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Multi-scale, Multi-loop Amplitudes

@ Loop amplitudes are computed via the master integral decomposition.

E X Ik
v ~—
rational _master
functions  integrals
@ Let's focus on difficulties when computing the rational functions.
(Talks on integrals by Anatonela, Claude, Christoph, David, Stefan)

@ Chosen framework: use finite-field evaluations to determine Cy.

Numerical Data: {Ck p; ,...,p,(,l)),...,Ck(pgN),...,p,(,N))}
_l’_

reconstruct Ck
—_—

Ansatz:  Ck(p1,...,pn) = Z Cikaik(p1y - - Pn)

[von Manteuffel, Schabinger '14; Peraro '16],
FiniteFlow [Peraro '19], Firefly [Klappert, Lange, Klein '19, '20]
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Analytic Reconstruction as it Stands

@ Reconstruction time dominated by sampling: Tsample ~ O(minute).

e Evaluation count for (selected) recent two-loop five-point amplitudes:

Three-jet

Process

Three-photon

W + two-jets*

# Samples ~ 10°

~ 10°

~ 10°.

* After simplification via [Badger et al '20]

Need to better understand rational functions, build simpler Ansatze. J
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The Approach of [De Laurentis, BP '22]

@ Work in spinor space® to manifest gauge-theory simplifications.

Ck(pla---;pn) — Ck(A,S\)

*Algorithmic toolkit provided.

@ Numerically study Cx to understand partial-fractions structure.

N AT A D
D1D2Drest p‘fﬁZDrest DZDrest DIDrest .

See also [De Laurentis, Maftre '19].

@ Construct Ansatz a; from study. Constrain ¢y by finite field sampling.

Nnew
CA ) =D (M),  w€Q Noew < N.
I=1
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The Method, By Example
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A First Attempt at Numerical Partial Fractions

o Consider tree-level six-point one-quark line amplitude Aq+g+g+afg7g7

N*
(12)(23)(34)[45][56][61] 5345

A:

*N is a degree 6 polynomial in spinor brackets.

o Can we rewrite without both (12) and (23) poles?

JANDS A23

A= + ?
(23)(34)[45][56][61]s345  (12)(34)[45][56][61]5345

@ [De Laurentis, Maitre '19]: Probe A on points where (12), (23) are small.

Ay ~e = A~e?
(12) ~ (23) ~ (13) ~ e = A~el,
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Thinking in Terms of Polynomials

@ Let’s ask an equivalent question:
N = A12<12> + A23<23>?

@ Mathematically, we can ask if A belongs to an “ideal”:
N e <<12>,<23>>?

@ ldeal is infinite set of polynomial combinations of generators:

<<12), <23)> = {al<12> + a2(23) | aj are any spinor polynomials}.

Zariski Nagata Theorem

If A vanishes to order k everywhere where (12) = (23) = 0* then
(k)
N e <<12>, <23>> .

* and <(12>, <23)> is radical.
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Branching of Surfaces Defined by Polynomials

@ When we intersect surfaces, we may have multiple branches.

xy2+y3fz2:0 X3+y3*Z2:0, xy2+y3fz2:x3+y3722:0.
@ Our double denominator zero surface has two branches:
(12) =(23) =0 < (12)=(23)=(13)=0 or A5 =

@ We compute branchings with primary decomposition techniques.
[De Laurentis, BP '22], see also [Zhang '12].
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Ansatz Construction Algorithm, Sketched

@ Construct branches of surfaces where two denominators vanish.

D;:'Djzo — V:{Ul,UQ,...}.

@ Sample near surface to determine degree of numerator vanishing.
U: Di~Dj~e = Ny ~ €V,

© Ansatz is basis of intersection of associated ideals of vanishing
polynomials. Ansatz constructed using Grobner basis techniques.

