Faster IBP solving via RATRACER and tricks

Vitaly Magerya

Institute for Theoretical Physics (ITP), Karlsruhe Institute of Technology (KIT)

Siegen, February 14, 2023

IBP relations

An IBP integral family with L loop momenta l_i , and E external momenta p_i , is the set of Feynman integrals

$$I_{\nu_1,\nu_2,\dots,\nu_N} \equiv \int \frac{\mathrm{d}^d \, l_1 \cdots \mathrm{d}^d \, l_L}{D_1^{\nu_1} \cdots D_N^{\nu_N}}, \qquad D_i \equiv \left(l_j \pm p_k \pm \dots\right)^2 - m_i^2 + i0,$$

where ν_i are the "indices", the D_i are the "denominators".

The idea: shifting l_k by any vector v should not change I:

$$\lim_{\alpha \to 0} \frac{\partial}{\partial \alpha} I(l_k \to l_k + \alpha v) = \int \mathrm{d}^d \, l_1 \cdots \mathrm{d}^d \, l_L \frac{\partial}{\partial l_k^{\mu}} \frac{v^{\mu}}{D_1^{\nu_1} \dots D_N^{\nu_N}} = 0.$$

* * *

These are the *IBP relations*, valid for all k and all v, L(L + E) in total.

Example. For $I_{a,b,c} \equiv -\underbrace{\stackrel{b}{\underset{c}{\leftarrow}}}_{c} \stackrel{a}{\underset{a}{}}$, if we choose k = 1 and $v = l_1$, we will get

$$(d - 2a - b - c)I_{a,b,c} - c I_{a-1,b,c+1} - b I_{a-1,b+1,c} = 0.$$

To solve IBP relations in practice use the Laporta algorithm: [Laporta '00]

- 1. Substitute integer values for the indices v_i into the IBP relations, obtaining a large linear system with many different $I_{v_1...v_N}$.
- 2. Define an ordering on $I_{\nu_1 \ldots \nu_N}$ from "simple" to "complex" integrals.
- 3. Perform Gaussian elimination on the linear system, eliminating the most "complex" integrals first.
- 4. A small number of "simple" integrals will remain uneliminated.
 - ⇒ These are the *master integrals*. The rest will be expressed as their linear combinations.

Available software

IBP solvers not using modular arithmetic:

- * LITERED (useful Mathematica functions, required by FIRE). [Lee '13]
- * FORCER (for massless 2-point functions). [Ruijl, Ueda, Vermaseren '17]

IBP solvers that use modular arithmetic:

- * FINRED (a private implementation).
- * FIRE6.
 - * Does not provide multivariate reconstruction.
- * KIRA when used with FIREFLY.

[Klappert, Lange, Maierhöfer, Usovitsch '20; Klappert, Klein, Lange '20]

- * FINITEFLOW (a library for arbitrary computations). [Peraro '19]
- * CARAVEL (a library for amplitude computations). [Cordero, Sotnikov et al '20]
- ... and multiple others.

Now also introducing: RATRACER (with KIRA and FIREFLY). [V.M. '22]

[von Manteuffel et al]

[Smirnov, Chuharev '19]

Modular arithmetic methods

To find a symbolic form of a rational function $f(x_1, ..., x_N)$:

- * Evaluate f modulo a prime number many times, with x_i set to integers.
- * **Reconstruct** the exact symbolic form of f from the obtained values.

