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Multi-scale, Multi-loop Amplitudes

Loop amplitudes are computed via the master integral decomposition.

A(l) =
∑
k

Ck︸︷︷︸
rational

functions

× Ik︸︷︷︸
master

integrals

.

Let’s focus on difficulties when computing the rational functions.
(Talks on integrals by Anatonela, Claude, Christoph, David, Stefan)

Chosen framework: use finite-field evaluations to determine Ck .

Numerical Data:
{
Ck(p

(1)
1 , . . . , p(1)

n ), . . . , Ck(p
(N)
1 , . . . , p(N)

n )
}

+

Ansatz: Ck(p1, . . . , pn) =
N∑
i=1

cikaik(p1, . . . , pn)

reconstruct−−−−−−−→ Ck

[von Manteuffel, Schabinger ’14; Peraro ’16],

FiniteFlow [Peraro ’19], Firefly [Klappert, Lange, Klein ’19, ’20]
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Analytic Reconstruction as it Stands

Reconstruction time dominated by sampling: Tsample ∼ O(minute).

Evaluation count for (selected) recent two-loop five-point amplitudes:

Process

Three-jet Three-photon W + two-jets∗

q

q̄

γ

γ

γ

g

g

q

q̄

ℓ

ℓ̄V

# Samples ∼ 105 ∼ 105 ∼ 106.
∗After simplification via [Badger et al ’20]

Need to better understand rational functions, build simpler Ansätze.
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The Approach of [De Laurentis, BP ’22]

Work in spinor space∗ to manifest gauge-theory simplifications.

Ck(p1, . . . , pn) → Ck(λ, λ̃).

∗Algorithmic toolkit provided.

Numerically study Ck to understand partial-fractions structure.

N
D1D2Drest

=
���

���∆

D1D2Drest
+

∆1

D2Drest
+

∆2

D1Drest
?

See also [De Laurentis, Mâıtre ’19].

Construct Ansatz al from study. Constrain ckl by finite field sampling.

Ck(λ, λ̃) =
Nnew∑
l=1

cklal(λ, λ̃), ckl ∈ Q, Nnew � N.
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The Method, By Example
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A First Attempt at Numerical Partial Fractions

Consider tree-level six-point one-quark line amplitude Aq+g+g+q−g−g−

A =
N ∗

〈12〉〈23〉〈34〉[45][56][61]s345
.

∗N is a degree 6 polynomial in spinor brackets.

Can we rewrite without both 〈12〉 and 〈23〉 poles?

A =
∆12

〈23〉〈34〉[45][56][61]s345
+

∆23

〈12〉〈34〉[45][56][61]s345
?

[De Laurentis, Mâıtre ’19]: Probe A on points where 〈12〉, 〈23〉 are small.

λα2 ∼ ε ⇒ A ∼ ε−2

〈12〉 ∼ 〈23〉 ∼ 〈13〉 ∼ ε ⇒ A ∼ ε−1.
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Thinking in Terms of Polynomials

Let’s ask an equivalent question:

N = ∆12〈12〉+ ∆23〈23〉?
Mathematically, we can ask if N belongs to an “ideal”:

N ∈
〈
〈12〉, 〈23〉

〉
?

Ideal is infinite set of polynomial combinations of generators:〈
〈12〉, 〈23〉

〉
=
{
a1〈12〉+ a2〈23〉 | ai are any spinor polynomials

}
.

Zariski Nagata Theorem

If N vanishes to order k everywhere where 〈12〉 = 〈23〉 = 0∗ then

N ∈
〈
〈12〉, 〈23〉

〉〈k〉
.

∗ and
〈
〈12〉, 〈23〉

〉
is radical.
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Branching of Surfaces Defined by Polynomials

When we intersect surfaces, we may have multiple branches.

xy 2 + y 3 − z2 = 0 x3 + y 3 − z2 = 0, xy 2 + y 3 − z2 = x3 + y 3 − z2 = 0.

Our double denominator zero surface has two branches:

〈12〉 = 〈23〉 = 0 ⇔ 〈12〉 = 〈23〉 = 〈13〉 = 0 or λα2 = 0.

We compute branchings with primary decomposition techniques.
[De Laurentis, BP ’22], see also [Zhang ’12].
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Ansatz Construction Algorithm, Sketched

1 Construct branches of surfaces where two denominators vanish.

Di = Dj = 0 −→ V = {U1,U2, . . .}.

2 Sample near surface to determine degree of numerator vanishing.

U : Di ∼ Dj ∼ ε ⇒ Nk ∼ εκU .

3 Ansatz is basis of intersection of associated ideals of vanishing
polynomials. Ansatz constructed using Gröbner basis techniques.

Nk ∈
⋂
U∈V

I (U)〈κU〉.
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Studying the Six-Point Tree [De Laurentis, BP; 2207.10125]

A =
N

〈12〉〈23〉〈34〉[45][56][61]s345
.

