral converges.

Theorem (Brown)

The periods of moduli spaces Mg n are Q[27i]-linear combinations of
multiple zeta values of total weight < n= N — 3.
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A recipe: periods of moduli spaces My y

Examples of period integrals on Mg y:
[ I a7 I - o) dn...d
On " j i<j
for some a;, bj, ¢;j € Z such that the integral converges.

Theorem (Brown)

The periods of moduli spaces Mg n are Q[27i]-linear combinations of
multiple zeta values of total weight < n= N — 3.

General recipe for linear forms in MZV's

Consider family of convergent integrals

Ie (k) = / flw
)

n

where w € Q"(Mo n, Q) is a regular n-form and f € Q°(Mg v, Q).
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In view of irrationality proofs, we want the additional requirement:

@ Vanishing theorems for some of the coefficients aj(-i). J




Vanishing of coefficients

In view of irrationality proofs, we want the additional requirement:

@ Vanishing theorems for some of the coefficients aj(.i). J

@ Generic period integral on Mg 6 gives 1, ((2) and {(3)...
Get rid of {(2)! Then we obtain exactly the Apéry sequence.
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Vanishing of coefficients

In view of irrationality proofs, we want the additional requirement:

@ Vanishing theorems for some of the coefficients aj(.i). J

@ Generic period integral on Mg 6 gives 1, ((2) and {(3)...
Get rid of {(2)! Then we obtain exactly the Apéry sequence.

e Ball-Rivoal: “very well-poised hypergeometric series”
—> odd zeta values only.

Daniel Juteau (LAMFA: CNRS, UPJV) Computing motives: an approach to irrationality proofs for periods



Vanishing of coefficients

In view of irrationality proofs, we want the additional requirement:

@ Vanishing theorems for some of the coefficients aj(.i) J

e Generic period integral on Mg ¢ gives 1, ((2) and ¢(3)...
Get rid of {(2)! Then we obtain exactly the Apéry sequence.

e Ball-Rivoal: “very well-poised hypergeometric series”
—> odd zeta values only.

In terms of algebraic geometry: consider the (mixed Tate) motive
Hag :=H"(Mon \ A B\ A), where
@ Mo,y is the Deligne-Mumford compactification;
@ A is a divisor where differential forms are allowed to have poles;

@ B is a divisor containing the boundary of the domain of integration.
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Vanishing of coefficients

In view of irrationality proofs, we want the additional requirement:

@ Vanishing theorems for some of the coefficients aj(.i) J

e Generic period integral on Mg ¢ gives 1, ((2) and ¢(3)...
Get rid of {(2)! Then we obtain exactly the Apéry sequence.

e Ball-Rivoal: “very well-poised hypergeometric series”
— odd zeta values only.

In terms of algebraic geometry: consider the (mixed Tate) motive
Hag :=H"(Mon \ A B\ A), where
@ Mo,y is the Deligne-Mumford compactification;
@ A is a divisor where differential forms are allowed to have poles;
@ B is a divisor containing the boundary of the domain of integration.

Then gri¥ Ha g = 0 = vanishing of coefficients aJ(.i) in weight k.
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Periods and cohomology

For a smooth algebraic variety defined over @, we have:
@ the Betti cohomology groups (singular cohomology) HE(X);
@ the algebraic de Rham cohomology groups HAR (X);
@ the comparison isomorphism Hfy(X) ®g C — HAR(X) ®g C, whose
coefficients are periods. Equivalently: Betti / de Rham pairing.
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Periods and cohomology

For a smooth algebraic variety defined over @, we have:
@ the Betti cohomology groups (singular cohomology) HE(X);
@ the algebraic de Rham cohomology groups HAR (X);
@ the comparison isomorphism Hfy(X) ®g C — HAR(X) ®g C, whose
coefficients are periods. Equivalently: Betti / de Rham pairing.

dz/z
Q(—1) = H'(C®) (%l v (2mi)

Daniel Juteau (LAMFA: CNRS, UPJV) Computing motives: an approach to irrationality proofs for periods