Example: if we have an unknown f(x), and we have evaluated

$$\begin{array}{ll} f(11) = 139 \; (\bmod \; 997) \,, & f(65) = 479 \; (\bmod \; 997) \,, \\ f(38) = 350 \; (\bmod \; 997) \,, & f(92) = 115 \; (\bmod \; 997) \,, \end{array}$$

then we can use *polynomial interpolation* to find a polynomial form of f:

$$f(x) = 618 + 979 x + 486 x^2 + 41 x^3 \pmod{997},$$

and then rational function reconstruction to find an equivalent rational form:

$$f(x) = \frac{996 + 333x}{1 + x} \pmod{997},$$

and finally rational number reconstruction to find the rational coefficients:

$$f(x) = \frac{-1 + \frac{2}{3}x}{1 + x} \pmod{997}.$$

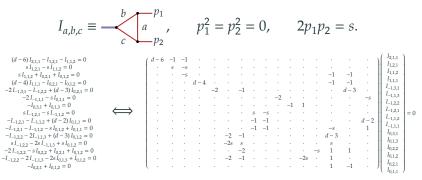
Guess that this is the true form of f(x); evaluate more times to verify.

Layman's IBP performance checklist

To improve IBP performance:

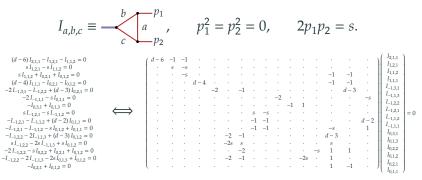
- 1. Use modular arithmetic methods.
- 2. Make the result smaller:
 - 2.1 Reduce whole amplitudes (not individual integrals).
 - 2.2 Choose master integrals that minimize the result size.
 - * Use *d-factorizing bases* that ensure the factorization of *d* in the denominators of IBP coefficients. [Usovitsch '20; Smirnov, Smirnov '20]
 - * Consider quasi-finite bases. [von Manteuffel, Panzer, Schabinger '14]
 - * Consider uniform transcendentality bases, if possible. [Bendle et al '19]
 - 2.3 Construct a smaller ansatz for the result. [Abreu et al '19; De Laurentis, Page '22]
 - 2.4 Set some of the variables to fixed numbers.
 - * E.g. reduce with m_H^2/m_t^2 set to 12/23.
 - * Or perform IBP reduction separately for each phase-space point, and interpolate in between. [Jones, Kerner et al '18; Chen, Heinrich et al '19, '20]
- 3. Improve the *evaluation performance*:
 - 3.1 Combine IBP relations (using syzygies) to eliminate integrals with raised (or lowered) indices. [Gluza, Kajda, Kosower '10; Scahbinger '11]
 - 3.2 Just solve the equations faster?

[von Manteuffel, Schabinger '14; Peraro '16]



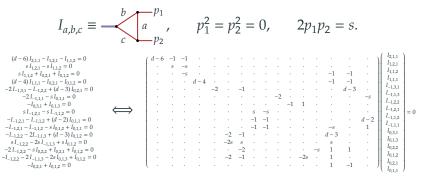
After Gaussian elimination (2 operations):

																(I2,1,1)	\ \
(1	-1/(d-6) -	-1/(d - 6)					•	•							·)		
	s	-s														I _{1,2,1}	
.		-s											-1	-1	.	I _{1,1,2}	
			d-4										-1	-1		I _{1,1,1}	
				-2		$^{-1}$								d – 3		I_1,3,1	
									-2						-s	I_1,1,3	
I .										-1	1					I_1,2,2	
							s	-s								I_1,2,1	= 0
							-1	-1							d – 2	I_1,1,2	
							-1	-1					-s		1	I_1,1,1	
					-2	-1							d - 3			I _{0,3,1}	
					-2s	s							s		.	I _{0,1,3}	
						-2						-s	1	1		I _{0,2,2}	
					-2	-1					-25		1			I _{0,1,2}	
ι.													1	-1	.]	I _{0,2,1}	
·													-	-		(I _{0,1,1})	,



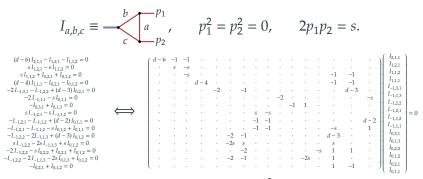
After Gaussian elimination (5 operations):

