

(Fast) Machine Learning for Belle II at ETP 16.09.2022

Torben FERBER (torben.ferber@kit.edu)

Overview for ML usage

Actively used:

- used in most analysis for event classification. Most advanced tools "Full Event Reconstruction" and CNN-based flavour tagger with significant contribution from ETP.
- used in offline reconstruction (mostly BDTs) for background-rejection in sub-detectors and particle identification
- "NeuroZ" neural network trigger on multi-FPGAs lead by KIT-ITIV
- Active development:
 - Generative background generation (waveforms, pixel-patterns, ...)
 - More complex real-time algorithms (vertexing, track-finding, cluster-splitting)
 - Anomaly detection for model-independent searches (much better SM understanding than ad pp colliders)

(Real-time) tracking using Graph Neural Networks (GNNs)

Physics challenges:

- Very high beam backgrounds
- low pt tracks
- (non-pointing) displaced vertices

Technical challenges:

- Need (very) low latency of $O(\mu s) \rightarrow FPGAs$
 - Limited ressources on FPGA
 - Slow development cycles for everything nonstandard
- Stereolayers

(Real-time) tracking using Graph Neural Networks (GNNs)

n-dimensional clustering

Physics challenges:

- High dimensional input data on irregular grids:
 - "5D": x, y, z, time, energy (e.g. CALICE)
 - θ , ϕ , time, energy, pulse-shape, crystal dimensions
- Very high backgrounds (noise)

Belle II ECAL (full luminosity)

One-stage multi-object reconstruction: Object condensatio

Physics challenges:

- Clustering (ECAL) and trackfinding for unknown(!) number of objects
- Overlapping clusters and crossing tracks

Technical challenges:

Optimization trade-off (multiple regression and classification targets)

position resolution and splitting

energy resolution and threshold

Model-independent searches with anomaly detection

Physics challenges:

Extended dark sector models with multiple mass scales, couplings, and lifetimes over potentially large SM backgrounds (No "out-of-distribution" events)

Current strategy: Autoencoders

Challenge for future application:

- Real-time trigger application (inputs with much less) precision compared to offline)
- validation with data

