Enterprise Data Marketplaces

Establishing Data Marketplaces based on Semantic Technologies

Dr. Christian MaderEnterprise Information Systems Department

WHY DATA MARKETPLACES?

The Value of Data

Uber: the world's largest taxy company owns no vehicles

AirBnB: the world's largest accommodation provider owns no real estate

Alibaba: the most valuable retailer has no inventory

Facebook: the world's most popular media owner creates no content

Logos from the company websites

The Value of Data

Data becomes the **foundation** of enterprise business models

Analyse- und Informationssysteme IAIS

The Problem of Trading Enterprise Data

- Proprietary data exchange policies
 - Must be implemented by each business partner
- Restrictive compliance policies
 - No common set of supported tools
- Lack of data registries with wide industry support
 - Partners must know in advance what data exists and who it provides

The Problem of Trading Enterprise Data (2)

- Security Concerns
 - Ensure trust between parties
- Data Sovereignty
 - Make sure date is used in a specified way

The Vision of a Data Marketplace

- Describe data you have to provide
 - What it is about
 - Define who and how to access it
 - Technical (protocols)
 - Organizational (access and usage control)
 - Economical (legal, pricing)
- 2. Describe data you want to purchase
- Data Market takes care of the rest: connects data providers and customers

The Challenge

Define an Information Model to describe multiple aspects of data market places

- Data offers
 - Topic, usage policies, prices,...
- Data Services and Apps
 - Used algorithms, protocols,...
- Infrastructure
 - Security capabilities, operator,...
- Participants
 - Parties that exchange data, their roles, organization...

The Challenge

The model should be

- Human readable
 - Easy formulation of queries
- Machine-processable
 - Drive search and retrieval use cases
- Technology agnostic
 - No vendor lock-in
- Extendable
 - Support future use cases

MARKETPLACE APPROACHES

Industrial Data Space (IDS)

- BMBF-funded Project(s)
- Association with 80+ Industry Members
- Standardized Architecture
- Certification of Software and Participants
- Offers Software Components
- Implementation of (reference) Use Cases

SDIL Data Catalog

- Provided by Fraunhofer IAIS.EIS
- First Version currently rolled out
- Uses parts of the IDS Information Model to describe datasets
- Compatible with IDS Architecture
- In future act as an IDS Connector

SEMANTIC TECHNOLOGIES

What problems does it solve us?

- Common and standardized description of not only Data and Apps but all aspects of a Data Marketplace
- Allows reuse of existing information models
- Machine readability improves search and enables advanced queries
- Basis for advanced functionality (e.g., security, usage control)

Data Integration with Semantics

- Build a knowledge graph to describe things and their relations
- Triple-based form

All triple elements are URLs

Data Integration with Semantics (2)

- Triple elements can be resolved
- Can and should be reused
- Relations now have a meaning (semantics)
- We gain a common understanding of their meaning and the resources that are described

Dr. Christian wager - Establishing Data Marketplaces based on Semantic Technologies

Data Integration with Semantics (3)

- Shared understanding
 - Meaning of data is clear to humans and machines
- Existing models and knowledge for various domains, e.g.,
 - People and their relations, Organizations
 - Business Processes
 - Policies
- Easy to integrate and combine knowledge graphs
 - Query multiple data sources "at once"

A SEMANTIC INFORMATION MODEL FOR THE IDS

18

IAIS

A Semantic Information Model for Data Marketplaces

A Semantic Information Model for Data Marketplaces – Conceptual Level

Information Model of the Industrial Data Space

A Semantic Information Model for Data Marketplaces – Conceptual Level (2)

Description of a Service that offers data

A Semantic Information Model for Data Marketplaces

A Semantic Information Model for Data Marketplaces – Descriptive Level

- The Organization Ontology (ORG)
 - A core ontology for organizational structures

A Semantic Information Model for Data Marketplaces – Descriptive Level (2)

- Open Digital Rights Language (ODRL)
 - support traditional rights expressions for commercial transaction, open access expressions for publicly distributed content, and privacy expressions for social media
 - https://www.w3.org/ns/odrl/ 2/ODRL21

A Semantic Information Model for Data Marketplaces – Descriptive Level (3)

