

Helmholtz Al Systematic Aware Training Meeting

HELMHOLTZ

Markus Götz Karlsruhe Institute of Technology / 2022-09-16

www.helmholtz.ai

Helmholtz Al

- Helmholtz incubator (INF) platform
- Launched mid 2019
- 12M € per year (overall)
- One central unit (30 FTEs)
- Five local units
 - Al YIG (3 FTEs)
 - Consultant group (5 FTEs)

- 1. Interdisciplinary platform for innovative research in AI
- 2. Compiles, develops and fosters applied AI methods nationwide across all Helmholtz centers
- 3. Aims to reach international leadership in applied AI

Projects

Vouchers

HELMHOLTZAI

Helmholtz Al Projects

Research on novel AI methods and applications

- High risk, high gain Al research
- At least **two Helmholtz centers**, external partners possible
- Duration: 1-3 years (usually: 2)
- Bi-annual, 50:50 matched funding
 - Up to 200.000 € from the INF
 - Same amount in own contribution

Slack: helmholtzaicommunity.slack.com

Helmholtz Al Vouchers

Support for Applied AI Research

- Collaborative work between applied researchers and consultants group
 - Method consulting
 - Implementation of AI pipelines
 - Joint publications
 - **...**
- Duration: 2–26 weeks, repeatable
- Free-of-charge for Helmholtz members
- Low-cost funding for travel, conferences, ...

Helmholtz Al Vouchers

Centralized web-based system

- Log-in via Helmholtz center e-mail address
- Fill out form with voucher title, duration, abstract, ...

Voucher system

Formal assignment process

HAICORE

HAICORE Concept

- Compute resources for Helmholtz AI
- Free of charge for Helmholtz
- Register here
- Technical details
 - Jupyter Notebook (browser-computing)
 - GPU-accelerated HPC systems
- Two installation sites
 - FZJ: JUWELS booster
 - KIT: HoreKa system
 - Each 72× A100-40GB GPUs, total 144

Local Unit Energy@KIT

Helmholtz AI Local Unit Energy@KIT The Teams

YIG AI in Energy

Markus Götz

AI Consultants

Marie Weiel

lames Kahn

Daniel Coquelin

Katharina Flügel

Helmholtz Al Consultants Team Profile

Typical application domains

- Renewable energy
- Future energy systems and smart grids
- Remote sensing in UAV imaging
- Areas of expertise
 - Computer vision
 - Time series analysis
 - Graph processing
 - Massively parallel Al
- Hosting organization for HAICORE@KIT
- Visit us virtually: https://github.com/Helmholtz-Al-Energy/

Solar cell test park KIT Campus North

HoreKa supercomputer with HAICORE@KIT partition

Mini Grid Operations

A

HyDe - Hyperspectral Image Denoising Toolbox

HZDR

Propulate - Massively Parallel Genetic Optimization

Thermal Bridge Detection

SKIT

Voucher: BaumBauen

Clean Detection Environment at Belle II

Goal: identify structure of decay process up to B particles

Exclusive Tagging Algorithm

- \blacksquare $\mathcal{O}(10.000)$ explicit decay chains
- Hierarchical approach with six distinct stages
- Multivariate classification (BDTs)

Efficiency:	correctly reconstructed B decays
	all B decays

Efficiency	B [±] (%)	B ⁰ (%)
Hadronic	0.76	0.46
Semileptonic	1.80	2.04

Limitations

- Hard coded decay channels restrict branching fraction to $\sim 15\%$
- Hierarchical structure leads to error propagation

The Full Event Interpretation - An exclusive tagging algorithm for the Belle II experiment, Keck et al. (2018), arxiv:1807.08680

Markus Götz | Helmholtz Al

Have: Final state particles (FSPs)

Want: Entire decay structure

Challenges: Variable #FSPs

- Unknown #generations
- Unknown #ancestors
- Undetected FSPs
- Missing ground truth

Solution: Encode tree as FSP relations

Voucher: BaumBauen Model: Neural Relational Inference Encoder

- Iterative node $v \leftrightarrow$ edge *e* update and hierarchical agglomeration
- Implementation in PyTorch and Optuna
- Experiments using the NVidia A100s in HAICORE

Neural Relation Inference or Interacting Systems, Kipf et al. (2018), arXiv:1802.04687v2

- Belle II Monte Carlo simulations
 - Six decay channels
 - Considered missing particles
- Correctly predicted LCAs
 - NRI: 43.2%
 - Transformer: 31.8%
- High accuracy (correctly predicted LCA entries) of 85.6% for NRI

James Kahn et al 2022 Mach. Learn.: Sci. Technol. 3 035012, doi: 10.1088/2632-2153/ac8de0