

Based on the lectures by B. Bornschein "Messmethoden und Techniken in der Experimentalphysik", SS 2013, lectures #3 and #4

Measurement uncertainties – GUM & Co.

Simone Rupp

KSETA Workshop, 17.10.2013

KIT – University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association

www.kit.edu

"The more often I repeat a measurement, the more accurate it gets."

Simone Rupp 17.10.2013

2

KIT – University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association

"The more often I repeat a measurement, the more

accurate it gets."

Wrong!

3 Simone Rupp 17.10.2013

KIT – University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association

Some basic terms

Accuracy? Systematic error? (Genauigkeit) (Systematische **Messabweichung**) **Random error?** (Zufällige Mess-**Precision?** abweichung) (Präzision) **Trueness?** (Richtigkeit) **Resolution? True value?** (Auflösung) (Wahrer Wert)

Simone Rupp

17.10.2013

KIT – University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association

Some basic terms

KIT – University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association

Institute of Technical Physics Tritium Laboratory Karlsruhe

5

Simone Rupp

And what about "accuracy"?

Precision improving

Simone Rupp 17.10.2013

6

KIT – University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association

And what about "accuracy"?

Simone Rupp 17.10.2013

7

KIT – University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association

Right or wrong? Next try!

"The more often I repeat a measurement, the more precise it gets."

Simone Rupp 17.10.2013

KIT – University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association

Institute of Technical Physics Tritium Laboratory Karlsruhe

8

Right or wrong? Next try!

"The more often I repeat a measurement, the more precise it gets."

Wrong!

Simone Rupp 17.10.2013

9

KIT – University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association

KIT – University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association

11 Simone Rupp 17.10.2013

KIT – University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association

Guide to the expression of Uncertainty in Measurement

12 Simone Rupp 17.10.2013

KIT – University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association

International discussion on uncertainties

- → "Guide to the Expression of Uncertainty in Measurement"
- Published 1993 by ISO (International Organization for Standardization), corrected versions 1995 and 2008
- Involved:
 - International Bureau of Weights and Measures (BIPM)
 - International Electrotechnical Commission (IEC)
 - International Federation of Clinical Chemistry (IFCC)
 - International Organization for Standardization (ISO)
 - International Union of Pure and Applied Chemistry (IUPAC)
 - International Union of Pure and Applied Physics (IUPAP)
 - International Organization of Legal Metrology (OIML)

www.bipm.org/utils/common/documents/jcgm/JCGM_100_ 2008_E.pdf

Method for evaluating the measurement uncertainty according to GUM

 GUM distinguishes two cases in the evaluation of measurement uncertainties:

Type A and Type B

- Type A: Method of evaluation of uncertainty based on a series of observations (repeated measurements)
 statistical analysis
- Type B: Method of evaluation of uncertainty by means other than the statistical analysis of series of observations if it's not type A, then it's type B

Method A

15 Simone Rupp 17.10.2013

KIT – University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association

This is what we need!

Institute of Technical Physics KIT - University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association **Tritium Laboratory Karlsruhe**

Basic formulae

We have performed *n* independent repeat measurements of quantity x under the same conditions. Then:

- Best available estimate of the expected value μ = arithmetic mean/average \mathcal{X}
- Best estimate of the variance σ^2 = empirical variance $s^2(x)$
- Best estimate for the variance of the mean = empirical variance of the mean $s^2(\overline{X})$

$$\frac{1}{1-\frac{1}{2}} \cdot \sum_{i=1}^{n} (x_i - \overline{x})^2$$

$$s^{2}(\bar{x}) = \frac{s(x)}{n}$$

 $c^2(r)$

normalizes variance to the sample size \rightarrow comparability

 $s^2(x)$

Solution

"The more often I repeat a measurement, the smaller gets the empirical variance of the mean."

Remarks (according to GUM)

- The number of observations *n* should be large enough to ensure that \overline{x} provides a reliable estimate of the expectation μ of the random variable *x*, and $s^2(\overline{x})$ of the variance $\sigma^2(\overline{x}) = \sigma^2 / n$.
 - The **difference** between s^2 and σ^2 has to be considered when one constructs confidence intervals!

→ If the probability distribution of x is a normal distribution, the difference is taken into account through the *t*-distribution.