																	(I _{2,1,1})	
(1	0	-2/(d-6)		-			•			-					•)		
		1	-1														I _{1,2,1}	
			-s											-1	-1		I _{1,1,2}	
				d - 4										-1	-1		I _{1,1,1}	
					-2		$^{-1}$								d – 3		I_1,3,1	
										-2						-s	I_1,1,3	
											$^{-1}$	1					I_1,2,2	
			-					S	-s							· ·	I_1,2,1	= 0
			-					$^{-1}$	$^{-1}$							d – 2	I_1,1,2	
								$^{-1}$	$^{-1}$					-s		1	I_1,1,1	
			-			-2	$^{-1}$							d – 3			I _{0,3,1}	
						-2s	S							S			I _{0,1,3}	
							-2						-s	1	1		1 _{0,2,2}	
						-2	$^{-1}$					-2s		1			I _{0,1,2}	
U														1	-1	•)	I _{0,2,1}	
																	< 40,1,1 /	



After Gaussian elimination (11 operations):

7



After Gaussian elimination (108 operations, $\sim N_{integrals}^2$):

:	-	•	1		1				· · · · · · · · · · · · · · · · · · ·			1	· · · · · ·	1	• • • • • •	$\begin{array}{c} -4(d-3)/((d-6)s^2) \\ -2(d-3)/s^2 \\ -2(d-3)/s^2 \\ 2(d-3)/s^2 \\ 2(d-3)/(d-4)s) \\ (d-3)(d-2)/(4s) \\ (d-3)(d-2)/(4s) \\ (d-4)(d-3)/(2s) \\ (2-d)/2 \\ (2-d)/2 \\ -(d-4)(d-3)/(2s^2) \\ -(d-6)(d-3)/s^2 \\ (d-3)/s \end{array}$	$ \begin{bmatrix} I_{2,1,1} \\ I_{1,2,1} \\ I_{1,2,1} \\ I_{1,1,2} \\ I_{1,1,1} \\ I_{-1,3,1} \\ I_{-1,2,2} \\ I_{-1,2,1} \\ I_{-1,2,2} \\ I_{-1,2,1} \\ I_{-1,1,2} \\ I_{-1,1,2} \\ I_{-1,1,1} \\ I_{0,3,1} \\ I_{0,2,2} \\ I_{0,1,2} \\ I_{0,2,1} \\ I_{0,1,1} \end{bmatrix} $	= 0	\Leftrightarrow		$ \left(\begin{array}{c} I_{2,1,1} \\ I_{1,2,1} \\ I_{1,1,2} \\ I_{1,1,1} \\ I_{-1,1,3,1} \\ I_{-1,1,3} \\ I_{-1,2,2} \\ I_{-1,2,1} \\ I_{-1,1,2} \\ I_{-1,1,1} \\ I_{0,3,1} \\ I_{0,1,3} \\ I_{0,2,2} \\ I_{0,1,2} \\ I_{0,2,1} \\ I_{0,2,1} \end{array} \right) $		$\begin{array}{c} 4(d-3)/((d-6)s^2)\\ 2(d-3)/s^2\\ 2(d-3)/s^2\\ -2(d-3)/(d-2)/(4s)\\ -(d-3)(d-2)/(4s)\\ -(d-3)(d-2)/(4s)\\ -(d-4)(d-2)/(4s)\\ -(d-4)(d-3)/(2s)\\ -(2-d)/2\\ -(2-d)/2\\ -(d-4)(d-3)/(2s^2)\\ (d-4)(d-3)/(2s^2)\\ (d-6)(d-3)/s\\ -(d-3)/s \\ -(d-3)/s \end{array}$	I _{0,1,1}
---	---	---	---	--	---	--	--	--	---------------------------------------	--	--	---	----------------------------	---	-------------	--	--	-----	-------------------	--	--	--	--	--------------------

7

Optimizing the modular Gaussian elimination

When performing Gaussian elimination one needs to:

- * Represent the equation set as a sparse matrix data structure.
 - * Keep the equations sorted.
 - * Keep terms in each equation sorted.
 - * Adjust the layout (and maybe reallocate memory) after each operation.
 - * This is not much work, but so is modular arithmetic!

