
Cécile Kéfélian

KSETA Freudenstadt workshop, 17/10/2013

Data analysis using
 the CouchDB database

+ =

2

Goal of the workshop

Getting an overview of the CouchDB
database and its usefulness

for monitoring and data analysis

● What is CouchDB ?

● What are its benefits ?

● How to get informations for it using views ?

● How to handle Big Data problem ?

● How to use CouchDB from a python script using couchdbkit ?

● What interesting features are offered by CouchDB ?
 CouchApps
 Replication

3

Introduction to CouchDB

document-based

json-based

schema-freeopen source

RESTfull API

N-Master replications

NoSQL

map/reduce

key/value pairs

views

Infinite applications: films, sms, contacts, cooking recipes, web apps, blogs, websites...
 … monitor the detector temperature, store analysis results

revision

CouchDB: Cluster Of Unreliable Commodity Hardware DataBase

 Definition from official website:

CouchApps

“CouchDB is an open source document-oriented database.
Store your data with JSON documents.

Access your documents with your web browser, via HTTP.
Query, combine, and transform your documents with JavaScript.”

4

Installation of couchDB

http://docs.couchdb.org/en/latest/install/index.html

also on exotic ones ;)

available on all
operating systems

→ pre-compiled binaries for all platforms available

5

How to administrate the CouchDB database
● From creation to replication to data insertion, CouchDB administration can be done via HTTP
CouchDB is a RESTful API → the 4 HTTP methods GET,POST,PUT and DELETE can be used
→ Terminal + command line utility to throw around HTTP requests (like curl)
http://docs.couchdb.org/en/latest/intro/tour.html

● Futon (web build-in administration interface)
→ load Futon in your browser: http://127.0.0.1:5984/_utils/

Not working with internet explorer
Firefox or chrome advised

http://docs.couchdb.org/en/latest/intro/tour.html

6

Admin rights

By default, CouchDB gives
 every user admin rights

on all databases.

7

MySQL vs NoSQL database

● Support the SQL

● Relational database (collection of tables
of data items, described and organized
according to the relational model)

● Collection of tables of data items to be
defined up-front

● Relationship between tuples have to be
defined

● Specific protocol used to communicate
with the db

● Do not support the SQL

● Document-based database

● Collection of self-contained documents
which can differ from each other
(document not stored in a defined table)

● No relationships have to be defined

● HTTP protocol used to communicate
with the db

MySQL NoSQL
CouchDB, MongoDB

 up-front defined structure schema-free

 SQL (Structured Query Language): programming language designed for managing
 data held in a relational database.

Let's create a database containing the list of the films you watched :)

8

Creating a database

9

Creating a document
Database empty at the moment...

functions available

After clicking on new document...

_id field and corresponding value created automatically
→ unique value identifying the document

Security: define admins and members

10

Document structure

Field (=key) → string
Value → JSON (JavaScript Object Notation) object :

● number (either integer or float)
● string
● boolean (true/false value)
● array
● object (a set of key/value pairs)

Use to format the content and
structure of the data and responses

==key

key / value pair structure

CouchDB also supports
attachments.

11

After saving...

Document revision

new field _rev automatically added

12

Document revision

adding a new field

revision _rev changes after saving

Each time the document is modified (key/value pair added or modified) and saved, a new
_rev value is given to the document

correction of a value

previous version accessible !
All the document revisions can be deleted by clicking on Compact&Cleanup

13

JSON-based document storage
After clicking on source:

● Futon interprets the key/value pairs as JSON objects.

● By clicking on source, the underlying JSON document is displayed

14

Schema-free database
We can add a document with different key/value pair in the “films” database
→ documents of a given db do not necessarily have the same structure

attachments possible
in a document :) :) :)

15

Useful JSON syntax

{
 "chocolate": 150,
 "flour": 80,
 "sugar": 100,
 "butter": 80,
 "eggs": 4,
 "coconut": 80,
 "backing powder": 1
}

● JSON arrays:

● JSON set of key/value pairs:

"actors": [
 "Penelope Cruz",
 "George Clooney"
],

Value → JSON (JavaScript Object Notation) object :
● number (either integer or float)
● string
● boolean (true/false value)
● array
● set of key/value pairs

Which syntax should be use for the interpreter
to recognize the object type ?