Periods and cohomology

For a smooth algebraic variety defined over @, we have:
@ the Betti cohomology groups (singular cohomology) HE(X);
@ the algebraic de Rham cohomology groups HAR (X);
@ the comparison isomorphism Hfy(X) ®g C — HAR(X) ®g C, whose
coefficients are periods. Equivalently: Betti / de Rham pairing.

dz/z

Q(—1) = H'(C®) " v (2mi)
dz dz/z
K2:H1((C*7{1,2}) Q O——20 :(é |(2)7g”2>

0—Q(0) —» Ky = Q(-1) — 0, “ramified at 2"
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Mixed Tate motives over Q, over Z (“non-ramified”)

Category MTM(Q): abelian, rigid tensor category (symmetric, duals),
exact faithful tensor functors wyr,wp : MTM(Q) — Vect (Tannakian)
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Mixed Tate motives over Q, over Z (“non-ramified”)

Category MTM(Q): abelian, rigid tensor category (symmetric, duals),
exact faithful tensor functors wyr,wp : MTM(Q) — Vect (Tannakian)
@ For each n € Z, simple object Q(—n) = Q(—1)%®".
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Mixed Tate motives over Q, over Z (“non-ramified”)

Category MTM(Q): abelian, rigid tensor category (symmetric, duals),
exact faithful tensor functors wyr,wp : MTM(Q) — Vect (Tannakian)
@ For each n € Z, simple object Q(—n) = Q(—1)%®".
Period matrix: ((2xi)").
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Mixed Tate motives over Q, over Z (“non-ramified”)

Category MTM(Q): abelian, rigid tensor category (symmetric, duals),
exact faithful tensor functors wyr,wp : MTM(Q) — Vect (Tannakian)
@ For each n € Z, simple object Q(—n) = Q(—1)%®".
Period matrix: ((2ri)"). Effective if n > 0: Q(—n) = H"((C*)").
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Mixed Tate motives over Q, over Z (“non-ramified”)

Category MTM(Q): abelian, rigid tensor category (symmetric, duals),
exact faithful tensor functors wyr,wp : MTM(Q) — Vect (Tannakian)
@ For each n € Z, simple object Q(—n) = Q(—1)%®".
Period matrix: ((2n)"). Effective if n > 0: Q(—n) = H"((C*)").
o for each a € Q~¢, we have an extension in MTM(Q)

0—-Q0)— K,—>Q(-1)—0

: . (1 loga
Period matrix: (0 27”.)

(Kummer motive, trivial extension iff a = 1)
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Mixed Tate motives over Q, over Z (“non-ramified”)

Category MTM(Q): abelian, rigid tensor category (symmetric, duals),
exact faithful tensor functors wyr,wp : MTM(Q) — Vect (Tannakian)
@ For each n € Z, simple object Q(—n) = Q(—1)%®".
Period matrix: ((2n)"). Effective if n > 0: Q(—n) = H"((C*)").
o for each a € Q~¢, we have an extension in MTM(Q)

0—-Q0)— K,—>Q(-1)—0

Period matrix: (1 Ioga)

0 27
(Kummer motive, trivial extension iff a = 1)
@ For n=3,5,7,..., we have a non-trivial extension

0—-Q0)—Z,—-Q(—n)—0

Period matrix: ((1) (57(1_,3,,)
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Mixed Tate motives over Q, over Z (“non-ramified”)

Category MTM(Q): abelian, rigid tensor category (symmetric, duals),
exact faithful tensor functors wyr,wp : MTM(Q) — Vect (Tannakian)
@ For each n € Z, simple object Q(—n) = Q(—1)%®".
Period matrix: ((2n)"). Effective if n > 0: Q(—n) = H"((C*)").
o for each a € Q~¢, we have an extension in MTM(Q)

0—-Q0)— K,—>Q(-1)—0

Period matrix: (1 Ioga)

0 27
(Kummer motive, trivial extension iff a = 1)
@ For n=3,5,7,..., we have a non-trivial extension

0—-Q0)—Z,—-Q(—n)—0

Period matrix: ((1) (57(1_,3,,)

e All Ext’ with i > 2 vanish.
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Mixed Tate motives over Q, over Z (“non-ramified”)