IBP solvers using modular arithmetics will:

- * Recreate the same data structures, same memory allocations, in the same order during each evaluation, many times.
 - * Only the modular values change between evaluations.
- * Spend relatively little time on actual modular arithmetic.
 - * Because it is so fast!

How to speed this up? Eliminate the data structure overhead:

- * *Record the list of arithmetic operations* performed during the first evaluation (*"a trace"*).
- * Simply *replay this list* for subsequent evaluations.

Rational traces

For $I_{a,b,c}(s,d) \equiv -$

the trace of the IBP solution might look like:

t0 = var 'd't1 = int 4t2 = sub t0 t1t3 = int 1t4 = var 's't5 = neg t4t6 = int 6t7 = sub t0 t6t8 = int -1t9 = int 2t10 = int -2t11 = sub t0 t9t12 = int 3t13 = sub t0 t12t14 = mul t4 t10t15 = neginv t5t16 = mul t4 t15t17 = sub t8 t16t18 = mul t5 t16t19 = neginv t17t20 = mul t7 t19[...]

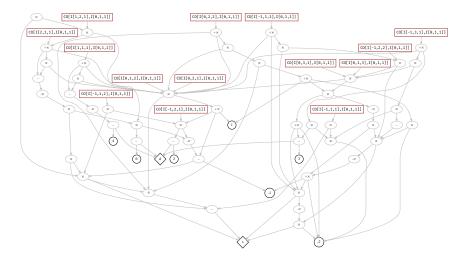
 $b - p_1$

 $-p_2$

t54 = addmul t53 t27 t44t55 = mul t25 t44t56 = addmul t55 t25 t44 t57 = mul t23 t44 t58 = addmul t57 t23 t44 t59 = mul t20 t58t60 = mul t16 t59save t60 as CO[I[1,1,2],I[0,1,1]] save t59 as CO[I[1,2,1],I[0,1,1]] save t58 as CO[I[2,1,1],I[0,1,1]] save t56 as CO[I[1,1,1],I[0,1,1]] save t54 as CO[I[-1,1,3],I[0,1,1] save t52 as CO[I[-1,2,2],I[0,1,1] save t51 as CO[I[-1,3,1],I[0,1,1] save t46 as CO[I[0,1,3],I[0,1,1]] save t49 as CO[I[0,2,2],I[0,1,1]] save t47 as CO[I[-1,1,2],I[0,1,1] save t46 as CO[I[0,3,1],I[0,1,1]] save t42 as CO[I[-1,2,1],I[0,1,1] save t44 as CO[I[0,1,2],I[0,1,1]] save t44 as CO[I[0.2.1].I[0.1.1]] save t45 as CO[I[-1,1,1],I[0,1,1]

Rational traces

For $I_{a,b,c}(s,d) \equiv -\frac{b}{c} \int_{a}^{a} p_1$ the *trace* of the IBP solution might look like:



RATRACER ("Rational Tracer"): a program for *solving systems of linear equations* using modular arithmetic based on rational traces. [V.M. '22]

- * Can trace the solution of arbitrary systems of linear equations: IBP relations, dimensional recurrence relations, amplitude definitions, etc.
- * Can optimize and transform traces.
- * Uses FIREFLY for reconstruction. [Klappert, Klein, Lange '20, '19]
- * Initially created for solving IBPs for massive 5-point 2-loop diagrams.
- * Available at github.com/magv/ratracer.

Intended usage:

- 1. Use KIRA (or LITERED, or custom code) to export IBP relations.
- 2. Use RATRACER to load them and solve them.