Classes

```
ids:Connector rdfs:subClassOf
ids:InfrastructureComponent;
    a owl:Class;
    rdfs:label "Connector"@en;
    rdfs:comment "Connector for
hosting data services."@en;

ids:validation [
    owl:onProperty ids:provides;
    valid:relationType
"@OneToMany";
].
```

Properties

```
rdfs:domain ids:Connector;
  rdfs:range ids:DataEndpoint;
  rdfs:label "provides"@en;
  rdfs:comment "The DataEndpoints
provided by a Connector."@en.

ids:securityProfile a
owl:ObjectProperty;
  rdfs:domain ids:Connector;
  rdfs:range ids:SecurityProfile;
  rdfs:label "securityProfile"@en;
  rdfs:comment "The SecurityProfile
supported by the Connector."@en.
```

ids:provides a owl:ObjectProperty;

A Semantic Information Model for Data Marketplaces

A Semantic Information Model for Data Marketplaces – Programmatic Level

- Participants should describe their assets as Linked Data using the IDS Information Model, e.g.,
 - Connectors
 - Usage Policies
 - Services
 - Data Assets
 - Apps
 - ...

A Semantic Information Model for Data Marketplaces – Programmatic Level (2)

- Different ways of creating these descriptions:
 - Directly: using plain-text (editor, RDF syntax checker)
 - Tool-supported: e.g., Protege, TopBraid, VoCol
 - Programmatically: using RDF libraries (e.g., Jena, RDF4J)
- Valid solutions, but
 - require knowledge of RDF of any IDS participant
 - teaching RDF does not scale for a high number of participants

A Semantic Information Model for Data Marketplaces – Programmatic Level (3)

A Semantic Information Model for Data Marketplaces – Programmatic Level (4)

- Automatic generation from the descriptive model:
 - Java Libraries
 - Artifacts: sources (RDF + Java classes), binaries, documentation (javadoc, class diagram) and tests (+source for additional documentation of usage)
 - Class diagram of the model (previous slide)
 - Other Documentation

A Semantic Information Model for Data Marketplaces – Programmatic Level (5)

```
Connector connector = new ConnectorBuilder (new
    URL("http://example.org/companyA/connector"))
    .operator(participant.getId())
    .maintainer(participant.getId())
    .owner(participant.getId())
    .generationActivity(creationActivity)
    .lifecycleActivities (Arrays.asList (creationActivity))
    .entityNames (Arrays.asList (new
PlainLiteral("Connector")))
    .entityDescriptions (Arrays.asList ((new
PlainLiteral (,,IDS Connector for classified business
data.", "en"))))
    .build();
```

Fraunhofer

connector.toRdf()

A Semantic Information Model for Data Marketplaces – Programmatic Level (6)

```
http://companyA.com/IDS/connector1 a ids:Connector;
  ids:entityName
    a skos:Collection ;
    skos:member "Official IDS Connector of companyA"@en];
  ids:operator
<http://industrialdataspace.org/participants/companyA> ;
  ids:owner
<http://industrialdataspace.org/participants/companyA> ;
  ids:provides [ a
    skos:Collection;
    skos:member
<a href="http://industrialdataspace.org/connector1/endpoint1">http://industrialdataspace.org/connector1/endpoint1</a>
  ];
```

Fraunhofer

MODEL APPLICATIONS

Industrial Data Space (IDS)

- Installable components available for association members
 - Connector, Broker, App Store
- Central element: IDS Information Model
 - Reference Architecture Document
 - Under Apache 2.0 license
 - Developed on GitHub
 - https://github.com/IndustrialDataSpace

Conclusions

- Benefits of a Semantic Data Model
 - Builds a common human-readable and machine-processable understanding of a Data Marketplace
 - Data and Apps
 - Infrastructure and Participants
 - Easy adoption of existing models
 - Extensible for future requirements
 - Usable also by non-RDF experts

Thank You!

- Dr. Christian Mader
 - christian.mader@iais.fraunhofer.de
- Fraunhofer IAIS.EIS
 - https://www.iais.fraunhofer.de/de/institut/abteilungen/enterpriseinformation-systems.html
- Industrial Data Space
 - http://www.industrialdataspace.org/