Category MTM(Q): abelian, rigid tensor category (symmetric, duals),
exact faithful tensor functors wyr,wp : MTM(Q) — Vect (Tannakian)
@ For each n € Z, simple object Q(—n) = Q(—1)%®".
Period matrix: ((2ri)"). Effective if n > 0: Q(—n) = H"((C*)").
o for each a € Q~¢, we have an extension in MTM(Q)

0—-Q0)— K,—>Q(-1)—0

Period matrix: (1 Ioga)

0 27
(Kummer motive, trivial extension iff a = 1)
@ For n=3,5,7,..., we have a non-trivial extension

0—-Q0)—Z,—-Q(—n)—0

Period matrix: ((1) (;(1_,3,,)

e All Ext’ with i > 2 vanish.
e In MTM(Z), the extensions K, are not allowed.
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Mixed Tate motives over Q, over Z (“non-ramified”)

Category MTM(Q): abelian, rigid tensor category (symmetric, duals),
exact faithful tensor functors wyr,wp : MTM(Q) — Vect (Tannakian)
@ For each n € Z, simple object Q(—n) = Q(—1)%®".
Period matrix: ((2ri)"). Effective if n > 0: Q(—n) = H"((C*)").
o for each a € Q~¢, we have an extension in MTM(Q)

0—-Q0)— K,—>Q(-1)—0

Period matrix: (1 Ioga)

0 27
(Kummer motive, trivial extension iff a = 1)
@ For n=3,5,7,..., we have a non-trivial extension

0—-Q0)—Z,—-Q(—n)—0
- (1 C(n)
Period matrix: (O (27“.),,)
e All Ext’ with i > 2 vanish.

e In MTM(Z), the extensions K, are not allowed.
e Per(MTM(Z)) = Uy Per(Mo,n) = Q[27i][MZV] = Q[27/][MZ V> 3]
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_ l _ dx dy .
g(z) B kZZJ. k2 //0<x<y<1 (1 - X)y




_ l _ dx dy '
<(2) B kZZJ. k2 //0<x<y<1 (1 - X)y

]PJ2

6 lines, 7 points



Example: ((2)

@) =3 % B //0<x<y<1 %

k>1
A A
B B
T
blow-up
I T '

T ~

P2 — P2 = Mos

6 lines, 7 points 10 lines, 15 points
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Example: ((2)

@=-e= [l o

k>1

A A

B B
T
blow-up
I T '
P — P = Mo
6 lines, 7 points 10 lines, 15 points
.5 5. 7 . . 1 <2 1 0
e U"2(2 ) ~

H:=H*(P2\ A, B\ A). Period matrix: (O (27ri)2> <0 (27”.)2)
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Bi-arrangements of hyperplanes

Definition (Dupont 2014)
A projective bi-arrangement of hyperplanes is a triple (£,M, x) where
o L={Ly,...,L;} is a set of hyperplanes in P";
@ M = {My,..., My} is a set of hyperplanes in P”;
@ x : 8 = Flats(L UM) — {\, u} is a coloring function, satisfying
x(Li) = X and x(M;) =  for all i,
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Bi-arrangements of hyperplanes

Definition (Dupont 2014)
A projective bi-arrangement of hyperplanes is a triple (£,M, x) where
o L={Ly,...,L;} is a set of hyperplanes in P";
@ M = {My,..., My} is a set of hyperplanes in P”;
@ x : 8 = Flats(L UM) — {\, u} is a coloring function, satisfying
x(Li) = X and x(M;) =  for all i,

Definition (Dupont 2014)

The motive of the bi-arrangement of hyperplanes (£, M, x) is the
collection of relative cohomology groups (mixed Hodge structures)

He (P \ £, M\ £) .
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Bi-arrangements of hyperplanes

Definition (Dupont 2014)
A projective bi-arrangement of hyperplanes is a triple (£,M, x) where
o L={Ly,...,L;} is a set of hyperplanes in P";
@ M = {My,..., My} is a set of hyperplanes in P”;
@ x : 8 = Flats(L UM) — {\, u} is a coloring function, satisfying
x(Li) = X and x(M;) =  for all i,

Definition (Dupont 2014)

The motive of the bi-arrangement of hyperplanes (£, M, x) is the
collection of relative cohomology groups (mixed Hodge structures)

He (P \ £, M\ £) .

