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Outlook

Theorem (Brown–D.–Fresán–Tapušković)
The space of Laurent expansions of Feynman integrals in dimensional
regularization is closed under the action of the motivic Galois group /
closed under the motivic coaction.

▶ “Cosmic Galois theory” (Cartier).

▶ Conjectured and checked by Abreu–Britto–Duhr–Gardi–Matthew.

▶ A byproduct of the motivic coaction is the symbol for hyperlogarithms.

▶ Is an application of a general theorem for algebraic Mellin transforms.

▶ Main tool: a new view on twisted cohomology.
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Algebraic Mellin transforms

(Not in this talk) The classical Mellin transform (Mellin, 1897)

φ : (0,∞) → C ⇝ (Mφ)(s) =
∫ ∞

0
xsφ(x)dxx ·

Algebraic Mellin transforms (Aomoto, 1974)

I(s) =
∫
σ

f sω.

▶ X an (affine, smooth) algebraic variety over a field k ⊂ C.
▶ f : X→ Gm an invertible function on X.
▶ ω an algebraic differential form on X, σ a topological cycle on X.

More generally, for f = (f1, . . . , fN) : X→ GN
m, consider multivariate versions:

I(s1, . . . , sN) =
∫
σ

f s11 · · · f sNN ω.
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Examples of algebraic Mellin transforms

▶ Any function z s × (period).

▶ The beta function

B(s, t) = Γ(s)Γ(t)
Γ(s+ t) =

∫ 1

0
x s(1− x)t dx

x(1− x) ·

▶ String theory amplitudes in genus zero∫
0=t0<t1<···<tn<tn+1=1

∏
i<j

(tj − ti)si,j ω .

▶ The classical hypergeometric function

2F1(a,b, c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn
n! where (t)n = t(t+ 1) · · · (t+ n− 1).

B(b, c− b) 2F1(a,b; c; z) =
∫ 1

0
xb(1− x)c−b(1− zx)−a dx

x(1− x) ·
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Feynman integrals in dimensional regularization

▶ Dimensional regularization: work in space-time dimension D = D0 − 2ε.

IΓ(ε) =
∫
Pn−1(R+)

Ψ
n−(h+1)D/2
Γ

Ξ
n−hD/2
Γ

Ω =

∫
Pn−1(R+)

(
Ψh+1

Γ

Ξh
Γ

)ε
ω.

▶ It is an algebraic Mellin transform for

X = Pn−1 \ {ΨΓΞΓ = 0} and f = Ψh+1
Γ

Ξh
Γ

: X −→ Gm.

Example: the massless triangle graph (D0 = 4)
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1

2

q1

q2 q3

IΓ(ε) =
∫∫

(0,∞)2

(
(x+ y+ 1)2

q21x+ q22y+ q23xy

)ε dxdy
(x+ y+ 1)(q21x+ q22y+ q23xy)
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Structure of algebraic Mellin transforms

(Not in this talk) Systems of finite difference equations

Ii(s+ 1) =
N∑
j=1

fi,j(s) Ij(s) with fi,j(s) ∈ k(s).

▶ Example: B(s+ 1, t) = s
s+t B(s, t) , B(s, t+ 1) = t

s+t B(s, t).

(Not in this talk) Systems of differential equations

d

dz Ii(s; z) =
N∑
j=1

gi,j(s; z) Ij(s; z) with gi,j(s; z) ∈ k(s, z).

▶ Example: differential equation for F(z) = 2F1(a,b, c; z)

z(1− z) F′′(z) + (c− (a+ b+ 1)z) F′(z)− ab F(z) = 0.

Algebraic structure
They are both controlled by twisted cohomology groups.
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Periods from algebraic Mellin transforms

(Not in this talk) Values at s ∈ Q
For s ∈ Q, I(s) is a period of a cyclic cover of X.

▶ Example: B( kn ,
l
n ) is a period of an open Fermat curve {xn + yn = 1}.

(In this talk) Laurent expansion at s = 0

I(s) =
∑

n≫−∞

αnsn where the αn are periods.

▶ Example: B(s, t) = s+ t
st

(
1−

∑
m,n⩾1

(−s)m(−t)nζ(1, . . . , 1︸ ︷︷ ︸
n−1

,m+ 1)
)
.

What this talk is about...

▶ We are interested in the motivic Galois theory / coaction of the αn.
▶ It is also controlled by a twisted cohomology group!
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Galois theory for periods (André)

Slogan
Galois theory of algebraic numbers should extend to a Galois theory for
periods, where the Galois groups are algebraic groups over Q.