16

Get informations
from the database

document-based

json-based

schema-freeopen source

RESTfull API

N-Master replications

NoSQL

map/reduce

key/value pairs

views

revision

CouchApps

Now, let's...

17

Getting useful informations using views
● CouchDB is schema-free i.e. unstructured by nature
→ difficult to use in real-world applications
Use views to give structure to the data
● Two kind of view existing:

 permanent views (stored in design document): iterate over every document and build a list
of documents with specific fields → improve the performance

 temporary views: executed on command but ressource-intensive and become
 slower as the amount of data stored in the db increases

● Views based on Map/Reduce principle and using JavaScript functions

● Views are not updated after a document is saved but when it is run
→ first run can last long if there are many documents in the db

18

map → extracting data reduce → data aggregation

● Views based on the Map/Reduce principle

Getting useful informations using views

simplest map function

go to temporary view
to write a view

After clicking on “Run”, view output:

● set of keys and values passed to it
and combined to a single value
● predefined reduce functions
 (_sum, _count and _stats)

19

Map function syntax
Considering a document of the following form:

{
 "_id": "f3afc8352569a09b6dabeeb3cb000f1e",
 "_rev": "7-0f60974d9a81d92caa8c4ee13285c104",
 "string": "HelloWolrd",
 “int”:5,
 “output1”:”Couch”,
 “output2”:”DB”
}

Example of a map function:

function(doc) {
 if(doc.string && doc.int>5)
 emit(doc.output1, doc.output2);
}

What you should know on map syntax:
● indent not compulsory

● doc[key1] <=> doc.key1

● between 2 conditions: &&

● if(doc.key3) => if the document has a
field called key3, then continue

● emit() generates the output

20

Examples of map functions

function(doc) {
 if((doc.PreparationTime+doc.CookingTime) <20)
 emit(doc.name, doc.ingredients);
}

function(doc) {
 if(doc.ingredients["tomato"]>0)
 emit(doc.name, doc.ingredients);
}

To view recipes using tomatoes

To view recipes with
cooking+preparation time < 20 min

{
 "pastry brisée": 1,
 "oignon": 7,
 "egg": 5,
 "lardon": 250,
 "butter": 25,
 "liquid creme": 20
}

● Condition on object elements:

● Condition on simple key/value pair

Corresponding output:

Corresponding output:

21

function(doc) {
 for(var i=0;i<doc["actors"].length;i++){
 if(doc["actors"][i]=="Penelope Cruz")
 emit(doc.title, doc.actors);
 }
 }

Examples of map functions
● Condition on table of values:

Corresponding output:

Underlying JSON doc:

"actors": [
 "Penelope Cruz",
 "George Clooney"
],

In the document:

We need the following map function to query an actor:

22

Using CouchDB for
 physics purposes

23

Using CouchDB in Physics
We can store:
● DAQ informations: run configuration...
● Slow control (temperature, pressure...)
● Hardware maps
● Informations on detectors
● Energy resolution
● Noise spectra/filters
● Analysis results

● BigCouch was released and is primarily maintained by Cloudant

● Based on CouchDB

● BigCouch allows to create clusters of CouchDBs that are distributed over many servers but
appears to the user as one CouchDB instance

● All the CouchDB servers act together to store and retrieve documents, index and serve
views, and serve CouchApps.

Cloudant website: https://cloudant.com/

Physics application often requires fast-growing db
Problem: CouchDB do not offer “horizonal”
 scaling i.e. across many servers

Solution:
Going from your small Couch...