Inspired by (Aomoto 1977, 1982) and
(Beilinson-Goncharov-Schechtman-Varchenko, 1989).
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We define the Orlik-Solomon bicomplex A e = Ae.o(L, M, X):

d/
----------- > Ago —= Ao —> Ao

Lk

............... > Ayp —= Agy

l

............... > Ao2

v

v

v




The Orlik-Solomon bicomplex

Definition
We define the Orlik-Solomon bicomplex Ae o = Ae.o(L, M, X):

dl
> Ao —> A1 0 —— Aopo

ok

> A1 —Aoa

|

> Ao,2

We define A; j = @ A?; and the differentials d’ and d” by induction
SES8iy;
on the codimension i 4 j. Here §; = flats of codimension k.
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Base step of the induction : Agg = Q.




The Orlik-Solomon bicomplex

Base step of the induction : Ago = Q.

Inductive step :
o For a flat X such that x(¥) = A, we define A}; as a kernel:

y d S d T
0 A5 S PAL; S P AL, -
SOY TOX
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The Orlik-Solomon bicomplex

Base step of the induction : Ago = Q.

Inductive step :
@ For a flat X such that X(Z) = )\, we define A.z- as a kernel:

0—>A,.z @A, 1 @A, o -

$OF Tox
@ For a flat X such that x(X) = x, we define A;?:- as a cokernel:

0 AL DAL, E DA,

SO% TOX
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The Orlik-Solomon bicomplex

Base step of the induction : Ago = Q.

Inductive step :
@ For a flat X such that X(Z) = )\, we define A.z- as a kernel:
0—>A,.z @A, 1 @A, o -
$OF ToF
@ For a flat X such that x(X) = x, we define A;?:- as a cokernel:

0 AL DAL, E DA,

S$o% To%
@ In any case, we complete the squares by the universal property.
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The Orlik-Solomon bicomplex

Base step of the induction : Ago = Q.

Inductive step :
@ For a flat X such that X(Z) =\, we define A¥; as a kernel:
0 A5 % DA% ) AL,
$OF ToF
@ For a flat X such that x(X) = x, we define A-z- as a cokernel:

0 AL DAL, E DA,

S$o% To%
@ In any case, we complete the squares by the universal property.

Hence we use:

@ KernelObject, KernelMorphism, KernelLift and dual versions,
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The Orlik-Solomon bicomplex

Base step of the induction : Ago = Q.

Inductive step :
@ For a flat X such that X(Z) =\, we define A¥; as a kernel:

o—>A,.z @A, 1 @A, o -

$OF Tox
@ For a flat X such that x(X) = x, we define A-z- as a cokernel:

0 AL DAL, E DA,

S$o% To%
@ In any case, we complete the squares by the universal property.

Hence we use:
@ KernelObject, KernelMorphism, KernelLift and dual versions,

@ MorphismBetweenDirectSums,
ComponentOfMorphismIntoDirectSum,
ComponentOfMorphismFromDirectSum. ..
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codim 2

i, /|\

L, codim1

\I/

M codim0



codim 2

L
N, / | N
L, codim1
\ I /
M codim0
AsY
Q Aéo = Q




codim 2

i, /|\

L, codim1

\I/

M codim0

ASh

Q Aéon




codim 2

i, /|\

L, codim1
\ | /
M codim0
ASL:
(1)
Q——Q Afo=Q

Alp=Q dg" = (1)




codim 2

i, /|\

L, codim1

\I/

M codim0

ALY

Q Aéo =Q
Alp=Q dg" = (1)




C—©

codim 2

/I\
\I/

codim1

codim0

Aé{o - Q
Alp=0Q dg" = (1)
A =0 d"*=(1)




Ly
Ly

ASS

(11)

@®—Q

codim 2

/I\
\I/

codim1

codim0

A=
Alp—Q 4 = (1)
AL=Q = (1)



Example

Ly
Ly P
M
ASD
o ) o )
l(l)

Daniel Juteau (LAMFA: CNRS, UPJV)