Niee [ 1)t

vey
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Studying the Six-Point Tree [De Laurentis, BP; 2207.10125]

N

A= .
(12)(23)(34)[45][56][61]s345
@ Probe 108 surfaces where pairs of (i), [ij], sk are small.

eg  [12] ~[13] ~[23] ~ O(e) = A~ O(e2).
@ N vanishes non-trivially on 28 surfaces. Many ideal memberships:

N € <[12], [13], [23]>2 N <<12>, <34>> N <<12>, [16]> N (25 more).

@ Imposing that N\ is a degree six polynomial gives one term Ansatz:
N = c0<<12>[21] (45) [54](4]2-+3| 1] +[16] (6]1+2/3] (34)5123>, @€ Q.
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Proof-of-Concept Remainders for gg — vy

(Simulated evaluations using analytics from [Abreu, BP, Pascual, Sotnikov '20]).

@ Analyze remainder, reconstruct pentagon function coefficients.

@ Reconstruction now requires 317 Q, + 566 [F, samples.

Amplitude R(,zfl R(,zﬂrf) Rfﬁ)r R(fjﬁ[)
Ansatz Dim [Abreu et al '20] 41301 | 2821 7905 1045
Ansatz Dim [De Laurentis, BP '22] | 566 20 18 6
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Some Thoughts on Bottlenecks
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Ansatz Basis Construction in [2203.04269]

e N lives in space of polynomials of fixed mass-dimension/little group:
N e Md’(;.

@ Approach used in [2203.04269] is to avoid intersecting ideals:

Ansatz = basis ( ﬂ [Md,¢?ﬂ I(U)("Uq) .

uey

o Bottlenecks:
e Many, large vector space intersections.
o Ansatz picked by RREF. ¢; reconstruction needs many finite fields.

N = Z ca;, (¢ mod py, c; mod pa,...) Cﬂ> G

Improvement path: Can we analytically intersect ideals in controlled way?
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Regular Sequences

@ ldeal intersection is combinatoric when using a regular sequence:

{gu,...

,gn}+ where g;11 is non-zero divisor mod {qy, ...

,Git, i €10,n—1]. )

e {(12),(13),(14)} is not a regular sequence because of Schouten.

@ Geometrically, sequential intersections decrease dimension.

(14)(23) = (12)(34) — (13)(24).

E.g. {x(x+y),y—3} is regular sequence, {x(x+y),y —3,x+ 3} is not:

4
2
0
2
4

Ben Page

X(x+y)=0

n

2

0

-2

— X(x+y)==0

— -34y==0

4

2

— x(x+y)=0

— 34y==0
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Improving Basis Construction

@ Regular sequence {qi,...,qn}. Monomial ideals intersect as

<Hq,.a":d’€A>ﬁ<Hqi":g€ B> = <1cm<Hq;l",Hq,.") cadeAfe B>. *

e E.g., {(12),[12], s123} is regular sequence:

((12), st53) N ([12], s123) = ((12)[12], 5753, (12)s123, [12]s53)-

o Strategy:
@ Organize intersection into denominator ideals.
M 1V = () (D,, Dy,
vuevy (a,b)
@ Apply (*) to subsets of intersectands built from regular sequences.
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Closing Remarks

Summary:

@ Rational functions in amplitudes have poorly understood structure.

@ We study them in singular limits to characterize that structure. We
interpret this behavior in terms of ideals from which we build Ansatze.

Looking forward:

@ Can we get even better at intersecting these ideals?

(Does there exist a “next-to-regular” sequence?)

@ What is the physical origin of the partial fractions structure?
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Lorentz Invariance

o Coefficients are Lorentz invariant functions of spinor brackets.
C(A ) = (). ).
@ Relevant ring is Lorentz invariant subring of S,,.
Sp= F[<12>, o (=1 [12],. . [(n— 1)n]].
@ Variables are brackets, now have “Schouten identities”.
n
In, = <Z(ij>[ik], (i) (kl) = Cik) Gl = (i) (Kj), ) <> []> -
j=1
@ Physical spinor bracket functions also form a quotient ring.
7zn — Sn/j/\,,-
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Bases of Spinor Space and Polynomial Reduction

@ Numerators are Q—linear combinations of spinor monomials.

mo =[] v"  where V={(12),(23),...[12],[23],...}.

i

@ Polynomial reduction writes p in terms of generators gi-

P=202%, P +Zcfg:

@ Polynomial in ideal if and only if Groebner remainder is 0.