… to the BigCouch

24

http://wiki.apache.org/couchdb/Basics

CouchDB available frameworks
● All languages which can deal with HTTP
can be used to administrate the db

● Libraries existing for many languages

● C++ tools less developed and less
convenient than python tools

Following examples using the python tool
couchdbkit (provide a framework for
Python to access and manage Couchdb)
→ http://couchdbkit.org/

25

Example: position monitoring using CouchDB

EDELWEISS setup

distance est Dest

distance
nemo Dnemo

WALL

Measured every 15 min

Written in
a text file

● Position of the muon veto chariots measured
every 15 min in text files

 date + time
measurement

5 measurements
of the distance

26

import the couchdbkit librairy which allows the communication with the db
import couchdbkit

create an empty list which will be used to store documents
docs=[]

#open the text file containing the useful informations
f=open('path/workfile.txt','r')
for line in f : #go over the file line
 #get the date
 line_list=line.split('|')
 date_str=line_list[0].strip(' ')

 #get the 5 measurement values in a list
 val_list = [float(x) for x in line_list[3].split(',')]

 #put these values in an array using the numpy package
 val_np = np.array(val_list)

 #convert the red date into a time object; be careful of time conversion from your time zone to UTC !!!
 date=datetime.datetime.strptime(date_str,"%Y-%m-%d %H:%M:%S")

 #convert the date in unixtime (ADVICE: always store the time in unixtime)
 unix_time=time.mktime(date.timetuple())

Store a text file content in the db
ADVICE:
Don't store documents individually but create a list of documents and store them in one call

27

 #create an empty dictionary to store the document
 adoc={ }
 adoc['aveValue'] = val_np.mean()
 adoc['uncervalue'] = math.sqrt(val_np.var())
 adoc['unixtime'] = unix_time
 adoc['position'] = 'est'
 #append the document in the docs list
 docs.append(adoc)

#once all the file lines haves been red and informations put in a dictionary,
#call the database and them the list of document:

connect to the cloudant server
s = couchdbkit.Server('https://username:password@username.cloudant.com')

create a database with the name “db_name” from a python script
db = s.create_db('dbName')
call an existing db
db = s('vetopos')
or create a db if non existing, get the existing one otherwise
db = s.get_or_create_db(dbName)

#save the list of documents append to docs
db.bulk_save(docs)

#to save a single document
#db.save_doc(adoc)

Store a text file content in the db

Dictionaries consist of pairs of keys and their
corresponding values (like in a db document!)
dict = {'Name': 'Antoine', 'Age': 23, 'Institut':'LASIM'};

Python document == CouchDb document !

28

68.9 days → 48 days

R
at

e
pe

r 1
 m

in
 b

in

gap > 4.6 cm: data skipped
gap < 4.6 cm

Time

Time

M15 / M16 off
Change of
HV channel

48 days → 45.2 days

some hv off: data skipped
all HV on

● Requirements for a correct analysis for each event of the root tree
 closed muon veto
 HV ON for the whole system

● Communication with our Cloudant database

Data selection by using the database
R

at
e

pe
r 1

 m
in

 b
in

29

Using views in a python script
Problem: accessing the database for each event is time consuming

Solution: copy the database documents useful the for analysis in a local dictionary

Before to perform the analysis:

#create empty lists
DocListEst=[] #to store the position of the est part
DocListNemo=[] #to store the position of the west part

connect to the cloudant server
s = couchdbkit.Server('https://username:password@username.cloudant.com')

#get to the db called “vetopos”
db=s['vetopos']

#select the view to get position of the est chariot
vr=db.view('app/est_bydate',startkey=StartTime,endkey=EndTime,reduce=False)
#loop over the document of the view
for row in vr:
 #store the useful fields in the dictionary
 DocListEst.append({'PcTime':doc['unixtime'],'Position':doc['aveValue']})

vr2=db.view('app/nemo_bydate',startkey=StartTime,endkey=EndTime,reduce=False)
#loop over the document of the view
for row in vr2:
 #store the useful fields in the dictionary
 DocListNemo.append({'PcTime':doc['unixtime'],'Position':doc['aveValue']})

Beginning of
the analysis

End of the
analysis

Disabled eventual
reduce function

30

If there is only few change of the useful value during the time studied time period (for example
of hv): create a reduced dictionary saying when the value changed and the new value