P codim 2
Lq Ly M codim1
X codim0
A%y =Q
Alo=Q d5" =(1)
Afi=Q dél,g/”x =(1)
ALo=Q dyg” = (1) dhg" = (-1)
AT =Q 47" =(1)
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Example

Daniel Juteau (LAMFA: CNRS, UPJV)

P codim 2
RN
Lq Ly M codim1
N |/
X codim0
A%y =Q
Alo=Q d5"=(1)

A =Q djg" = (1)
AZ, = Q2
Af,l =Q

dig™ = (1) dlg=(1)
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A bi-arrangement of hyperplanes (£,M, x) is exact if the above exact
sequences can be continued to long exact sequences

0— A%, —>@A5 Lo @A,_zd

ST TOXx

or

0L Pa L EPALE

SO% TOX




Exactness

Definition |
A bi-arrangement of hyperplanes (£,M, x) is exact if the above exact
sequences can be continued to long exact sequences

0— A% —>@A51] @A,_QJ

So% TOX%
or
b
0« A% <—EBA,J & EBAJ , L
SO% TO%
4
Remark

@ All arrangements of hyperplanes (A, @, \) are exact,
Auo(A, @, ) = Ad(A).

Daniel Juteau (LAMFA: CNRS, UPJV) Computing motives: an approach to irrationality proofs for periods



Exactness

Definition
A bi-arrangement of hyperplanes (£,M, x) is exact if the above exact
sequences can be continued to long exact sequences

0— A% —>@A51] @A,_QJ

So% TOX%
or
b
0« A% <—EBA,J & EBAJ , L
SO% TO%
Remark

@ All arrangements of hyperplanes (A, @, \) are exact,
Ao(A, 2, )) = Ad(A).

@ Deletion and restriction formalism for exact bi-arrangements of
hyperplanes.
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For an exact bi-arrangement of hyperplanes (£, M, x) in P", “the
Orlik-Solomon bicomplex Aq o (£, M, x) computes the motive
He (L, M, x)".




The main theorem

Theorem (Dupont 2014)

For an exact bi-arrangement of hyperplanes (£, M, x) in P", “the
Orlik-Solomon bicomplex Aq o (£, M, x) computes the motive
H* (L, M, x)". More precisely, for each k =0,...,n:

@ we consider the double complex Ap<e<k,0<e<n—k;
o we let WA, be its total complex ;
o then gr¥V H"(L,M, x) & Hak—,(VAs)
(W = the weight filtration coming from mixed Hodge theory).
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The main theorem

Theorem (Dupont 2014)

For an exact bi-arrangement of hyperplanes (£, M, x) in P", “the
Orlik-Solomon bicomplex Aq o (£, M, x) computes the motive
H* (L, M, x)". More precisely, for each k =0,...,n:

@ we consider the double complex Ap<e<k,0<e<n—k;
o we let WA, be its total complex ;
o then gr¥V H"(L,M, x) & Hak—,(VAs)
(W = the weight filtration coming from mixed Hodge theory).

Remark

e For arrangements of hyperplanes, we recover the (projective)
Brieskorn-Orlik-Solomon theorem, with only weight gr,, H*.
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The main theorem

Theorem (Dupont 2014)

For an exact bi-arrangement of hyperplanes (£, M, x) in P", “the
Orlik-Solomon bicomplex Aq o (£, M, x) computes the motive
H* (L, M, x)". More precisely, for each k =0,...,n:

@ we consider the double complex Ap<e<k,0<e<n—k;

o we let WA, be its total complex ;

o then gr¥V H"(L,M, x) & Hak—,(VAs)
(W = the weight filtration coming from mixed Hodge theory).

Remark

e For arrangements of hyperplanes, we recover the (projective)
Brieskorn-Orlik-Solomon theorem, with only weight gr,, H*.

@ The weight-graded quotients gryy H*(£, M, x) are combinatorial
invariants, but not the whole motive H*(£, M, x).
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Combinatorial notion of tame bi-arrangements of hyperplanes.
@ Generic bi-arrangements are tame
@ tame — exact.




