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The Growth of the Internet of Things 

Gartner says 6.4 billion connected 

"Things" will be in use in 2016 and 

more than 20 billion in 2020. 

Year 

# Devices (in billions) 
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Goal 

Provide real-time insights based on IoT data. 
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Problem 

• Billions of devices provide real-time data 

• Result: Vast amount of data streams 

Heavy Network Utilization  Scalability Challenges  Increasing Latencies 

Financial Costs  
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Solution 

Produce and process data streams 

based on the data demand of applications. 
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State of the Art Approach 

Data Stream Production with Periodic Sampling 

Major Challenges: 
• Oversampling 
• Missing Adaptivity 
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Solution 

On-Demand Data Streaming from Sensor Nodes 

Optimized On-Demand Data 
Streaming from Sensor Nodes 
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State of the Art Approach 

Provide all Data to Front-End Applications 

Optimized On-Demand Data 
Streaming from Sensor Nodes 

Major Challenge: 
• Front End Overload 
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Solution 

Adaptive Data Reduction with Streaming Engines 

Optimized On-Demand Data 
Streaming from Sensor Nodes 

I²: Interactive Real-Time Visualization 
for Streaming Data 
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Solution 

Adaptive Data Reduction with Streaming 
Engines 

 

Optimized On-Demand Data 
Streaming from Sensor Nodes 

I²: Interactive Real-Time Visualization 
for Streaming Data 
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Solution 

Efficient Processing of user-defined Windows 

Optimized On-Demand Data 
Streaming from Sensor Nodes 

I²: Interactive Real-Time Visualization 
for Streaming Data 

Cutty: Aggregate Sharing for 
User-Defined Windows 
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Publications 
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Optimized On-Demand Data Streaming 
from Sensor Nodes 

Jonas Traub, Sebastian Breß, Asterios Katsifodimos, Tilmann Rabl, Volker Markl 

Santa Clara, California, 
September 25-27, 2017 
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Architecture Overview  
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Architecture Overview  
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User-Defined Sampling Functions 

19 

• Provide an abstraction to define the data demand of applications. 
 

• Upon a sensor read, request the next sensor read. 
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User-Defined Sampling Functions 

20 

• Provide an abstraction to define the data demand of applications. 
 

• Upon a sensor read, request the next sensor read. 
 
• Make read time tolerances explicit. 
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User-Defined Sampling Functions 
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Enable adaptive sampling techniques to reduce data transmission 
 

e.g., Adam [Trihinas ‘15], FAST [Fan ‘14], L-SIP [Gaura ’13] 
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Sensor Read Fusion 
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Sensor Read Fusion 
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1) Minimize Sensor Reads and Data Transfer: 
 

Latest possible read time 

2) Optimize Sensor Read Times: 
 

● Check the paper for all details on the read time optimizer! 
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Local Filtering 
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Optimized On-Demand Data Streaming 
from Sensor Nodes 

Wrap-Up: 
 

Tailor Data Streams to the Demand of Applications 
  

• Define data demand: User-Defined Sampling Functions 
• Schedule sensor reads and data transfer on-demand 
• Optimize read times globally - for all users and queries 
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Cutty: Aggregate Sharing 
for User-Defined Windows 

Paris Cabone, Jonas Traub, Asterios Katsifodimos, Seif Haridi, Volker Markl 
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Streaming Window Aggragation 
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Stream Slicing 
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Applicability of Stream Slicing 
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Yes, we can do better! 
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Cutty Overview 
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Cutty: Aggregate Sharing 
for User-Defined Windows 

Wrap-Up: 
 

Enable Stream Slicing beyond Simple Tumbling and Sliding Windows 
  

• Cutty enables Stream Slicing for a broad class of windows 
• Cutty combines Stream Slicing, On-the-fly Aggregation, 

Aggregate Sharing, and Aggregate Trees 

Paris Cabone, Jonas Traub, Asterios Katsifodimos, Seif Haridi, Volker Markl 
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I²: Interactive Real-Time Visualization 
for Streaming Data 

Jonas Traub, Nikolaas Steenbergen, Philipp Grulich, Tilmann Rabl, Volker Markl 
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Architecture Overview 
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Check out our Flink Forward Talk 

youtube.com/watch?v=JNbq239JkK4  
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The Big Picture 

Optimized On-Demand Data 
Streaming from Sensor Nodes 

Traub et al.; ACM SoCC’17 

I²: Interactive Real-Time Visualization 
for Streaming Data 

Traub et al.; EDBT’17 

Cutty: Aggregate Sharing for 
User-Defined Windows 
Carbone et al.; CIKM’16 
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