Trace optimizations

Given a trace, RATRACER can optimize it using:

* Constant propagation:

	(t11						(t11	=	int	2
ł	t12	=	int	3		\Rightarrow	{t12	=	int	3
	(t13	=	mul	t11	t12		(t13	=	int	6

* Trivial operation simplification:

∫t11	=	int	-1			(t11			
(t12	=	mul	t11	t7	\rightarrow	(t12	=	neg	t7

* Common subexpression elimination:

(t11	=	add	t5	t7	\rightarrow	∫t11	=	add	t5	t7
lt12	=	add	t5	t7	\rightarrow	lt12	=	t11		

* Dead code elimination:

 $\begin{cases} \texttt{t11 = add t5 t7} \\ \texttt{[..., t11 is unused]} \end{cases} \Rightarrow \begin{cases} \texttt{nop} \\ \texttt{[...]} \end{cases} \\ \texttt{* Especially useful if a user wants to select a subset of the outputs.} \end{cases}$

* "Finalization":

 $\begin{cases} t11 = add t5 t6 \\ t12 = add t11 t7 \\ [..., t11 is unused] \end{cases} \implies \begin{cases} t11 = add t5 t6 \\ t11 = add t11 t7 \\ [...] \end{cases}$

* Needed to minimize the temporary memory needed for the evaluation.

RATRACER benchmarks

For IBP reduction of every integral (i.e. not single amplitudes):

	Evaluation speedup vs. KIRA+FIREFLY	$\frac{t_{\rm reconstruction}}{t_{\rm evaluation}}$	Total speedup vs. KIRA+FIREFLY	Total speedup vs. KIRA+FERMAT	Total speedup vs. Fire6
	20	3.3	5.2	1.2	∞?
m2 m1	7.8	1/3.3	6.0	37	∞?
	26	25	1.7	1/3.3	1.8
772	9.6	8.8	5.2	2.6	8.8

Resulting performance:

[github.com/magv/ibp-benchmark]

- * Consistent ~10x speedup in modular evaluation over KIRA+FIREFLY.
- * Up to ~5x speedup in total reduction time over KIRA+FIREFLY for complicated examples, 1x-30x over KIRA+FERMAT, ∞x over FIRE6.

Problem:

- \ast The size of a trace is proportional to the number of operations.
 - $\star~$ I.e. $\sim N_{\rm integrals}^2$ for sparse IBP systems.
 - \Rightarrow Megabytes to gigabytes for problems of interest.
- * Computer memory is expensive and limited.

Solution:

- 1. Always keep the trace on disk, never load it fully into memory.
 - * Compress it on disk for storage (via ZSTD, GZIP, BZIP2, or LZMA).
- 2. During the evaluation read the trace piece by piece.
- 3. During the optimization make sure the algorithms have bounded memory usage.
- \Rightarrow Multi-GB traces are supported easily in RATRACER.

Given a trace, RATRACER can:

- * Set some of the variables to expressions or numbers.
 - * E.g. set mh2 to "12/23*mt2", d to "4-2*eps", or s to "13600".
 - * No need to remake the IBP system just to set a variable to a number.
- * Select any subset of the outputs, and drop operations that don't contribute to them (via dead code elimination).
 - * Can be used to split the trace into parts.
 - * Each part can be reconstructed separately (e.g. on a different machine).
 - * See master-wise and sector-wise reduction in other solvers.
- * Expand the result into a series in any variable.
 - * By evaluating the trace while treating each value as a series, and saving the trace of that evaluation.
 - * Done before the reconstruction, so one less variable to reconstruct in, but potentially more expressions (depending on the truncation order).
 - * In practice only few leading orders in ε are needed, so expand in ε up to e.g. $\mathscr{O}(\varepsilon^0)$, and don't waste time on reconstructing the higher orders.