Explicit computations: the tame case

Combinatorial notion of tame bi-arrangements of hyperplanes.
@ Generic bi-arrangements are tame
@ tame — exact.

Proposition

For a tame bi-arrangement of hyperplanes (£,M, x), the Orlik-Solomon
bicomplex Ae o(£, M, X) is an explicit sub-quotient of As(L) @ Ae(M)".
V.
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Explicit computations: the tame case

Combinatorial notion of tame bi-arrangements of hyperplanes.
@ Generic bi-arrangements are tame
@ tame — exact.

Proposition

For a tame bi-arrangement of hyperplanes (£,M, x), the Orlik-Solomon
bicomplex Ae o(£, M, X) is an explicit sub-quotient of As(L) @ Ae(M)".

Example
Ly
L2 P Ao,o = /\.(61, 62) & /\.(flv)/(d(el A 62) ® f;lv)
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Explicit computations: the tame case

Combinatorial notion of tame bi-arrangements of hyperplanes.
@ Generic bi-arrangements are tame
@ tame — exact.

Proposition |

For a tame bi-arrangement of hyperplanes (£,M, x), the Orlik-Solomon
bicomplex Ae o(£, M, X) is an explicit sub-quotient of As(L) @ Ae(M)".

Example |
Ly
L, 2 Ave = N(e1, &) @ A (£)/(d(er A &) @ £Y)
M
Example
One can define multiple zeta bi-arrangements Z(ny, ..., n,) that are
tame.
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Basic cellular integrals

Given a permutation o € &y, define on PN\ J{z; = z;}:

- Zi — Ziy1 dz;...dzy

f, =

and @, =

iczjnz Zo) ~ Zoli+1) I o) = zo641)
i€Z/NZ

)

both PGLy-invariant, hence we get f, € O(Mo n), and w, € Q"(Mo n)
after dividing by an invariant volume form on PGL;.
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Basic cellular integrals

Given a permutation o € &y, define on PN\ J{z; = z;}:

and @, = dz;...dzy

iczjnz Zo) ~ Zoli+1) I o) = zo641)
i€Z/NZ

z Zi — Zj41

f, =

)

both PGLy-invariant, hence we get f, € O(Mo n), and w, € Q"(Mo n)
after dividing by an invariant volume form on PGL;.

Basic cellular integral:

Iy(k) = / frw,
n

It converges iff o is a convergent permutation (“dinner party problem™).
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Basic cellular integrals

Given a permutation o € &y, define on PN\ J{z; = z;}:

and @, = dz;...dzy

iczjnz Zo) ~ Zoli+1) I o) = zo641)
i€Z/NZ

z Zi — Zj41

f, =

)

both PGLy-invariant, hence we get f, € O(Mo n), and w, € Q"(Mo n)
after dividing by an invariant volume form on PGL;.

Basic cellular integral:

Iy(k) = / frw,
n

It converges iff o is a convergent permutation (“dinner party problem™).

Number of convergent configurations, up to dihedral symmetries:

N|4567 8 9 10 11
Cy|0 1 1 5 17 105 771 7028
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Basic cellular integrals

Given a permutation o € &y, define on PN\ J{z; = z;}:

and @, = dz;...dzy

iczjnz Zo) ~ Zoli+1) I o) = zo641)
i€Z/NZ

z Zi — Zj41

f, =

)

both PGLy-invariant, hence we get f, € O(Mo n), and w, € Q"(Mo n)
after dividing by an invariant volume form on PGL;.

Basic cellular integral:

Iy(k) = / frw,
n

It converges iff o is a convergent permutation (“dinner party problem™).

Number of convergent configurations, up to dihedral symmetries:

N|4567 8 9 10 11
Cy|0 1 1 5 17 105 771 7028

N =5: only sm = [5,2,4,1, 3], N =6: only gm = [6,2,4,1,5,3]
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Suppose that A, B C Mo,y are cellular boundary divisors with no
common irreducible components. Let n = N — 3. Then

grgv HA,B = gl’g‘;_2 HA,B =0

and ng Ha g and ng Ha g are both 1-dimensional.
0 5 2n 5




Vanishing for basic cellular integrals

Theorem (Brown 2016)

Suppose that A, B C My y are cellular boundary divisors with no
common irreducible components. Let n = N — 3. Then

gry' Hag =gry, _oHag =0

and gr(‘)/v Ha g and gr% Ha g are both 1-dimensional.

