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Prof. Dr. Johanna Wanka, Federal 

Minister of Research, Germany The cook The soup 



Sherlock Holmes Quest 
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How can one check that the soup has cooked? 
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Dissolves fast 

Gets quickly soft if cooked 

Gets slowly soft if cooked 



Sherlock Holmes Quest 
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Lets test ingredients, 

which keep 

information on the 

cooking process. 
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Dissolves also at room temperature 

Keeps softening after cooking 

Reacts slowly, might overlook cooking 



Sherlock Holmes Quest 
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We will have to 

test as many 

ingredients as 

possible to ob-

tain a conclusive 

answer. 

The Quest of modern heavy ion experiments 

CBM 



What means soup: Hadronic Matter 

M. Deveaux 12 



13 

What means carrot: Observables 

UrQMD transport calculation  U+U 23 AGeV 



My topic today 
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Cent.  AuAu coll. at 25 AGeV   
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How can  

 

 this technology help to… 

 



Why webcams? 
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Why webcams 
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Add metall foil to deflect light 

A little radioactivity 

(Am-241, 60 keV photons work fine) 



Why webcams? 
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How does a webcam work? 

Reset 
+3.3V 

+3.3V 

Output 

SiO2 SiO2 SiO2 

N++ N++ 
N+ P+ 

P- 

P+ 

15µm 50µm 



The pre-amplifyer 
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Layout of a classical Active Pixel 

(simplified) 

Amplifier 

(Source Follower) 



Operation principle of the pre-amplifyer 
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Reset 

Pixel-

capacitor-

basin 

Readout-

electronik- 

man 

Water = positive 

charge 

Level indicator 

(Charge-voltage-

converter) 

MIP-man 

Photodiode-

tap 



Operation principle of the pre-amplifyer 
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Readout cycle in three steps:  

First step: Readout-electronic-Man gives a Reset 

When the basin is fully recharged, the water 

level is noted for reference.  

At a photodiode, 

once observes a 

leakage current. 



Operation principle of the pre-amplifyer 
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Second step: Readout-elektronic-man has care for 

his other pixels now 

Sometimes MIP-man passes by to take bucket of positiv 

charge (electrons are collected by the diode after a hit). 



The operation principle of the pre-amplifyer 
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Third step: Readout-elektronik-man returns to 

check the water-level in the basin. 

The level has dropped => MIP-man must have passed by. 

??? 

MAPS pixels may measure even if they are disconnected 

from readout electronics and power supply. 



Some sources of uncertainty 
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Shot noise:  

Number of fallen drops 

fluctuates over time. 

Noise 
Gain of the indicator is 

different for each pixel 



Relation between model and schematics 
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Readout system of early MAPS 
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Architecture of 

MIMOSA I 

X- and Y-shift registers 

to select pixels. 

IO-Signals needed: 

Clock, Reset, Synchro 

and analogue output 
Common Amplifier 



Comparing pixel sizes 
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State of the art 

hybrid pixel 

(100µm x 120 µm) 

Maps-pixel 

(25 x 25 µm²) 

Hybrid pixel 

Hybrid pixel Hybrid pixel 



MAPS: The operation principle 
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Reset 
+3.3V 

+3.3V 

Output 

SiO2 SiO2 SiO2 

N++ N++ 
N+ P+ 

P- 

P+ 

15µm 50µm 
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The meaning of thin… 

Bending radius:  ~30 cm Size:  21.2 x 10.6 mm2 

• 50 µm thickness 

• Bended due to inner tensions 

• Flexible silicon! 
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Open charm reconstruction: Concept 

Primary Beam: 25 AGeV Au Ions (up to 109/s)  

Primary 

vertex 
Secondary 

vertex 

Short lived particle  

D0  (ct = ~ 120 µm) 

Detector 1 
Detector2 Target 

(Gold) 

z 

Reconstruction concept for open charm 

Central Au + Au collision (25 AGeV) 

• A good time resolution to distinguish  

the individual collisions (few 10 µs) 

• Very good radiation tolerance 

  (>1013 neq/cm²) 

Reconstructing open charm requires:  

• Excellent secondary vertex  

   resolution (~ 50 µm) 
=> Excellent spatial resolution (~5 µm) 

=> Very low material budget (few 0.1 % X0) 

=> Detectors in vacuum 
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Established pixel detector technologies (2003) 

Required 

(CBM) 

Hybrid 

pixels 

Single point res. [µm] ~ 5 ~ 30 

Material budget  [ X0 ] ~ 0.3% 1% 

Time resolution  [µs] few 10 0.025 

Rad. hardness   [n/cm²] > 1013 >> 1014 

CCD 

 

~ 5 

~0.1% 

~100 

<< 1010 

NA60 

hybrid pixel 
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Requirements vs. detector performances (2003) 

Required Hybrid 

pixels 

Single point res. [µm] ~ 5 ~ 30 

Material budget  [ X0 ] ~ 0.3% ~ 1% 

Time resolution  [µs] few 10 0.025 

Rad. hardness   [n/cm²] > 1013 >> 1014 

CCD 

 

~ 5 

~ 0.1% 

~100 

<< 1010 

NA60 

hybrid pixel 

More sensitivity 

More statistics 

We need both 
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Performances of MAPS (2003) 

Required Hybrid 

pixels 

Single point res. [µm] ~ 5 ~ 30 

Material budget  [ X0 ] ~ 0.3% 1% 

Time resolution  [µs] few 10 0.025 

Rad. hardness   [n/cm²] > 1013 >> 1014 

CCD 

 

~ 5 

~0.1%* 

~100 

<< 1010 

MAPS** 

(2011) 

3.5 

~0.05%* 

~10000 

> 1012 

*Sensor only **Best of all prototypes 

MAPS provide an unique 

compromise between: 

• sensitivity 

• high rate capability 
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Easy, isn’t it? 