Truncated series expansion

For
$$I_{a,b,c}(s,d) \equiv - \underbrace{b}_{c} \underbrace{a}_{p_2}^{p_1}$$
 before expansion:

- * Variables to reconstruct in: *s* and *d*.
- * Trace outputs: "CO[I[1,1,1],I[0,1,1]]", etc:

$$I_{1,1,1} = CO[I[1,1,1],I[0,1,1]] I_{0,1,1}.$$

After expansion in ε to $\mathscr{O}(\varepsilon^0)$:

- * Variables to reconstruct in: only s.
- * Trace outputs: "ORDER[CO[I[1,1,1],I[0,1,1],eps^-1]", etc:

$$\begin{split} I_{1,1,1} &= \text{ORDER} \left[\text{CO} \left[\text{I} \left[1, 1, 1 \right], \text{I} \left[0, 1, 1 \right], \text{eps}^{-1} \right] \varepsilon^{-1} I_{0,1,1} \right. \\ &+ \text{ORDER} \left[\text{CO} \left[\text{I} \left[1, 1, 1 \right], \text{I} \left[0, 1, 1 \right], \text{eps}^{-0} \right] \varepsilon^{0} I_{0,1,1}. \end{split}$$

* Might be slower to evaluate, but fewer evaluations are needed. \Rightarrow The more complicated the problem, the higher the speedup.

RATRACER + series expansion benchmarks

			eedup						
	$\mathcal{O}(\varepsilon^0)$	$\mathscr{O}(\varepsilon^1)$	$\mathcal{O}(\varepsilon^2)$	$\mathcal{O}(\varepsilon^0)$	$\mathscr{O}(\varepsilon^1)$	$\mathcal{O}(\varepsilon^2)$			
	1/1.3	1/1.5	1/1.8	3.2	2.4	1.9			
m2 m1	1/2.0	1/2.5	1/3.0	2.7	1.4	1/1.3			
	1/1.4	1/2.4	1/2.9	2.3	1.7	1.4			
222	1/1.0	1/1.6	1/2.1	4.3	2.3	1.6			

[github.com/magv/ibp-benchmark]

Resulting performance:

- * A ~3x speedup with ε expansion up to $\mathscr{O}(\varepsilon^0)$.
- * The higher the expansion, the less the benefit.

Guessing the denominators

The *denominators of IBP coefficients factorize* into few unique factors. If some candidate factors are known, then we can find the powers of those factors in each coefficient: [Abreu et al '18; Heller, von Manteuffel '21]

- 1. Choose a factor to search for, e.g. (d-6).
- 2. Set all variables to random values, e.g. d = 95988281, s = 75579811. $\Rightarrow (d-6) = 95988275 = 5^2 \cdot 103 \cdot 37277$.
- 3. Evaluate the IBP solution using these numbers.

* E.g. CO $[I_{2,1,1}, I_{0,1,1}] = \frac{383953112}{548314574947073136171275} = \frac{2^3 \cdot 1117 \cdot 42967}{5^2 \cdot 103 \cdot 37277 \cdot 75579811^2}$. 4. Find common prime factors, identify their powers.

* CO[$I_{2,1,1}, I_{0,1,1}$] ~ $(d-6)^{-1} s^{-2}$.

Automated implementation: toos/guessfactors from RATRACER. To find the set of possible factors:

- \star Reconstruct a simpler subset of the coefficients. (A few per sector).
- \Rightarrow Easy with RATRACER, just select individual outputs.

Once the factors are found, *speedup the reconstruction* by dividing them out from the expressions.

* I.e. reconstruct CO [$I_{2,1,1}$, $I_{0,1,1}$]/ $(d-6)/s^2$, not just CO [$I_{2,1,1}$, $I_{0,1,1}$].

Usage for IBP reduction

1. Use KIRA to generate the IBP equations.

```
$ cat >config/integralfamilies.yaml <<EOF</pre>
integralfamilies:
                                                               jobs:
  - name: "I"
    loop_momenta: [1]
    top_level_sectors: [b111]
    propagators:
      - ["l-p1", 0]
      - ["1+p2", 0]
$ cat >config/kinematics.yaml <<EOF</pre>
kinematics:
 outgoing_momenta: [p1, p2]
kinematic_invariants: [[s, 2]]
scalarproduct_rules:
 - [[p1,p1], 0]
  - [[p2,p2], 0]
 - [[p1,p2], "s/2"]
# symbol to replace by one; s
FOF
```

```
$ cat >export-equations.yaml <<EOF
jobs:
    reduce_sectors:
    reduce:
        fsectors: [bi11], r: 4, s: 1}
        select_integrals:
        select_mandatory_recursively:
            - {sectors: [bi11], r: 4, s: 1}
        run_symmetries: true
        run_initiate: input
EOF</pre>
```