Hence for the unique convergent configurations for N = 5,6, we must
have

W, Q0)®Q(-2) for N =5,
& TAE T Q(0) 2 Q(~3) for N =6.
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Vanishing for basic cellular integrals

Theorem (Brown 2016)

Suppose that A, B C My y are cellular boundary divisors with no
common irreducible components. Let n = N — 3. Then

gV Hap =gryl ,Hag=0

and gr(‘)/v Ha g and gr% Ha g are both 1-dimensional.

Hence for the unique convergent configurations for N = 5,6, we must
have

W, Q0)®Q(-2) for N =5,
& TAE T Q(0) 2 Q(~3) for N =6.

Those are the Apéry motives! They give the linear combinations of 1 and
¢(2) for N =5, resp. 1 and ¢(3) for N = 6, used in the irrationality
proofs.
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Flat poset for ((2)

35 may be set red or blue
morphism red — blue

KernelObjectFunctorial
TotalComplexFunctorial

Take the image!

Irrelevant for ((2):
101 — 101 — 101
Relevant for ¢(3):

1011 — 1001 — 1101
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Two dual pairs and one self-dual configuration:

im = [7,2,4,1,6,3,5] «— 7y =[7,2
72 = [7 2a476; 7375] — 77T]Y = [7’3
73 = [7;25 57 173a6’4] = 771'3/




Two dual pairs and one self-dual configuration:

m = [7,2,4,1,6,3,5] +— 1) =]
7m2 = [7,2,4,6,1,3,5] +— m/ =]
73 = [7;25 57 173a6;4] = 771':};/

Experimentally, all give linear combinations of 1, ¢(2) and {(4).




More basic cellular integrals

N=T7
Two dual pairs and one self-dual configuration:

i =1[7,2,4,1,6,3,5] +— 7m) =[7,2,5,1 3]
7m2 = [7,2,4,6,1,3,5] +— m/ =1[7,3,6,2,5,1,4]
773 = [7,2,5, 1,3,6,4] = 771'%/

Experimentally, all give linear combinations of 1, ¢(2) and {(4).
With MotivesForBiarrangements, based on CAP, we can confirm:

gr/ Has = Q(0) ® Q(—2) ® Q(—4)
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More basic cellular integrals
N=T7
Two dual pairs and one self-dual configuration:
771 = [73 2747 17 6a 33 5] — 771-},/ = [77 )

2,5,1,4,6,3]
7m2 = [7,2,4,6,1,3,5] +— m/ =1[7,3,6,2,5,1,4]
773 = [77 27 51 1737674] = 771—%/

Experimentally, all give linear combinations of 1, ¢(2) and {(4).
With MotivesForBiarrangements, based on CAP, we can confirm:

gr/ Has = Q(0) ® Q(—2) ® Q(—4)

N=38

Among the 17 convergent configurations, let us note

878 — [8a2757 17674’a773] — 87r§/ = [872’47 177’5’3’6]
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More basic cellular integrals
N=T7
Two dual pairs and one self-dual configuration:
771 = [73 2747 17 6a 33 5] — 771-},/ = [77 )

2,5,1,4,6,3]
7m2 = [7,2,4,6,1,3,5] +— m/ =1[7,3,6,2,5,1,4]
773 = [77 27 51 1737674] = 771—%/

Experimentally, all give linear combinations of 1, ¢(2) and {(4).
With MotivesForBiarrangements, based on CAP, we can confirm:

gr. Has = Q(0) ©Q(-2) & Q(—4)
N =38
Among the 17 convergent configurations, let us note
878 — [8a 27 57 17 67 4’a 77 3] — 87r§/ = [87 2’ 47 17 7’ 5’ 3’ 6]

With MotivesForBiarrangements, based on CAP, we can confirm:
oW H, g = Q(0) ® Q(—3) ® Q(-5) for gs,
o Q(0) ® Q(—2) & Q(—5) for gmy.
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