X0  ? 

neq/cm² ??? 



X0 and multiple scattering 
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Definition of the radiation length (X0): 

• Distance in a material, which decelerates charged particles with 

                  to 1/e of its energy. 

• Material constant, tables available at http://pdg.lbl.gov 

Relevance of the radiation length (X0): 

    

x Uncertainty 

range 

1) The thinner, the better. 

2) 1% X0 = 1mm silicon 



What means neq/cm²? 
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Relative non ionising dose of neutrons and pions 
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Data from: A. Vasilescu and G. Lindstroem, Displacement damage in Silicon 

on-line compilation: http://sesam.desy.de/~gunnar/Si-dfuncs 



Radiation tolerance 

37 



What about radiation hardness? 
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Ionising radiation: 

• Energy deposited into the electron cloud 

• May ionise atoms and destroy molecules 

• Caused by charged particles and photons 

Non-ionising radiation: 

• Energy deposited into the crystal lattice 

• Atoms get displaced 

• Caused by heavy (fast leptons, hadrons) 

  charged and neutral particles  

Farnan I, HM Cho, WJ Weber, 2007. "Quantification of Actinide α-Radiation  

Damage in Minerals and Ceramics." Nature 445(7124):190-193. 
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Sensor R&D: Tolerance to non-ionising radiation 

+3.3V 

Output 

SiO2 SiO2 

N++ 

N+ SiO2 SiO2 

P++ P++ P++ 

GND GND 

+3.3V 

Non-ionising radiation  
Energy deposit into crystal lattice 
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Sensor R&D: Tolerance to non-ionising radiation 

+3.3V 

Output 

SiO2 SiO2 

N++ 

N+ SiO2 SiO2 

P++ P++ P++ 

GND GND 

+3.3V 

Key observation: Signal amplitude is reduced by bulk damage 
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Sensor R&D: Tolerance to non-ionising radiation 

+3.3V 

Output 

SiO2 SiO2 

N++ 

N+ SiO2 SiO2 

P++ P++ P++ 

GND GND 

+3.3V 

Electric field increases the radiation hardness of the sensor 

Draw back: Need CMOS-processes with low doping epitaxial layer 

E 



S/N of MIMOSA-18 AHR (high resistivity epi-layer) 

M. Deveaux 42 

Plausible conclusion: Radiation tolerance ~1014 neq/cm² reached 

• Cooling required to operate heavily irradiated sensors 

Safe operation 
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Noise and cooling 
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Cooling is needed to exploid the improved radiation tolerance 

Alternative solution: Fast integration times help 

tInt= 4 ms (slow) 
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Performances of MAPS 

Required Hybrid 

pixels 

Single point res. [µm] ~ 5 ~ 30 

Material budget  [ X0 ] ~ 0.3% 1% 

Time resolution  [µs] few 10 0.025 

Rad. hardness   [n/cm²] > 1013 >> 1014 

CCD 

 

~ 5 

~0.1%* 

~100 

<< 1010 

MAPS** 

(2011) 

3.5 

~0.05%* 

~10000 

> 1012 

*Sensor only **Best of all prototypes 
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Performances of MAPS 

Required Hybrid 

pixels 

Single point res. [µm] ~ 5 ~ 30 

Material budget  [ X0 ] ~ 0.3% 1% 

Time resolution  [µs] few 10 0.025 

Rad. hardness   [n/cm²] > 1013 >> 1014 

CCD 

 

~ 5 

~0.1%* 

~100 

<< 1010 

MAPS** 

(2011) 

3.5 

~0.05%* 

~10000 

~ 1014 

*Sensor only **Best of all prototypes 
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Sensor R&D: How to gain speed 
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External ADC 
Sensor Offline Cluster 

finding 

Output 

Add pedestal 

correction 

~1000 
discriminators 

On - chip 

cluster-finding 

processor 

Output: Cluster information 
(zero surpressed) 

MAPS are built in CMOS 

technology 
 

Allows to integrate: 

• sensor 

• analog circuits 

• digital circuits 
 

on one chip. 