19 Simone Rupp 17.10.2013

KIT – University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association Institute of Technical Physics Tritium Laboratory Karlsruhe

Student distribution / t-distribution

- t-distribution → normal distribution for ∞ degrees of freedom ν (ν = n-1)
- Normal distribution:
 68.3 % of measured values

inside region $\pm \sigma$

t-distribution:

Same probability for region $t_{68,3}$ * *s* with *t* = student factor (*t*-factor)

Some values for *t*-factors (from GUM)

Table G.2 — Value of $t_p(v)$ from the *t*-distribution for degrees of freedom *v* that defines an interval $-t_p(v)$ to $+t_p(v)$ that encompasses the fraction *p* of the distribution

Degrees of freedom	Fraction <i>p</i> in percent					
v	68,27 <mark>1</mark> σ	90	95	95,45 <mark>2</mark> 0	99	99,73 <mark>3</mark> 0
1	1,84	6,31	12,71	13,97	63,66	235,80
2	1,32	2,92	4,30	4,53	9,92	19,21
3	1,20	2,35	3,18	3,31	5,84	9,22
4	1,14	2,13	2,78	2,87	4,60	6,62
5	1,11	2,02	2,57	2,65	4,03	5,51
6	1,09	1,94	2,45	2,52	3,71	4,90
7	1,08	1,89	2,36	2,43	3,50	4,53
8	1,07	1,86	2,31	2,37	3,36	4,28
9	1,06	1,83	2,26	2,32	3,25	4,09
10	1,05	1,81	2,23	2,28	3,17	3,96

Simone Rupp

20

17.10.2013

KIT – University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association

Some values for *t*-factors (from GUM)

dof	1σ			2σ		3 σ
20	1,03	1,72	2,09	2,13	2,85	3,42
25	1,02	1,71	2,06	2,11	2,79	3,33
30	1,02	1,70	2,04	2,09	2,75	3,27
35	1,01	1,70	2,03	2,07	2,72	3,23
40	1,01	1,68	2,02	2,06	2,70	3,20
45	1,01	1,68	2,01	2,06	2,69	3,18
50	1,01	1,68	2,01	2,05	2,68	3,16
100	1,005	1,660	1,984	2,025	2,626	3,077
∞	1,000	1,645	1,960	2,000	2,576	3,000

t-factor important also for more than 10 repeats!

KIT – University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association

5 measurements of a voltage

Table G.2 — Value of $t_p(v)$ from the *t*-distribution for H X_i in V $(X_i-\mu)^2$ in V² an interval $-t_p(v)$ to $+t_p(v)$ that encompasses t 1 6,7 0,04 Degrees of Fraction p 2 6,4 0,01 freedom 3 6.3 0,04 68,27<u>a)</u> 90 95 v 6.6 0,01 4 1 1.84 6.31 12.71 5 6.5 0,00 2 1.32 2.92 4.30 0,10 Sum 32.5 3 1,20 2.35 3,18 1,14 2,13 2,78 4

Discussion:

What is the arithmetic mean, the empirical standard deviation, the uncertainty of the mean and the total uncertainty taking into account the student factor (68,27%)?

Example: Type A

- 5 measurements of a voltage
- Mean: 32,5 V / 5 = 6,5 V
- Empirical varicance:
 0,10 V² / (5-1) = 0,025 V²
- Empirical std. deviation:

$$s = \sqrt{s^2} = \sqrt{0,025} \text{ V} = 0,156 \text{ V}$$

i	X _i in V	$(X_i-\overline{x})^2$ in V ²
1	6,7	0,04
2	6,4	0,01
3	6,3	0,04
4	6,6	0,01
5	6,5	0,00
Sum	32,5	0,10

- Uncertainty of the mean: $s(\bar{x}) = s / \sqrt{n} = 0,156 \text{ V} / \sqrt{5} = 0,070 \text{ V}$
- Student factor for 68,3% probability: 1,14 ($\nu = 4$)
- Final result: $\mu \pm s(\bar{x}) \cdot t = 6,5V \pm 0,08V$

KIT – University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association

Method for evaluating the measurement uncertainty according to GUM

 GUM distinguishes two cases in the evaluation of measurement uncertainties:

Type A and Type B

- Type A: Method of evaluation of uncertainty based on a series of observations (repeated measurements)
 statistical analysis
- Type B: Method of evaluation of uncertainty by means other than the statistical analysis of series of observations if it's not type A, then it's type B

Method B

25 Simone Rupp 17.10.2013

KIT – University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association

Evaluation of the variance from other source (,,everything apart from statistical analysis")

According to Hoffmann, Handbuch der Messtechnik

- Sometimes one can only perform one single measurement → variance?
 - Own experience (e.g. from former experiments)
 - Experience of others
 - literature values
- Often there are upper/lower bounds of the uncertainty given

KIT – University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association

Evaluation of the variance if only upper/ lower bounds of the uncertainty are known

First step:

Determination of the distribution function $f(x_i)$

Second step:

Calculation of the variance using these formulae:

Discrete distribution

$$u^{2} = \sum_{i=1}^{N} (x_{i} - x_{0})^{2} f(x_{i})$$

with $x_{0} = \sum_{i=1}^{N} x_{i} f(x_{i})$

Continuous distribution

$$u^{2} = \int_{-\infty}^{\infty} (x - x_{0})^{2} f(x) dx$$

with $x_{0} = \int_{-\infty}^{\infty} x f(x) dx$

KIT – University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association

KIT – University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association

Rectangular distribution

- Example: next slide
- Variance:

$$u^{2} = \int_{-\infty}^{\infty} (x - x_{0})^{2} f(x) dx$$

$$=\int_{x_0-a}^{x_0+a} \frac{1}{2a} (x-x_0)^2 dx = \frac{1}{2a} \frac{(x-x_0)^3}{3} \Big|_{x_0-a}^{x_0+a} = \frac{a^2}{3}$$

29 Simone Rupp 17.10.2013

KIT – University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association

Example for rectangular distribution

- Given: Precision resistance of 100 Ω with a measurement uncertainty of ± 2 ppm according to the calibration certificate
- Wanted: Variance and standard deviation

$$u^{2} = \frac{1}{3} (2 \cdot 10^{-6})^{2} = 1,33 \cdot 10^{-12} \text{ (relative)}$$
$$\Rightarrow u = \sqrt{1,33 \cdot 10^{-12}} \cdot 100\Omega = 0,115 \text{ m}\Omega$$

→ The resistance has a value of (100,000000 \pm 0,000115) Ω .

Triangular distribution

- Taken if it is known (e.g. from experience) that there is a preference for value x₀ between certain bounds
- Variance:

$$u^{2} = \int_{-\infty}^{\infty} (x - x_{0})^{2} f(x) dx$$

= $\frac{a^{2}}{6}$ with $f(x) = \frac{1}{6} (1 - \frac{1}{a} | x - x_{0})$

F. Adunka, Messunsicherheiten

Example: According to the manufacturer, the temperature coefficient can lie between -10 ppm and +10 ppm. A preference for small deviations is assumed from experience.

→
$$u^2 = \frac{1}{6} (10 \cdot 10^{-6})^2 = 1,67 \cdot 10^{-11}$$
 (relative)

17.10.2013

Example for rectangular distribution

Given: Precision resistance of 100 Ω with a measurement uncertainty of ± 2 ppm according to the calibration certificate

And why is this important?

$$u^{2} = \frac{1}{3}(2 \cdot 10^{-12}) - 1,00 \Omega = 0,115 \text{ m}\Omega$$

→ The resistance has a value of (100,000000 \pm 0,000115) Ω .

Example for rectangular distribution

Given: Precision resistance of 100 Ω with a measurement uncertainty of ± 2 ppm according to the calibration certificate
 "naive"
 Wanted: Variance and standard deviation

$$u^{2} = \frac{1}{3} (2 \cdot 10^{-6})^{2} = 1,33 \cdot 10^{-12} \text{ (relative)}$$
$$\Rightarrow u = \sqrt{1,33 \cdot 10^{-12}} \cdot 100\Omega = 0,115 \text{ m}\Omega$$

→ The resistance has a value of $(100,000000 \pm 0,000115) \Omega$.

33 Simone Rupp 17.10.2013

KIT – University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association

Mathematical models w/o covariance

According to F. Adunka, Messunsicherheiten

- Measurement result constituted of several quantities → mathematical model $f(x_1, x_2, x_3, ..., x_N)$ needed
- Example: R=U/I (U, I = measured)
- The result of the measurement is then a function of the arithmetic means x_{0,i}: y₀= f(x_{0,1}, x_{0,2}, x_{0,3}, ..., x_{0,N})
- The (combined) variance is calculated via Gaussion propagation of uncertainties (here given for variances):

$$u^{2}(y) = \sum_{i=1}^{N} \left(\frac{\partial f}{\partial x_{i}}\right)^{2} u^{2}(x_{i})$$

Note: Formula derived via Taylor series (to n = 1); just valid for small u_i

Take-home-messages

Accuracy improving

Precision improving

Take-home-messages

Simone Rupp

17.10.2013

Guide to the expression of Uncertainty in Measurement

www.bipm.org/utils/common/documents/jcg m/JCGM_100_2008_E.pdf

KIT – University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association

Student distribution for small sample sizes (< 30)

KIT – University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association

Think of distribution functions!

KIT – University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association

Thank you!

40 Simone Rupp 17.10.2013

KIT – University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association