▶ Periods arise as coefficients of the perfect pairing∫
: HB

n (X)× Hn
dR(X) −→ C , (σ, ω) 7→

∫
σ

ω

for algebraic varieties X, or pairs (X, Y), defined over Q.
▶ Assuming Grothendieck’s period conjecture, the motivic Galois group G
acts on the algebra of periods:

for g ∈ G, g .
∫
σ

ω :=

∫
σ

g.ω

▶ Unconditional: Galois theory for motivic periods.
▶ Computable: (motivic) coaction

ρ (period) =
∑

(period)⊗ (function on G).

▶ The “symbol” of a hyperlogarithm is a byproduct of the coaction.
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The key example: the beta function

B(s, t) = s+ t
st exp

(
∞∑
n=2

(−1)n
n ζ(n) (sn + tn − (s+ t)n)

)
.

▶ Galois theory for zeta values: for g ∈ G,

g . ζ(n) = ζ(n) + a(n)g with a(n)g ∈ Q.

Or equivalently, for the motivic coaction:

ρ(ζ(n)) = ζ(n)⊗ 1+ 1⊗ a(n).

▶ Gives rise to a Galois theory for the beta function:

g .B(s, t) = Ag(s, t) B(s, t) with Ag(s, t) ∈ Q((s, t))×.

Or equivalently, for the motivic coaction:

ρ(B(s, t)) = B(s, t)⊗ A(s, t).
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The main theorem

Theorem (Brown–D.–Fresán–Tapušković)
The motivic Galois group acts on Taylor expansions of algebraic Mellin
transforms via power series, i.e., for g in the motivic Galois group G:

g.
∫
σ

f sω =
N∑
i=1

A(i)g (s)
∫
σ

f sωi

where the A(i)g (s) are in k((s)). Equivalently, for the motivic coaction:

ρ

(∫
σ

f sω
)

=
N∑
i=1

(∫
σ

f sωi
)
⊗ A(i)(s).

▶ This is a finite formula which computes the Galois theory of infinitely
many periods.
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Proof of concept

▶ A two-term example:

L(s; z) = 1
s (2F1(s, 1, s+ 1; z)− 1) =

∫ 1

0
xs z dx
1− zx =

∞∑
n=0

(−s)n Lin+1(z).

Motivic coaction for classical polylogarithms:

ρ(Lin+1(z)) =
n∑

k=0

Lin+1−k(z)⊗
λ(z)k
k! + 1⊗ bn(z)

Gives rise to a two-term formula (already noticed by Goncharov):

ρ(L(s; z)) = L(s; z)⊗ A(s; z) + 1⊗ B(s; z).

▶ A family of examples (Brown–D. ’23): Lauricella hypergeometric
functions ∫ σi

0
xs0(1− xσ−1

1 )s1 · · · (1− xσ−1
n )sn

dx
x− σj

·
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Twisted cohomology, traditional version

On this slide, s is a fixed complex number.

Twisted (de Rham) cohomology, traditional version

Hi
dR(X, f) := Hi(Ω•(X),∇s) =

ker(∇s : Ω
i(X) → Ωi+1(X))

Im(∇s : Ωi−1(X) → Ωi(X))

where ∇s : ω 7→ dω + sdff ∧ ω (so that d(f sω) = f s∇s(ω)).

▶ This is where the integrands of algebraic Mellin transforms live.
▶ The relations ∇s(ω) = 0 are the “IBP relations”.
▶ Hi

dR(X, f) is a finite dimensional k-vector space, whose dimension
depends on s.

▶ The case when s is generic is easier: generic vanishing, intersection
pairing.

▶ Basis for s generic : “master integrands”.
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Twisted cohomology, local version

How motivic is twisted cohomology?

▶ H•(X, f) is not motivic (does not come from geometry) if s /∈ Q.
▶ A formal generic version of H•(X, f) is motivic (comes from geometry).

Twisted (de Rham) cohomology, local version

Mi
dR(X, f) := Hi(Ω•(X)((s)),∇)

where ∇ : ω 7→ dω + sdff ∧ ω .

▶ It is a finite dimensional k((s))-vector space, whose dimension is the
generic dimension of “traditional” twisted cohomology.

▶ Key remark: Hi(Ω•(X)[s]/(sn+1),∇) can be interpreted in terms of the
motivic fundamental group of Gm.
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Back to Feynman integrals

Theorem (Brown–D.–Fresán–Tapušković)
The space of Laurent expansions of Feynman integrals in dimensional
regularization is closed under the action of the motivic Galois group:

g.IΓ(ε) =
N∑
i=1

A(i)g (ε) IΓi(ε).

Or equivalently, for the motivic coaction:

ρ (IΓ(ε)) =
N∑
i=1

IΓi(ε)⊗ A(i)(ε).

▶ Still difficult to make explicit. Problem: how to make sense of the
functions A(i)(ε)?

▶ No “diagrammatic coaction” yet (Abreu–Britto–Duhr–Gardi–Matthew).
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