Sensor R&D: How to gain speed 
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Pixel with 

pedestal 

correction 

~1000 
discriminators 

On - chip 

cluster-finding 

processor 

Output: Cluster information 
(zero surpressed) 

MIMOSA-1 

(2000) 

MIMOSA-5 

(2002) 

MIMOSA-20 

(2006) 

MIMOSA-26 

(2009) 

Readout Serial Serial Serial Mk. 2 Digital 

Pixel/line/s 5M 20M 50M 2500M 

Data/sensor:   1200 Mbps 160 Mbps 

Serial readout parallel 

Readout time before: 1-20 ms 

Readout time now:    ~100 µs 

 

Improve further with shorter 

columns. 
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Performances of MAPS 

Required Hybrid 

pixels 

Single point res. [µm] ~ 5 ~ 30 

Material budget  [ X0 ] ~ 0.3% 1% 

Time resolution  [µs] few 10 0.025 

Rad. hardness   [n/cm²] > 1013 >> 1014 

CCD 

 

~ 5 

~0.1%* 

~100 

<< 1010 

MAPS** 

(2011) 

3.5 

~0.05%* 

~10000 

~ 1014 

*Sensor only **Best of all prototypes 
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Performances of MAPS 

Required Hybrid 

pixels 

Single point res. [µm] ~ 5 ~ 30 

Material budget  [ X0 ] ~ 0.3% 1% 

Time resolution  [µs] few 10 0.025 

Rad. hardness   [n/cm²] > 1013 >> 1014 

CCD 

 

~ 5 

~0.1%* 

~100 

<< 1010 

MAPS** 

(2011) 

3.5 

~0.05%* 

30-100 

~ 1014 

*Sensor only **Best of all prototypes 
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Applications of MAPS 

EUDet  

Telescope 

ILC? 

STAR HFT 

CBM MVD 

ALICE ITS? 

2008 2013 2018 



Need for Speed II: A new generation at the horizon 

M. Deveaux 51 

Reset 
+3.3V 

+3.3V 

Output 

SiO2 SiO2 SiO2 

N++ N++ 
N+ P+ 

P- 

P+ 

15µm 50µm 

 

N+ 

P P 

In standard CMOS sensors, no PMOS transistors are possible in pixel 

=> No high level functions like discriminators … => “slow” 

PMOS Transistor 
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Going beyond rolling shutter 

“Standard” 

CMOS 

“Advanced” 

CMOS 

SOI 

Sensors 

3D VLSI 

integration 

Separate sensor and 

electronics on chip 



Advanced CMOS 
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Reset 
+3.3V 

+3.3V 

Output 

SiO2 SiO2 SiO2 

N++ N++ 
N+ P+ 

P- 

P+ 

15µm 50µm 

 

N+ 

P P 

Full CMOS is reached in modern 0.18µm processes with quad-well 

Exploited for IPHC – AROM sensors (discriminator on pixel) 

+ Simple, cost efficient, widely available in industry 

+ Industrial trend toward better epitaxial layers 

-  On pixel electronics limited by pixel surface 

deep P-well 
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SOI - Pixels 
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SOI - Pixels 
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+ Dedicated sensor silicon + dedicated electronics silicon 

+ Conceptually more radiation tolerance possible 

- Thick BOX – Oxide may be vulnerable to radiation damage 

- Still under early R&D, moderate industrial support 



Latest news (Yasuo Arai, Vertex 2013)  
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Electronics 

Current shield 

Current shield 

E-Field shield 

Active volume 



3D VLSI integration, the best of all worlds 
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• Individual chips form always a compromise. 

• 3D VLSI integration aims to pile chips and to connect them 

• Potential: Get the best of all worlds  
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How to put chips together (simplified) 
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• Drill holes (via) deep into the chips and fill with metal 

• Thin silicon until vias are seen on back side 

• Add “bond pads” on the back side 

• Bond chips 

P
la

y
e

rs
 a

m
o

n
g

 o
th

e
rs

: F
e

rm
ila

b
, Á

ID
A

 C
o

lla
b

o
ra

tio
n

 



Status: (Ray Yarema, VERTEX2013) 
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• Prototypes submitted by large community, coordinated by Fermilab 

• Industry failed with bonding => Years of delays and desasters 

• Finally, few months ago:   

• First individual working devices delivered and tested 

• Problems are understood: 

 a) Don’t take industry by the letter 

 b) Use bigger “through vias” to ease alignment while bonding 

• Future submissions should be much easier 

Ray Yarema: In hindsight, … , we might have saved ~ 2 years and 

avoided a lot of grief. That’s why it is called research. 



The final question: How to do system integration 
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Again, this structure will be fixed with 

 

 the novel  Anti Gravitation Glue™. 



Outlook: The story has just started 

Idea from R. De Oliveira, W.Dulinski 

SERNWIETE (mechanical demonstrator) 

A bended MIMOSA-26 in a foil 



Outlook: The story has just started 

Idea from R. De Oliveira, W.Dulinski 

SERNWIETE (mechanical demonstrator) 

A bended MIMOSA-26 in a foil 

PICSEL group, IPHC Strasbourg 

AG Prof. Stroth, Goethe University Frankfurt  

My collaborators: 

What else should have been mentioned: 

I. Peric, ZITI, Heidelberg – Partially depleted 2.5D MAPS 

V. Re et al, INFN, Pavia, Bergamo – MAPS with discriminator/shaper 

… ând many others… 