Probe 108 surfaces where pairs of 〈ij〉, [ij ], sijk are small.

e.g. [12] ∼ [13] ∼ [23] ∼ O(ε) ⇒ A ∼ O(ε2).

N vanishes non-trivially on 28 surfaces. Many ideal memberships:

N ∈
〈

[12], [13], [23]
〉2
∩
〈
〈12〉, 〈34〉

〉
∩
〈
〈12〉, [16]

〉
∩ (25 more).

Imposing that N is a degree six polynomial gives one term Ansatz:

N = c0

(
〈12〉[21]〈45〉[54]〈4|2+3|1]+[16]〈6|1+2|3]〈34〉s123

)
, c0 ∈ Q.
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Proof-of-Concept Remainders for qq → γγγ

A =
q

q̄

γ

γ

γ

+ · · · .

(Simulated evaluations using analytics from [Abreu, BP, Pascual, Sotnikov ’20]).

Analyze remainder, reconstruct pentagon function coefficients.

Reconstruction now requires 317 Qp + 566 Fp samples.

Amplitude R
(2,0)
−++ R

(2,Nf )
−++ R

(2,0)
+++ R

(2,Nf )
+++

Ansatz Dim [Abreu et al ’20] 41301 2821 7905 1045

Ansatz Dim [De Laurentis, BP ’22] 566 20 18 6
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Some Thoughts on Bottlenecks
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Ansatz Basis Construction in [2203.04269]

N lives in space of polynomials of fixed mass-dimension/little group:

N ∈M
d ,~φ
.

Approach used in [2203.04269] is to avoid intersecting ideals:

Ansatz = basis

(⋂
U∈V

[
M

d ,~φ
∩ I (U)〈κU〉

])
.

Bottlenecks:
Many, large vector space intersections.
Ansatz picked by RREF. ci reconstruction needs many finite fields.

N =
∑
i

ciai , (ci mod p1, ci mod p2, . . .)
CRT−−→ ci .

Improvement path: Can we analytically intersect ideals in controlled way?
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Regular Sequences

Ideal intersection is combinatoric when using a regular sequence:

{q1, . . . , qn} where qi+1 is non-zero divisor mod {q1, . . . , qi}, i ∈ [0, n − 1].

{〈12〉, 〈13〉, 〈14〉} is not a regular sequence because of Schouten.

〈14〉〈23〉 = 〈12〉〈34〉 − 〈13〉〈24〉.

Geometrically, sequential intersections decrease dimension.
E.g. {x(x + y), y − 3} is regular sequence, {x(x + y), y − 3, x + 3} is not:

-4 -2 0 2 4

-4

-2

0

2

4

x (x+ y) 0

-4 -2 0 2 4

-4

-2

0

2

4

x (x + y)⩵ 0

-3 + y⩵ 0

-4 -2 0 2 4

-4

-2

0

2

4

x (x + y)⩵ 0

-3 + y⩵ 0

x⩵ -3
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Improving Basis Construction

Regular sequence {q1, . . . , qn}. Monomial ideals intersect as〈∏
i

qαi
i : ~α ∈ A

〉
∩

〈∏
i

qβii : ~β ∈ B

〉
=

〈
lcm

(∏
i

qαi
i ,
∏
i

qβii

)
: ~α ∈ A, ~β ∈ B

〉
. (*)

E.g., {〈12〉, [12], s123} is regular sequence:

〈〈12〉, s2
123〉 ∩ 〈[12], s123〉 = 〈〈12〉[12], s2

123, 〈12〉s123, [12]s2
123〉.

Strategy:
1 Organize intersection into denominator ideals.⋂

U∈V

I (U)〈κU〉 =
⋂

(a,b)

〈Da,Db〉kab .

2 Apply (*) to subsets of intersectands built from regular sequences.
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Closing Remarks

Summary:

Rational functions in amplitudes have poorly understood structure.

We study them in singular limits to characterize that structure. We
interpret this behavior in terms of ideals from which we build Ansätze.

Looking forward:

Can we get even better at intersecting these ideals?
(Does there exist a “next-to-regular” sequence?)

What is the physical origin of the partial fractions structure?
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Backup
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Lorentz Invariance

Coefficients are Lorentz invariant functions of spinor brackets.

C(λ, λ̃) = C(〈〉, []).

Relevant ring is Lorentz invariant subring of Sn.

Sn = F
[
〈12〉, . . . , 〈(n − 1)n〉, [12], . . . [(n − 1)n]

]
.

Variables are brackets, now have “Schouten identities”.

JΛn =

〈
n∑

j=1

〈ij〉[jk], 〈ij〉〈kl〉 − 〈ik〉〈jl〉 − 〈il〉〈kj〉, 〈〉 ↔ []

〉
.

Physical spinor bracket functions also form a quotient ring.

