

ARCHITECTURAL DESIGNS AND SERVICES FOR BIG DATA

ScaDS – Competence Center for Scalable Data Services and Solutions Dresden/Leipzig

> Dr. René Jäkel ZIH, Technische Universität Dresden

Increasing Data Sizes

Brontobyte **10**²⁷ Sensor Data from IOT **10**²¹ 1024 Zettabyte Yottabyte Network Traffic 2016 250 trillion DVDs **10**¹⁸ **10**¹⁵ Petabyte Exabyte CERN - 1PB/Second Gigabyte Terabyte Facebook - 500 TB per Day Megabyte

+Veracity, Velocity, Variety

+Technology proliferation

Source: http://api.ning.com

Increasing Data Sizes

Long tail of "Science"

https://www.semrush.com/blog/community-manager-a-jack-of-all-trades/

https://www.semrush.com/blog/community-manager-a-jack-of-all-trades/

ScaDS AND ASSOCIATED PARTNERS

Specialists from computer & domain sciences

DRESDEN LEIPZIG

Focal point for new research activities

Life Sciences

Material and Engineering Sciences

Environmental and Traffic Sciences

Digital Humanities

Business Data

Big Data Life Cycle Management und Workflows

Data Quality/ Data Integration

Knowledge Extraction

Visual Analysis

Service

Center

Efficient Big Data Architecture

- Efficient Big Data Infrastructure
 - Hardening computation infrastructure (Security)
 - Flexible cluster management
 - Big Data Framework Execution & Monitoring on HPC
 - Geo-temporal data storage
 - Cloud-based service support for analysis of travel data
- Big Data Lifecycle and Workflows
 - Execution of large data-driven workflows (KNIME-workflow integration @HPC)
 - Time series management and forecasting
- Holistic data integration
 - Privacy-Preserving Data Matching
 - Deduplication (in Graphs)
- Visual Analysis
 - Improve visualization of large particle data
 - Multi-scale visualization for engineering data
- Knowledge Extraction
 - Porting computer vision algorithms on GPUs
 - Knowledge Extraction on biological and environmental data
 - Deep Learning & structure recognition in spatial planning

See Talk of Prof. Rahm

SCADS SERVICE CENTER AS FOCAL POINT

- 10 new projects contributing directly to ScaDS Dresden/Leipzig (new colleagues in ScaDS labs in Dresden and Leipzig)
- 13 further ScaDS-associated project acquisitions: 26 positions

- Goal: open services for scientific communities
- Starting as demonstration services
 - Visualization for multiscale simulations in engineering
 - Focus and context methods for point-based data
 - ECAST service
 - Entity-Augmentation
 - Binary image segmentation
 - Sierra Platinum: Peak-Calling
 - Imputation service
 - Analytics service for time series
 - Innoplan service
 - Wind anomaly detection
 - Text repository & mining services for Digital Humanities (CTS)
 - Graph Analytics Service

See Talk of Jan Frenzel

ScaDS CONTACTS TO INDUSTRY AND WORKSHOPS

2nd Big Data All-Hands-Meeting, Karlsrune 11... – 12... October 2017

- 3 Big Data in Business (BiDiB) Workshops
- 3 successful international summer schools (Dresden, Leipzig, Munich)
 - more than 250 national/international guests
- Big Data All-Hands-Meeting in Dresden, June 2016
- 30 renowned experts in guest program (21 short-term, 6 mid-term, 3 long-term)

ScaDS INTERNATIONAL VISIBILITY& OUTREACH

- >120 of publications, > 200 talks worldwide
- Industry talks: i.e. Data2Day, Bitkom Big Data Summit, Fosdem, Flink Forward

- Awards:
 - Best Science Paper Award der British Machine Vision Conference (BMVC) (Cooperation Prof. G. Myers und Prof. Carsten Rother)
 - Winner of SciVis-Contest IEEE VIS (Group of Prof. Gumhold)
 - Best Demo Award BTW 2017 (Gradoop), 3rd place Data Science Challenge
 - Staatspreis für Innovation, Category "Transfer" Dr. Stefan Kühne

ScaDS ORGANIZED WORKSHOPS & SUMMERSCHOOLS

1. Big Data All-Hands-Meeting in Dresden

Fachgespräch "BigData – Konzepte zur Analyse komplexer Infrastrukturen"

ScaDS Big Data Industry Forum

Overview I Agenda I Blending Tools and Data in KNIME I Linked Big Data Analytics using IBM System G