\$ kira export-equations.yaml

2. Use RATRACER to create a trace with the solution.

```
load-equations input_kira/I/SYSTEM_I_0000000007.kira.gz \
load-equations input_kira/I/SYSTEM_I_000000006.kira.gz \
solve-equations choose-equation-outputs --maxr=4 --maxs=1 \
optimize finalize save-trace I.trace.gz
```

3. Optionally expand the outputs into a series in ε .

```
$ ratracer \
    set d '4-2*eps' load-trace I.trace.gz \
    to-series eps 0 \
    optimize finalize save-trace I.eps0.trace.gz
```

4. Use RATRACER (+FIREFLY) to reconstruct the solution.

```
$ ratracer \
    load-trace I.eps0.trace.gz \
    reconstruct --to=I.solution.txt --threads=8 --inmem
```

Usage as a library

RATRACER is built to support custom user-defined traces. Any rational algorithm can be turned into a trace (via the C++ API).

Usage:

```
#include <ratracer.h>
int main() {
   Tracer tr = tracer init():
   Value x = tr.var(tr.input("x"));
   Value y = tr.var(tr.input("y"));
   Value x sor =
       tr.pow(x, 2);
   Value expr =
        tr.add(x sgr, tr.mulint(v, 3));
   /* expr = x^2 + 3y */
   tr.add_output(expr, "expr");
   tr.save("example.trace.gz");
   return 0:
}
```

API:

```
struct Value { uint64_t id; uint64_t val; };
struct Tracer {
    Value var(size t idx):
    Value of int(int64 t x):
    Value of_fmpz(const fmpz_t x);
    bool is_zero(const Value &a);
    bool is_minus1(const Value &a);
    Value mul(const Value &a, const Value &b);
    Value mulint(const Value &a, int64 t b);
    Value add(const Value &a, const Value &b);
    Value addint(const Value &a, int64_t b);
    Value sub(const Value &a, const Value &b);
    Value addmul(const Value &a.
                  const Value &b1,
                  const Value &b2):
    Value inv(const Value &a):
    Value neginv(const Value &a);
    Value neg(const Value &a):
    Value pow(const Value &base, long exp);
    Value div(const Value &a, const Value &b);
    void assert int(const Value &a, int64 t n);
    void add output(const Value &src, const char *name);
    size_t input(const char *name, size_t len);
    size_t input(const char *name);
    int save(const char *path);
    void clear();
};
```

```
Tracer tracer_init();
```

For very large examples *main memory speed becomes the bottleneck* for the modular evaluation. So:

* Investigate optimizing traces to improve memory access patterns.

For other examples RATRACER speeds up the evaluation enough that the *modular reconstruction in FIREFLY becomes the bottleneck*. So:

- * Reduce the overhead in FIREFLY to speed up simpler examples.
- * Improve paralelizability in FIREFLY to help with complicated examples.
- \Rightarrow Ongoing collaboration with FIREFLY authors.

Beyond guessing the denominators:

* Investigate smaller ansätze for the results (via e.g. partial fractioning).

[Abreu et al '19; De Laurentis, Page '22]

RATRACER:

- * Practical faster modular evaluation of linear system solutions.
- * Trace optimization, transformation, slicing and dicing.
- * Coefficient expansion in ε (and not only).
- * Denominator guessing.
- * Available at github.com/magv/ratracer.
 - * Benchmark code & results at github.com/magv/ibp-benchmark.
- * TODO: faster evaluation, faster reconstruction, more tricks.