Rn = Sn/JΛn .
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Bases of Spinor Space and Polynomial Reduction

Numerators are Q−linear combinations of spinor monomials.

mα =
∏
i

vαi
i where ~v = {〈12〉, 〈23〉, . . . [12], [23], . . .}.

Polynomial reduction writes p in terms of generators gi .

p = ∆{g1,...,gk} (p) +
k∑

i=1

cigi .

Polynomial in ideal if and only if Groebner remainder is 0.

∆G(J) (p) = 0 ⇔ p ∈ J.

Monomials irreducible by G(JΛn) form basis. Related [Zhang ’12]

basis = {mα such that ∆G(JΛn )(mα) = mα}.
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How To Perform Numerical Investigations?

Need to find phase-space points (λε, λ̃ε) where Di are small.

Di (λ
ε, λ̃ε) ∼ Dj(λ

ε, λ̃ε) ∼ ε.

Conflict with modern techniques: no small elements in a finite field.

|0|Fp= 0, and a 6= 0 ⇒ |a|Fp= 1.

Approaching with complex numbers would be plagued by instabilities.

Enter the p-adic numbers – a middle ground between finite fields and C.
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Introduction to the p-adic Numbers

The p-adic numbers roughly correspond to Laurent series in p.

x =
∞∑
i=ν

aip
i = aνp

ν + aν+1p
ν+1 + · · · ,

(
ai ∈ [0, p−1],

aν 6= 0.

)
.

The p-adic numbers form a field. x , y ∈ Qp ⇒

x + y ∈ Qp, −x ∈ Qp, x × y ∈ Qp,
1

x
∈ Qp (if x 6= 0).

The p-adic absolute value allows for small numbers (p ∼ ε).

|x |p= p−ν , ⇒ |p|p < |1|p.

Ben Page CERN

Amplitudes, Ansätze and Algebraic Geometry 5/10



Computing with p-adic Numbers

For computing purposes∗ we truncate to finite order.

x = pν(x)
(

x̃︸︷︷︸
mantissa

+O(pk)
)
.

∗Try [https://github.com/GDeLaurentis/pyadic] to investigate yourselves.

Truncation reduces to finite field case for ν = 0, k = 1.

Arithmetic (+− /∗) is essentially performed modulo pk , e.g.

x × y = pν(x)+ν(y)

(
x̃ ỹ +O(pk)

)
.

Mantissa inverse computed with extended euclidean algorithm.
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P-adic (Integer) Points Near an Irreducible Variety

Want to find (λ(ε), λ̃(ε)) “close” to U = V (〈q1, . . . , qm〉Rn):

qi

(
λ(ε), λ̃(ε)

)
= pci +O(pk),

n∑
i=1

λ
(ε)
iα λ̃

(ε)
iα̇ = 0 +O(pk).

First, find finite field x ∈ U by intersecting with random plane.

y - y0

V

Arbitrarily extend Fp point (λ, λ̃) to k digits. Trivially near U.

To satisfy momentum conservation, perturb by (pδ, pδ̃).

(λ(ε), λ̃(ε)) = (λ+ pδ, λ̃+ pδ̃).
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Polynomials that Vanish on a Variety

Polynomials that vanish on all points of U form an ideal

I (U) =
{
q ∈ Sn where q(x) = 0 for all x ∈ U

}
.

Consider if Ni vanishes to order kU on U,

Ni (x
(ε)) = O(εkU ), where |x − x (ε)| ≤ ε and x ∈ U.

It turns out that Ni still belongs to an ideal!

Zariski-Nagata Theorem

Polynomials vanishing to O(kU) on U belong to I (U)〈kU〉 – the kUth
“symbolic power” of I (U).

Computed from primary decomposition of ideal power I (U)kU .
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Examples of Symbolic Powers

A function vanishing to fourth order at a point on the circle:

〈x − 1〉〈4〉F[x ,y ]/〈x2+y2−1〉 ∼ .

Often the symbolic power coincides with standard power, e.g.

〈〈12〉, [12]〉〈2〉R5
= 〈〈12〉, [12]〉2R5

= 〈〈12〉2, 〈12〉[12], [12]2〉R5 .

Symbolic/standard power may not coincide. E.g. in F[x , y , z ]

〈xy , xz , yz〉〈2〉 = 〈x2y2, x2z2, y2z2, xyz〉 6= 〈xy , xz , yz〉2
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The p-adic Logarithm

Over the p − adic numbers, one can define converging power series.

The power series for a logarithm converges for |x |p< 1.

logp(1 + x) =
∞∑
k=1

(−1)k+1xk

k

To map to radius of convergence, use Fermat’s little theorem.

wp−1 = 1 mod p ⇒ |wp−1 − 1|p< 1

Logarithm relations then p-adically analytically continue logp.

logp(w) =
1

p − 1
log(wp−1)
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