Life-Sciences

Material Sciences

Environmental and Traffic Sciences

Digital Humanities

Business Data

Big Data Life Cycle Management und Workflows

Data Quality/ Data Integration

Knowledge Extraction

Visual Analysis

Service-

Center

Efficient Big Data Architecture

ARCHITECTURES FOR DATA ANALYTICS

- New machine room and HPC-infrastructure: HRSK-2 inauguration May 13th 2015
- Current HPC installation:
 > 1 PetaFlop/s, > 5 PB HDD, > 40 TB SSD
 > 130 TB main memory
- Further systems suited for various purposes:
 - SGI UV 2000 (Venus)
 - "Galaxy" cluster @Leipzig+Dresden;
 90 nodes "Shared-Nothing" architecture
 - Research-Cloud: 13 nodes with OpenStack (64 cores, 64GB RAM, 250GB lokal disk)

ScaDS III BIG DATA ARCHITECTURES - MOTIVATION

Big Data / Data Analytics

- Active research field for almost all scientific domains
 - What insights can we get out of broad data base?
 - Usually only prototypic ideas/solutions
- Limited technological and methodical knowledge in domains present
- High potential to characterize value within data by using state-of-the-art methods within frameworks (Hadoop-Ecosystem, deep learning, statistics, ...)

HPC

- Highly specialized hardware; efficient use requires special knowledge
- Traditional batch system based interaction, hardly to be integrated into complex workflows – good for large parallel applications
- "fixed system": no standard methods to shape environments for special needs
- Often mainly centralized storage

MOTIVATION: HOW TO SUPPORT USERS WITH INFRASTRUCTURES

- HPC vs. Data Analytics
 - Bring computing to data, or data to computing (data mover)?
 - Systems and infrastructure should support users, not forcing them to follow rigid regiments
 - Let user pick up approach, which is best for individual use case
 - HPC: traditional rather monolithic usage, e.g simulations
 - Big Data analytics: more data centric, but not all and every analysis is embarrassingly parallel, iterative models still induce large data movements
- There is no unique Big Data blueprint!
- From the users perspective which way to follow? more HPC like approach or dynamic possibilities of big data frameworks?

ScaDS BIG DATA AND HPC – CONVERGENCE PATTERNS

Requirements to support Big Data workloads on HPC

- Support frameworks: more versatile software stacks
- Fast access to data: not just self-production of data (simulation), but also use 3rd-party data (open data, domain repositories)
- Support different data processing paradigms on very same system:
 - Batch vs. Streaming
 - In-Memory and iterations
- Better support of evaluation of (temporary) results, e.g. visualization frontends
- Service orientation (working environments)

ScaDS HRSK-II HARDWARE EXTENSIONS (PHASE 1 + 2)

- Provisioning of required environments (Hadoop, Spark, Flink, ML-frameworks ...)
- Big Data session created on demand
- Run directly as analytics service at HPC site
- Adoptable to other frameworks/applications

ANALYTICS USE CASES

 Use Case: processing pipeline for cell tracking (bacteria E.coli) over time

- Challenge: support execution of data-intensive user workflows in HPC environment
 - No prior HPC-knowledge required on user side
 - Formulation of workload directly in workflow environment
- Solution: combination of well-known and widely used tools
 - KNIME for workflow formulation
 - Middleware UNICORE used for HPC interaction

ScaDS EXECUTION OF LARGE DATA-DRIVEN WORKFLOWS

- First: export of workflow and its input data
- Second: automatic generation of compute jobs and execution

Evaluation data set:

'untime [s]

- 1,8 TB in ~7,5 M files
- Runtime improvement: previously 17d on 4 cores now 2h on 800 cores
- 200x faster parallel execution
- Next steps: fully automated pipeline connecting microscope with HPC environment and research data repository

data size

- Application area: low delay operation support using thermal imaging processing
- Quasi real-time data processing required in decision support during surgery – University Hospital Dresden (UKD)
 - Neural activity monitoring require long-term intraoperative measurements (~10 minutes)
 - Fast preprocessing required to decrease delay for subsequent analysis workflows and result presentations
 => minimize overall OP delay
 - Iterative process: 3000 frames
 (5.4 GB) have to be processed every minute
 (50 Hz sampling rate)

hematoma

- Application area: low delay operation support using thermal imaging processing
- Quasi real-time data processing required in decision support during surgery – University Hospital Dresden (UKD)
- Solution: Provision of Spark-Cluster @HPC
 - Fast SSD-backend to speed-up IO; fail-safe storage of imaging data
- Runtime improvement:
 - UKD-workstation: ~7000s/30.000 images