#ensure the “Docs” dictionary is sorted by time
Docs.sort(key=lambda x: (x['PcTime']))

#create a reduced list containing the time and new value
ReducedList={ }
ReduceList.append({“time”=Docs[0][“time”],”value”:Docs[0][“value”]})

valueRef=Docs[0].get('value')

#loop over the documents in Docs
for item in Docs:
 if item['value']==valueRef:
 print 'no change, don't append the document !'
 else:
 print 'the value has changed. Append the document !'
 ReducedList.append({“time”=Docs[0][“time”],”value”:Docs[0]
[“value”]})

Reducing time consumption while reading documents

31

If many changes of the useful value: save the list item index of the document in which

for Entry in range (0,t.GetEntries()):
 f.GetEntry(Entry)

 for index in range(save_index,len(Docs)):
 if event.GetPcTimeSec()>=(Docs[index]['time']) and
event.GetPcTimeSec()<(Docs[index+1]['PcTime']):

 save_index=index
 Do stuff

Reducing time consumption while reading documents

32

More example : delete document from the db
connect to the server
s = couchdbkit.Server('https://username:password@username.cloudant.com')
#select the corresponding db
db = s['vetopos']
#select a view
vr=db.view('app/nemo_bydate',reduce=False)

#function(doc) {
if(doc.unixtime && doc.position=="est" && typeof(doc.aveValue) === 'number')
emit(doc.unixtime, doc.aveValue);
#}
for(line in vr):
 if row['key']>1354589540 and row['key']<1354599999:
 db.delete_doc(row['id'])

33

Database utilities

34

Database replication
● Replication: synchronization of 2 copies of the same database, allowing easy access to data

● The databases can live on the same or different servers. If one copy of the database is
changed, replication will send these changes to the other copy.

● To do a replication, the user sends an HTTP request to CouchDB that includes a source and a
target database, and CouchDB will send the changes from the source to the target.

● Simple replication from the Futon interface

35

CouchApps
CouchApp: standalone web application (based on HTML and JavaScript) that can be entirely
 self-contained in a design document within the database that provides the data

36

CouchApp example

37

CouchApp example

38

Official wiki page
http://wiki.apache.org/couchdb/Documentation

Official apache couchdb website
http://couchdb.apache.org/

Online book dedicated to CouchDB
http://guide.couchdb.org/

Short video tutorial
http://www.youtube.com/watch?v=7ZJCD16sWw4

Couchdbkit toolkit
http://couchdbkit.org/

About views:
http://wiki.apache.org/couchdb/HTTP_view_API
http://wiki.apache.org/couchdb/Introduction_to_CouchDB_views

About predefined reduce functions:
http://wiki.apache.org/couchdb/Built-In_Reduce_Functions

Couchapps toolkit
https://github.com/couchapp/couchapp

Nice tutorial on couchapps
http://www.ibm.com/developerworks/opensource/tutorials/os-couchapp/

Documentation

http://wiki.apache.org/couchdb/Documentation
http://couchdb.apache.org/
http://www.youtube.com/watch?v=7ZJCD16sWw4
http://wiki.apache.org/couchdb/Built-In_Reduce_Functions
https://github.com/couchapp/couchapp

39

Backup slides

40

Getting informations using HTTP

Mind the ? between url and parameters

41

HTTP parameters

http://docs.couchdb.org/en/latest/api/database.html

42

● _sum just adds up the emitted values, which must be numbers.

● _count counts the number of emitted values. (It's like _sum for emit(foo, 1).) It ignores the
contents of the values, so they can by any type.

● _stats calculates some numerical statistics on your emitted values, which must be numbers.

The reduce output is an object that looks like this:

{"sum":2,"count":2,"min":1,"max":1,"sumsqr":2}

"sum" and "count" are equivalent to the _sum and _count reductions. "min" and "max" are the
minimum and maximum emitted values. "sumsqr" is the sum of the squares of the emitted
values (useful for statistical calculations like standard deviation).

Predefined reduce functions

	page0
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