Dgp(P)=0 =  ped

@ Monomials irreducible by G(Jp,) form basis. Related [Zhang '12]
basis = {m, such that Ag(z, y(Ma) = ma}.
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How To Perform Numerical Investigations?

o Need to find phase-space points (\€, 5\6) where D; are small.

DA, X)) ~ Di(AGA) ~ e

@ Conflict with modern techniques: no small elements in a finite field.

|0|r,= O, and a#0 = |ap,=1.
@ Approaching with complex numbers would be plagued by instabilities.

Enter the p-adic numbers — a middle ground between finite fields and C. )
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Introduction to the p-adic Numbers

@ The p-adic numbers roughly correspond to Laurent series in p.

oo
X = Z alpl = a[/py + aV—‘,—lpVJrl + SKI (3,’ Eal[jo;yépo_l]’) .

i=v

@ The p-adic numbers form a field. x,y € Q, =

1 .
x+yeQ, —x€Qp xxyeQy, ;GQp(lfx;éO).

@ The p-adic absolute value allows for small numbers (p ~ €).

IxXlp=p7", = |p[p< |1]p.
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Computing with p-adic Numbers

@ For computing purposes™ we truncate to finite order.

x = p”(x)< X +0(pk))-
mantissa

*Try [https://github.com/GDelaurentis/pyadic| to investigate yourselves.

@ Truncation reduces to finite field case for v =0, k = 1.

o Arithmetic (4+ — /*) is essentially performed modulo p*, e.g.

o Mantissa inverse computed with extended euclidean algorithm.
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P-adic (Integer) Points Near an Irreducible Variety

o Want to find (M), X(9)) “close” to U= V((q1,...,qm)R,):
(2@ X)) = pe: k (30 _ k
gi (A9 X)) = pe; + O(p"), Z)\a/\ =0+ O(ph).

o First, find finite field x € U by intersecting with random plane.

LA

\ /

o Arbitrarily extend F,, point (A, \) to k digits. Trivially near U.

@ To satisfy momentum conservation, perturb by (pd, pg)
(A, 39 = (A+ pd, A+ pb).
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Polynomials that Vanish on a Variety

@ Polynomials that vanish on all points of U form an ideal
I(U) = {q €S, where g(x)=0 forall xe U}.
o Consider if A; vanishes to order ky on U,
Ni(x)) = O(ev), where |x—x|< e and xe U.

@ It turns out that A/; still belongs to an ideal!

Zariski-Nagata Theorem

Polynomials vanishing to O(ky) on U belong to /(U){v) — the kyth
“symbolic power” of I(U).

o Computed from primary decomposition of ideal power /(U)v.
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Examples of Symbolic Powers

@ A function vanishing to fourth order at a point on the circle:

(4) ~
R |

L

@ Often the symbolic power coincides with standard power, e.g.
((12),12)g) = ((12), [12]), = ((12)%, (12)[12], 121} ,-

@ Symbolic/standard power may not coincide. E.g. in F[x, y, z]

(xy,xz,yz)® = (x2y? x?22,y22% xyz) # (xy, xz, yz)?
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The p-adic Logarithm

@ Over the p — adic numbers, one can define converging power series.

@ The power series for a logarithm converges for |x|,< 1.
o0 k+1, k
(1) x
log,(1 +x) = Z —
k=1
@ To map to radius of convergence, use Fermat's little theorem.

wPt=1 mod p = WPt —1],< 1

o Logarithm relations then p-adically analytically continue log,.

1 -1
log,,(w) = b1 log(wP™")
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