Soark

- Spark cluster @Taurus: ~32s/30.000 images
- \rightarrow ~220x faster

- Application area: environmental sciences and urban modelling
- Challenges:
 - Analysis of maps to trace the development of settlement areas and their internal structure over time

Settlement area detection, Messtischblaetter 1875-1943

Collaboration between:

Computer Vision Lab Dresden (CVLD) ZIH, TU-Dresden IOER

- Application area: environmental sciences and urban modelling
 - Scenario:
 - Analysis of historic maps ("Messtischblätter"): Good coverage of Germany in 1:25000 scale (1875-1945)
 - Thorough evaluation is desired (over time)
 - Accurate training sets required
 - Solution
 - Usage of image segmentation algorithms in data processing
 - Avoid previously required labor intensive manual work

Example settlement areas

32

Results:

- Automatic and new method for settlement detection in historic maps available using Random Forest (RF) + Conditional Random Field (CRF)
- Scalable data processing of large quantity of input maps possible

- Results:
 - Automatic and new method for settlement detection in historic maps available
 - Scalable data processing of large quantity of input maps possible
- Runtime improvement:
 - serial processing on ordinary workstation: ~780 minutes (13 hours)
 - Parallel execution: <4min \rightarrow ~200x faster

Input

Correct output labels

MULTI-SCALE VISUALIZATION OF ENGINEERING DATA

- Follow simulation of processes over time on different scales
- Easy user-interface for direct interaction with data (webbrowser based)
- Preparation of simulations on different scales at HPC-site and output presentation via visual analysis

Methods:

- Time-dependent finite element simulation of complete component on 3 scales
- 200 time steps per scale using Abaqus tool; simulations need to be aligned

Multi-scale visualization – The key for a deeper understanding of materials

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

SUMMARY AND OUTLOOK

SCADS SUCCESS STORY SCADS DRESDEN/LEIPZIG

Strong scientific output and competence (>120 publications)

i.a. Big Graph Analytics, Sierra Platinum , CTS, data intensive workflows for HPC, settlement recognition in historic maps, Interactive Multi-Scale Visualization...

Service Center for Big Data with high impact Numerous interdisciplinary big data application projects and industry collaborations & transfer in industry

Many project aquisitions

> 11 Mio Euro (Exploids, BIGGR, TIQ-Graph, KOBRA, MASI, GERDIE, EMUDIG4.0..)

National & international outreach & visibility

200 keynotes/talks worldwide, 3 successful summer schools, 30 proven experts in guest program, 3 successful Big Data in Industry workshops

Successful training and education program "Big-Data-Schwerpunkt": lectures/ seminars/ trainings/ PhD seminars Hundreds of Graduates with Big Data Expertise (Master)

>10 PhDs in Big Data close to finishing

- Convergence of HPC and Big Data offers great opportunities in data analysis
- There is no unique big data usage pattern
 - Many different aspects are of interest (not just "volume")
 - But: transparency for users is very important
- HPC systems will support an extremely large main memory, which will result in huge input/output data (size and/or number of files)
- Other, more distributed approaches still valid, e.g. for Hadoop-like workloads, but more iterative methods needed (machine learning)
- Still depending on use-case requirements user needs to adopt current workloads
 - Big Data Analytics at the push of a button ... will take a while

THANK YOU

SCIENTIFIC COORDINATOR

Prof. Dr. Wolfgang E. Nagel

Technische Universität Dresden

Zentrum für Informationsdienste und Hochleistungsrechnen 01062 Dresden

Telefon: +49 351 463-35450 E-Mail: wolfgang.nagel@tu-dresden.de

MANAGEMENT DIRECTOR

Dr. René Jäkel

Technische Universität Dresden Zentrum für Informationsdienste und Hochleistungsrechnen 01062 Dresden

Telefon: +49 351 463-42331 E-Mail: <u>rene.jaekel@tu-dresden.de</u>

SCIENTIFIC CO-COORDINATOR

Prof. Dr. Erhard Rahm

Universität Leipzig Fakultät für Mathematik und Informatik Augustusplatz 10 04109 Leipzig

Telefon: +49 341 97-32221 E-Mail: <u>rahm@informatik.uni-leipzig.de</u>

SERVICE CENTER LEIPZIG

Dr. Eric Peukert Universität Leipzig

Big Data Zentrum ScaDS Dresden/Leipzig Ritterstrasse 9-13 04109 Leipzig

Telefon: +49 341 97-39524 E-Mail: <u>peukert@informatik.uni-leipzig.de</u>